Detection of Mycobacterial DNA in Human Bone Marrow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Histological and Microbiological Analysis
2.3. DNA Isolation, Conventional PCR, and Hybridization
2.4. In Situ PCR
2.5. Ethics Statement
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santucci, P.; Johansen, M.D.; Point, V.; Poncin, I.; Viljoen, A.; Cavalier, J.-F.; Kremer, L.; Canaan, S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci. Rep. 2019, 9, 8667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliori, G.B.; Ong, C.W.; Petrone, L.; D’Ambrosio, L.; Centis, R.; Goletti, D. The definition of tuberculosis infection based on the spectrum of tuberculosis disease. Breathe 2021, 17, 210079. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.L.; Ford, C.B.; Coleman, M.T.; Myers, A.J.; Gawande, R.; Ioerger, T.R.; Sacchettini, J.C.; Fortune, S.M.; Flynn, J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 2013, 20, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Walpole, G.F.W.; Grinstein, S.; Westman, J. The role of lipids in host-pathogen interactions. IUBMB Life 2018, 70, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Neyrolles, O.; Hernández-Pando, R.; Pietri-Rouxel, F.; Fornès, P.; Tailleux, L.; Payán, J.A.B.; Pivert, E.; Bordat, Y.; Aguilar, D.; Prévost, M.-C.; et al. Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence? PLoS ONE 2006, 1, e43. [Google Scholar] [CrossRef] [Green Version]
- Ayyappan, J.P.; Vinnard, C.; Subbian, S.; Nagajyothi, J.F. Effect of Mycobacterium tuberculosis infection on adipocyte physiology. Microbes Infect. 2018, 20, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.C.; Berry, R.; Holtrup, B.; Sebo, Z.; Nelson, T.; Fretz, J.; Lindskog, D.; Kaplan, J.L.; Ables, G.; Rodeheffer, M.S.; et al. Bone marrow adipocytes. Adipocyte 2017, 6, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Toppinen, M.; Sajantila, A.; Pratas, D.; Hedman, K.; Perdomo, M.F. The Human Bone Marrow Is Host to the DNAs of Several Viruses. Front. Cell Infect. Microbiol. 2021, 11, 657245. [Google Scholar] [CrossRef]
- González-Espinoza, G.; Arce-Gorvel, V.; Mémet, S.; Gorvel, J.-P. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021, 10, 186. [Google Scholar] [CrossRef]
- Das, B.; Kashino, S.S.; Pulu, I.; Kalita, D.; Swami, V.; Yeger, H.; Felsher, D.W.; Campos-Neto, A. CD271(+) Bone Marrow Mesenchymal Stem Cells May Provide a Niche for Dormant Mycobacterium tuberculosis. Sci. Transl. Med. 2013, 5, 170ra13. [Google Scholar] [CrossRef] [Green Version]
- Tornack, J.; Reece, S.T.; Bauer, W.M.; Vogelzang, A.; Bandermann, S.; Zedler, U.; Stingl, G.; Kaufmann, S.H.E.; Melchers, F. Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS ONE 2017, 12, e0169119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garhyan, J.; Bhuyan, S.; Pulu, I.; Kalita, D.; Das, B.; Bhatnagar, R. Preclinical and Clinical Evidence of Mycobacterium tuberculosis Persistence in the Hypoxic Niche of Bone Marrow Mesenchymal Stem Cells after Therapy. Am. J. Pathol. 2015, 185, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Mayito, J.; Andia, I.; Belay, M.; Jolliffe, D.A.; Kateete, D.P.; Reece, S.T.; Martineau, A.R. Anatomic and Cellular Niches for Mycobacterium tuberculosis in Latent Tuberculosis Infection. J. Infect. Dis. 2018, 219, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beigier-Bompadre, M.; Montagna, G.N.; Kühl, A.A.; Lozza, L.; Weiner, J.; Kupz, A.; Vogelzang, A.; Mollenkopf, H.-J.; Löwe, D.; Bandermann, S.; et al. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog. 2017, 13, e1006676. [Google Scholar] [CrossRef] [Green Version]
