The Use of Mefenoxam to Treat Cutaneous and Gastrointestinal Pythiosis in Dogs: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Canine Demographics and Clinical Signs
3.2. Use of Mefenoxam
3.3. Survivability and Time-to-Cure Assessment
3.4. Histopathological and Necroscopic Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaastra, W.; Lipman, L.J.; De Cock, A.W.; Exel, T.K.; Pegge, R.B.; Scheurwater, J.; Vilela, R.; Mendoza, L. Pythium insidiosum: An overview. Vet. Microbiol. 2010, 146, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grooters, A.M. Pythiosis, lagenidiosis, and zygomycosis in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2003, 33, 695–720. [Google Scholar] [CrossRef]
- Fischer, J.R.; Pace, L.W.; Turk, J.R.; Kreeger, J.M.; Miller, M.A.; Gosser, H.S. Gastrointestinal pythiosis in Missouri Dogs: Eleven cases. J. Vet. Diagn. Investig. 1994, 6, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Cridge, H.; Hughes, S.M.; Langston, V.C.; Mackin, A.J. Mefenoxam, itraconazole, and terbinafine combination therapy for management of pythiosis in dogs (six cases). J. Am. Anim. Hosp. Assoc. 2020, 56, 307. [Google Scholar] [CrossRef] [PubMed]
- Hummel, J.; Grooters, A.; Davidson, G.; Jennings, S.; Nicklas, J.; Birkenheuer, A. Successful management of gastrointestinal pythiosis in a dog using itraconazole, terbinafine, and mefenoxam. Med. Mycol. 2011, 49, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, L.; Mandy, W.; Glass, R. An improved Pythium insidiosum-vaccine formulation with enhanced immunotherapeutic properties in horses and dogs with pythiosis. Vaccine 2003, 21, 2797–2804. [Google Scholar] [CrossRef]
- Berryessa, N.A.; Marks, S.L.; Pesavento, P.A.; Krasnansky, T.; Yoshimoto, S.K.; Johnson, E.G.; Grooters, A.M. Gastrointestinal pythiosis in 10 dogs from California. J. Vet. Intern. Med. 2008, 22, 1065–1069. [Google Scholar] [CrossRef]
- Zimmermann, C.P.; Jesus, F.K.; Schlemmer, K.B.; Loreto, E.S.; Tondolo, J.M.; Driemeier, D.; Alves, S.H.; Ferreiro, L.; Santuiro, J.M. In vivo effect of minocycline alone and in combination with immunotherapy against Pythium insidiosum. Vet. Microbiol. 2020, 243, 108616. [Google Scholar] [CrossRef]
- Brown, T.A.; Grooters, A.M.; Giselle, L.H. In vitro susceptibility of Pythium insidiosum and a Lagenidium sp to itraconazole, posaconazole, voriconazole, terbinafine, caspofungin, and mefenoxam. Am. J. Vet. Res. 2008, 69, 1463–1468. [Google Scholar] [CrossRef]
- Pires, L.; de Moraes Gimenes Boscod, S.; Baptista, M.S.; Kurachi, C. Photodynamic therapy in Pythium insidiosum—An in vitro study of the correlation of sensitizer localization and cell death. PLoS ONE 2014, 21, e85431. [Google Scholar] [CrossRef]
- Arsuaga, C.B.; Grooters, A.M.; Pucheu-Haston, C.M. Quantitation of anti-Pythium insidiosum antibodies before and after administration of an immunotherapeutic product to healthy dogs. Am. J. Vet. Res. 2018, 79, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- White, A.G.; Smart, K.; Hathcock, T.; Tillson, D.M.; Poudel, A.; Rynders, P.; Wang, C. Successful management of cutaneous paralagenidiosis in a dog treated with mefenoxam, minocycline, prednisone, and hyperbaric oxygen therapy. Med. Mycol. Case Rep. 2020, 29, 38–42. [Google Scholar] [CrossRef]
- Gisi, U.; Sierotzki, H. Fungicide modes of action and resistance in downy mildews. Eur. J. Plant. Pathol. 2008, 122, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Sukanan, P.; Suparp, B.; Yongsiri, S.; Chansiripornchai, P.; Kesdangsakonwut, S. Successful management of colonic pythiosis in two dogs in Thailand using antifungal therapy. Vet. Med. Sci. 2022, 8, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, W.D. Notice of filing pesticides petitions. Fed. Regist. 1997, 62, 40075–40086. [Google Scholar]
- Znajda, N.R.; Grooters, A.M.; Marsella, R. PCR-based detection of Pythium and Lagendium DNA in frozen and ethanol-fixed animal tissues. Vet. Dermatol. 2002, 13, 187–194. [Google Scholar] [CrossRef]
- Grooters, A.M.; Leise, B.S.; Lopez, M.K.; Gee, M.K.; O’Reilly, K.L. Development and evaluation of an enzyme-linked immunosorbent assay for the serodiagnosis of pythiosis in dogs. J. Vet. Intern. Med. 2002, 16, 142–146. [Google Scholar] [CrossRef]
- Yolanda, H.; Krajaejun, T. Global distribution and clinical features of pythiosis in humans and animals. J. Fungi 2022, 8, 182. [Google Scholar] [CrossRef]