- Bharuthram, N.; Feldman, C. The diagnostic utility of bone marrow examination in an infectious disease ward. S. Afr. J. HIV Med. 2019, 20, 974. [Google Scholar] [CrossRef]
- Lin, S.-H.; Lai, C.-C.; Huang, S.-H.; Hung, C.-C.; Hsueh, P.-R. Mycobacterial bone marrow infections at a medical centre in Taiwan, 2001–2009. Epidemiol. Infect. 2013, 142, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Pathak, L.; Das, B. Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells. Front. Immunol. 2021, 11, 594572. [Google Scholar] [CrossRef]
- Beamer, G.; Major, S.; Das, B.; Campos-Neto, A. Bone Marrow Mesenchymal Stem Cells Provide an Antibiotic-Protective Niche for Persistent Viable Mycobacterium tuberculosis that Survive Antibiotic Treatment. Am. J. Pathol. 2014, 184, 3170–3175. [Google Scholar] [CrossRef] [Green Version]
- Barrios-Payán, J.; Saqui-Salces, M.; Jeyanathan, M.; Alcántara-Vazquez, A.; Castañon-Arreola, M.; Rook, G.; Hernandez-Pando, R. Extrapulmonary Locations of Mycobacterium tuberculosis DNA during Latent Infection. J. Infect. Dis. 2012, 206, 1194–1205. [Google Scholar] [CrossRef] [Green Version]
- Gago, G.; Diacovich, L.; Gramajo, H. Lipid metabolism and its implication in mycobacteria-host interaction. Curr. Opin. Microbiol. 2017, 41, 36–42. [Google Scholar] [CrossRef]
- Tamburini, B.; Badami, G.D.; Azgomi, M.S.; Dieli, F.; La Manna, M.P.; Caccamo, N. Role of hematopoietic cells in Mycobacterium tuberculosis infection. Tuberculosis 2021, 130, 102109. [Google Scholar] [CrossRef] [PubMed]
- Bwanga, F.; Disqué, C.; Lorenz, M.G.; Allerheiligen, V.; Worodria, W.; Luyombya, A.; Najjingo, I.; Weizenegger, M. Higher blood volumes improve the sensitivity of direct PCR diagnosis of blood stream tuberculosis among HIV-positive patients: An observation study. BMC Infect. Dis. 2015, 15, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosma, C.L.; Sherman, D.R.; Ramakrishnan, L. The Secret Lives of the Pathogenic Mycobacteria. Annu. Rev. Microbiol. 2003, 57, 641–676. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-H.; Lee, G.-H.; Tang, P.-U.; Fang, C.-T. Disseminated Mycobacterium avium complex infection as a differential diagnosis of tuberculosis in HIV patients. Int. J. Tuberc. Lung Dis. 2020, 24, 922–927. [Google Scholar] [CrossRef]
- Qian, L.; Van Embden, J.D.A.; Van Der Zanden, A.G.M.; Weltevreden, E.F.; Duanmu, H.; Douglas, J.T. Retrospective Analysis of the Beijing Family of Mycobacterium tuberculosis in Preserved Lung Tissues. J. Clin. Microbiol. 1999, 37, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.M.; Ting, Y.; Greer, C.E.; Chambers, J.C.; Tashiro, C.J.; Chimera, J.; Reingold, A.; Manos, M.M. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA 1991, 265, 472–477. [Google Scholar] [CrossRef]
- Eisenach, K.D.; Cave, M.D.; Bates, J.H.; Crawford, J.T. Polymerase Chain Reaction Amplification of a Repetitive DNA Sequence Specific for Mycobacterium tuberculosis. J. Infect. Dis. 1990, 161, 977–981. [Google Scholar] [CrossRef]
- Roiz, M.P.; Palenque, E.; Guerrero, C.; Garcia, M.J. Use of restriction fragment length polymorphism as a genetic marker for typing Mycobacterium avium strains. J. Clin. Microbiol. 1995, 33, 1389–1391. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning. In A Laboratory Manual, 2nd ed; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989. [Google Scholar]
- Hernández-Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 2000, 356, 2133–2138. [Google Scholar] [CrossRef]
- Piersimoni, C.; Scarparo, C. Relevance of Commercial Amplification Methods for Direct Detection of Mycobacterium tuberculosis Complex in Clinical Samples. J. Clin. Microbiol. 2003, 41, 5355–5365. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Tuberculosis Report 2022; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-Estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [Green Version]
- Belay, M.; Tulu, B.; Younis, S.; Jolliffe, D.A.; Tayachew, D.; Manwandu, H.; Abozen, T.; Tirfie, E.A.; Tegegn, M.; Zewude, A.; et al. Detection of Mycobacterium tuberculosis complex DNA in CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: An observational study. Lancet Microbe 2021, 2, e267–e275. [Google Scholar] [CrossRef] [PubMed]
- Harirzadeh, S.; Kazemi, M.J.; Babakhani, S. Identification of Mycobacterium tuberculosis isolated from culture-negative pulmonary and extra-pulmonary samples in cases of suspected tuberculosis. GMS Hyg. Infect. Control 2019, 14, Doc09. [Google Scholar] [CrossRef] [PubMed]
- Reece, S.T.; Vogelzang, A.; Tornack, J.; Bauer, W.; Zedler, U.; Schommer-Leitner, S.; Stingl, G.; Melchers, F.; Kaufmann, S.H.E. Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice. J. Infect. Dis. 2018, 217, 1667–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo-Jaimes, L.; Cicero-Sabido, R.; Criales-Cortez, J.L.; Ramirez, E.; Romero, M.; Rivero, V.; Islas, F.; Olivera, H.; Gonzalez, S.; Escobar-Gutierrez, A. Evaluation of the polymerase chain reaction in the diagnosis of miliary tuberculosis in bone marrow smear. Int. J. Tuberc. Lung Dis. 2003, 7, 580–586. [Google Scholar]
- Honoré-Bouakline, S.; Vincensini, J.P.; Giacuzzo, V.; Lagrange, P.H.; Herrmann, J.L. Rapid Diagnosis of Extrapulmonary Tuberculosis by PCR: Impact of Sample Preparation and DNA Extraction. J. Clin. Microbiol. 2003, 41, 2323–2329. [Google Scholar] [CrossRef] [Green Version]
- Magana-Arachchi, D.; Perera, J.; Gamage, S.; Chandrasekharan, V. Low cost in-house PCR for the routine diagnosis of ex-tra-pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2008, 12, 275–280. [Google Scholar]
- Daley, C.L. Mycobacterium avium Complex Disease. Microbiol. Spectr. 2017, 5, 663–701. [Google Scholar] [CrossRef]
- Santucci, P.; Bouzid, F.; Smichi, N.; Poncin, I.; Kremer, L.; De Chastellier, C.; Drancourt, M.; Canaan, S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front. Cell Infect. Microbiol. 2016, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Maurya, R.K.; Bharti, S.; Krishnan, M.Y. Triacylglycerols: Fuelling the Hibernating Mycobacterium tuberculosis. Front. Cell Infect. Microbiol. 2019, 8, 450. [Google Scholar] [CrossRef]
Clinical Records | IS6110 | IS1311 | ||||||