- Dykstra, M.J.; Shapr, N.H.; Olivry, T.; Hillier, A.; Murphy, K.M.; Kaufman, L.; Kunkle, G.A.; Pucheu-Haston, C. A description of cutaneous-subcutaneous pythiosis in fifteen dogs. Med. Mycol. 1999, 37, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Myers, A.N.; Jeffery, U.; Seyler, Z.G.; Lawhon, S.D.; Hoffmann, A.R. Diagnostic accuracy of a direct panfungal polymerase chain reaction assay performed on stained cytology slides. Vet. Pathol. 2021, 58, 542–548. [Google Scholar] [CrossRef]
- Presser, J.W.; Goss, E.M. Environmental sampling reveals that Pythium insidiosum is ubiquitous and genetically diverse in North Central Florida. Med. Mycol. 2015, 53, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, M.J.; Eger, C.E.; Shaw, S.E.; Penhale, W.J. Immunologic study of systemic aspergillosis in German Shepherd dogs. Vet. Immunol. Immunopathol. 1985, 9, 335–347. [Google Scholar] [CrossRef]
- Whitbread, T.J.; Batt, R.M.; Garthwaite, G. Relative deficiency of serum IgA in the German shepherd dog: A breed abnormality. Res. Vet. Sci. 1984, 37, 350–352. [Google Scholar] [CrossRef]
- Reagan, K.L.; Marks, S.L.; Pesavento, P.A.; Della Maggiore, A.; Zhu, B.Y.; Grooters, A.M. Successful management of 3 dogs with colonic pythiosis using itraconazole, terbinafine, and prednisone. J. Vet. Intern. Med. 2019, 33, 1434–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, T.; Wynn, R. The clinical case report: A review of its merits and limitations. BMC Res. Notes 2014, 7, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cases | Mefenoxam (mg/kg/Day) | Prednisone (mg/kg/Day) | Minocycline (mg/kg/Day) | Terbinafine (mg/kg/Day) | HBOT |
---|---|---|---|---|---|
Total | 8.1 (6.7–12.9), n = 41 | 0.6 (0.3–2.9), n = 32 | 10 (5–22), n = 30 | 10.2 (6.25–61), n = 24 | 45 min @ 15 psi, n = 23 |
Cutaneous | 8.2 (6.7–12.9), n = 25 | 0.6 (0.3–2.9), n = 21 | 10.7 (6.5–22), n = 19 | 17 (7.5–61), n = 13 | 45 min @ 15 psi, n = 19 |
Gastrointestinal | 8.0 (7.3–10.2), n = 16 | 0.6 (0.4–0.9), n = 11 | 10 (5–14), n = 11 | 8 (6.25–12.8), n = 11 | 45 min @ 15 psi, n = 4 |
Variable | All Dogs (n = 41) | Gastrointestinal (n = 16) | Cutaneous (n = 25) |
---|---|---|---|
Age (years) (median; range) | 2.5 (0.75–7) | 2 (1–6.5) | 3 (0.75–7) |
Sex | |||
Male | 20 | 9 | 11 |
Female | 21 | 7 | 14 |
Breed | |||
German Shepherd | 16 | 3 | 13 |
Labrador Retriever | 6 | 1 | 5 |
Siberian Husky | 2 | 2 | 0 |
Terrier breeds | 2 | 1 | 1 |
Mixed | 10 | 5 | 5 |
Other breeds | 5 | 4 | 1 |
Weight (kg) (mean ± SD) | - | 22.5 (±9.1) | - |
BCS (mean ± SD) | - | 3.5 (±1.3) | - |
Skin lesions (median; range) | - | - | 1 (1–5) |
Diagnostic tests | |||
Culture | 20 | 2 | 18 |
PCR | 16 | 3 | 13 |
ELISA | 33 | 12 | 21 |
Histopathology | 36 | 12 | 24 |
Diagnostic test combinations | |||
ELISA + culture | 1 | 0 | 1 |
ELISA + histopathology | 9 | 5 | 4 |
Culture + histopathology | 5 | 2 | 3 |
Culture + PCR + histopathology | 1 | 0 | 1 |
ELISA + culture + histopathology | 4 | 0 | 4 |
ELISA + PCR + histopathology | 6 | 3 | 3 |
ELISA + PCR + histopathology + culture | 9 | 0 | 9 |
Cases | Death | Cure | Lost to Follow-Up | Inconclusive Death | Time to Death (Days) | Time to Cure (Days) | Survivability |
---|---|---|---|---|---|---|---|
Total (n = 41) | 16 | 21 | 3 | 1 | 143 (21–530) | 163 (40–485) | 0.51 |
Cutaneous (n = 25) | 10 | 13 | 1 | 1 | 245 (52–530) | 105 (60–360) | 0.52 |
Gastrointestinal (n = 16) | 6 | 8 | 2 | 0 | 90 (21–203) | 220 (40–485) | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billings, P.; Walton, S.; Shmalberg, J.; Santoro, D. The Use of Mefenoxam to Treat Cutaneous and Gastrointestinal Pythiosis in Dogs: A Retrospective Study. Microorganisms 2023, 11, 1726. https://doi.org/10.3390/microorganisms11071726
Billings P, Walton S, Shmalberg J, Santoro D. The Use of Mefenoxam to Treat Cutaneous and Gastrointestinal Pythiosis in Dogs: A Retrospective Study. Microorganisms. 2023; 11(7):1726. https://doi.org/10.3390/microorganisms11071726
Chicago/Turabian StyleBillings, Phillip, Stuart Walton, Justin Shmalberg, and Domenico Santoro. 2023. "The Use of Mefenoxam to Treat Cutaneous and Gastrointestinal Pythiosis in Dogs: A Retrospective Study" Microorganisms 11, no. 7: 1726. https://doi.org/10.3390/microorganisms11071726
APA StyleBillings, P., Walton, S., Shmalberg, J., & Santoro, D. (2023). The Use of Mefenoxam to Treat Cutaneous and Gastrointestinal Pythiosis in Dogs: A Retrospective Study. Microorganisms, 11(7), 1726. https://doi.org/10.3390/microorganisms11071726