---|---|---|---|---|---|---|---|---|
TB History 1 | HIV | Histology 2 | Culture 3 | SP + H | is-P | SP + H | is-P | |
BM1 | + | NS | Mav | + | − | + | − | |
BM2 | + | GM/AFB | Mtb | + | − | − | nd | |
BM4 | + | NS | Mav | + | nd | + | nd | |
BM5 | − | NS | Mtb | + | − | − | nd | |
BM7 | + | NS | Mtb | + | − | − | − | |
BM8 | history | + | GM | − | − | nd | − | nd |
BM9 | history | + | GM | Mav | + | − | + | − |
BM10 | + | NS | Mav | + | + | + | − | |
BM12 | history | + | AFB | Mav | + | − | + | − |
BM14 | history | + | nd | Mav | + | − | − | − |
BM16 | history | + | GM | Mav | + | + | + | − |
BM18 | history | + | GM | − | + | nd | − | nd |
BM19 | + | NS | Mav | + | − | + | − | |
BM20 | contact | + | GM | − | + | nd | − | nd |
BM21 | + | NS | Mtb | + | nd | + | nd | |
BM23 a | + | NS | Mtb | + | + | − | − | |
BM24 | history | + | GM | − | − | nd | − | nd |
BM26 | history | + | GM/AFB | Mav | + | − | + | − |
BM27 | + | NS | Mav | − | nd | + | nd | |
BM28 | + | GM/AFB | Mtb | + | − | + | − | |
BM29 a | + | GM | Mav | + | + | + | − | |
BM31 a | + | NS | Mtb | + | + | + | − | |
BM33 | + | MGM | Mav | + | − | − | − | |
BM34 | + | NS | Mav | + | − | − | − | |
BM35 | + | GM | Mav | + | + | + | − | |
BM36 b | − | GM | Mtb | + | + | − | nd | |
BM37 | + | GM | Mav | − | nd | − | nd | |
BM38 | + | GM | Mtb | + | − | − | nd |
IS6110 | IS1311 | |||||
---|---|---|---|---|---|---|
Sample | TB History 1 | Histology 2 | SP + H | is-P | SP + H | is-P |
C1 a | AML | + | + | + | nd | |
C2 a,b | AML | − | + | + | + | |
C3 | AML | − | − | − | nd | |
C4 | AML | − | − | + | + | |
C5a | AML | − | + | + | + | |
C6 | LS | − | nd | − | nd | |
C7 | AML | − | − | + | − | |
C8 | AML | + | + | − | + | |
C9 | history | AML | + | + | − | − |
C11 | LS | − | − | + | − | |
C12 | history | HA | − | − | + | − |
C13 | HA | + | + | − | + | |
C14 | history | LS | − | − | − | − |
C15 | history | HA | − | − | − | nd |
C16 | HA | − | − | − | nd | |
C17 a | HA | − | + | − | nd | |
C18 | HA | − | − | − | nd | |
C19 b | AML | − | − | + | − | |
C30 | ST | − | nd | − | nd | |
C31 | ST | − | nd | − | nd | |
C32 | ST | + | + | − | + | |
C33 | history | ST | + | + | − | − |
C34 | ST | + | + | − | + | |
C35 | ST | + | + | − | − | |
C36 | ST | − | − | − | − | |
C37 | ST | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Escalada, A.; Rebollo, M.J.; Barrios Payan, J.; Hernández-Pando, R.; García, M.J. Detection of Mycobacterial DNA in Human Bone Marrow. Microorganisms 2023, 11, 1788. https://doi.org/10.3390/microorganisms11071788
González-Escalada A, Rebollo MJ, Barrios Payan J, Hernández-Pando R, García MJ. Detection of Mycobacterial DNA in Human Bone Marrow. Microorganisms. 2023; 11(7):1788. https://doi.org/10.3390/microorganisms11071788
Chicago/Turabian StyleGonzález-Escalada, Alba, María José Rebollo, Jorge Barrios Payan, Rogelio Hernández-Pando, and María Jesús García. 2023. "Detection of Mycobacterial DNA in Human Bone Marrow" Microorganisms 11, no. 7: 1788. https://doi.org/10.3390/microorganisms11071788
APA StyleGonzález-Escalada, A., Rebollo, M. J., Barrios Payan, J., Hernández-Pando, R., & García, M. J. (2023). Detection of Mycobacterial DNA in Human Bone Marrow. Microorganisms, 11(7), 1788. https://doi.org/10.3390/microorganisms11071788