Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacillus amyloliquefaciens Strain
2.2. Development of Derivative Strains of B. amyloliquefaciens
2.2.1. UV Irradiation Treatment
2.2.2. Chemical Treatment
2.3. Antagonistic Ability of Developed Derivative Strains of B. amyloliquefaciens against R. solanacearum
2.4. GC/MS Analysis
2.5. Motility of Derivative and Wild Strains of B. amyloliquefaciens
2.6. Bacterial Wilt Disease Control of Tomato by Using Derivative and Wild Strains of B. amyloliquefaciens
2.7. Statistical Analysis
3. Results
3.1. Development of Variant Strains and Their Antagonistic Activity against R. solanacearum under In Vitro Conditions
3.2. GC/MS Analysis
3.3. Motility of Derivative and Wild Strains
3.4. Biocontrol Efficacy and Plant Growth-Promoting Activity of Derivative Strains of B. amyloliquefaciens DSBA-11
4. Discussion
5. Conclusions
- ➢
- In comparison to variant strains created by NTG and UV irradiation, the variant strains MHNO2-20 of B. amyloliquefaciens andDSBA-11 were reported to have greater antagonistic potential against R. pseudosolanacearum.
- ➢
- It was also observed that, using nitrous acid at 250–500 µg/mL, it was concluded that a high rate of lethality of bacteria treated with chemical and physical mutagens developed a better chance to obtain a potential variant strain with desired traits.
- ➢
- Under in vitro circumstances the nitrous acid-treated variant strains were successful particularly in controlling bacteria wilt disease.
- ➢
- Additionally, it was observed that chemical mutagens were more efficient than physical mutagens in obtaining the necessary variant strain of B. amyloliquefaciens with better antagonistic ability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, I.; Nishiucliy, Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia General Nov: Proposal of Ralstoniapickettii (Ralston, palleroni and Doudoroff 1973) Comb. Nov, Ralstonia solanacearum (Smith1896) Comb. Nov. Microbiol. Immunol. 1995, 39, 897–904. [Google Scholar] [CrossRef]
- Sharma, J.P.; Kumar, S.; Singh, D. Bacterial Wilt of Solanaceous Crops; I. K. International Publishing House Pvt. Ltd.: New Delhi, India, 2015; 286p. [Google Scholar]
- Singh, D.; Sinha, S.; Yadav, D.K.; Sharma, J.P.; Srivastava, D.K.; Lal, H.C.; Mondal, K.K.; Jaiswal, R.K. Characterization of biovar/races of Ralstonia solanacearum, the incitant of bacterial wilt in solanaceous crops. Indian Phytopath. 2010, 63, 261–265. [Google Scholar]
- Mishra, A.; Mishra, S.K.; Karmakar, S.K.; Sarangi, C.R.; Sahu, G.S. Assessment of yield loss due to wilting in some popular tomato cultivars. Environ. Ecol. 1995, 13, 287–290. [Google Scholar]
- Artal, R.B.; Gopalkrishnan, C.; Thippeswamy, B. An efficient inoculation method to screen tomato, brinjal and chilli entries for bacterial wilt resistance. Pest Manag. Hortic. Ecosyst. 2012, 18, 70–73. [Google Scholar]
- Aslam, N.; Tariq, M.; Hussain, M.A.; Raheel, M. Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. J. Plant Dis. Prot. 2017, 124, 585–590. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, D.K.; Chaudhary, G.; Rana, V.S.; Sharma, R.K. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J. Plant Pathol. Microbiol. 2016, 7, 7–10. [Google Scholar] [CrossRef]
- Lin, C.; Tsai, C.H.; Chen, P.Y.; Wu, C.Y.; Chang, Y.L.; Yang, Y.L.; Chen, Y.L. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE 2018, 13, e0196520. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Yadav, D.K.; Sinha, S.; Upadhyay, B.K. Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstoniasolanacearum race 1 biovar3. Indian Phytopath. 2012, 65, 18–24. [Google Scholar]
- Radha Krishnan, E.; Kumar, S.P.; Kumar, V.B. Strain improvement of selected strain Bacillus subtilis (MTCC No.10619) for enhanced production of antimicrobial metabolites. J. Microbiol. Biotech. Res. 2011, 1, 32–38. [Google Scholar]
- Sarikaya, E.; Gürgün, V. Increase of the a-amylase yield by some Bacillus strains. Turk. J. Biol. 2000, 24, 299–308. [Google Scholar]
- Afifi, A.F.; Abo-Elmagd, H.I.; Housseiny, M.M. Improvement of alkaline protease production by Penicillium chrysogenum NRRL 792 through physical and chemical mutation, optimization, characterization and genetic variation between mutant and wild-type strains. Ann. Microbiol. 2014, 64, 521–530. [Google Scholar] [CrossRef]
- Karanam, S.K.; Medicherla, N.R. Enhanced lipase production by mutation induced Aspergillusjaponicus. Afr. J. Biotechnol. 2008, 7, 2064–2067. [Google Scholar]
- Meenu, M.; Santhoshm, D.; Kamia, C.; Randhir, S. Strain improvement of Aspergillus flavus for enhanced production. Indian J. Microbiol. 2000, 40, 25–32. [Google Scholar]
- Rivera, M.H.; López-Munguía, A.; Soberón, X.; Saab-Rincón, G. Alphaamylase from Bacillus licheniformis mutant near to the catalytic site: Effects on hydrolytic and transglycosylation activity. Protein Eng. 2003, 16, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor: New York, NY, USA, 1972; p. 466. Available online: https://openlibrary.org/books/OL5298363M/ (accessed on 17 October 2022).
- Wu, C.H.; Apweiler, R.; Bairoch, A.; Natale, D.A.; Barker, W.C. The universal protein resource (UniProt): An expanding universe of protein information. Nucleic Acids Res. 2006, 34, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Besoain, X.A.; Pérez, L.M.; Araya, A.; Lefever, L.; Sanguinetti, M.; Montealegre, J.R. New strains obtained after UV treatment and protoplast fusion of native Trichodermaharzianum: Their biocontrol activity on Pyrenochaetalycopersici. Elec. J. Biotechnol. 2007, 10, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Szafraniec, K.; Wloch, D.M.; Sliwam, P.; Bortsm, R.H.; Koron, R. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. Genet. Res. 2003, 82, 1931. [Google Scholar] [CrossRef] [Green Version]
- Ikram-Ul-Haq, S.; Saleem, A.; Javed, M.M. Mutagenesis of Bacillus licheniformis through ethyl methane sulfonate for alpha amylase production. Pak. J. Bot. 2009, 41, 1489–1498. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corp: Carol Stream, IL, USA, 2007. [Google Scholar]
- Schaad, N.W.; Jones, J.B.; Chun, W. Laboratory Guide for the Identification of Plant Pathogenic Bacteria, 3rd ed.; American Phytopathological Society: St. Paul, MI, USA, 2001; p. 373. ISBN 9780890542637. [Google Scholar]
- Guo, J.; Guo, Y.; Zhang, L.; Qi, H.; Fang, Z.D. Screening for biocontrol agents against Ralstonia solanacearum. Chin. J. Biol. Control 2004, 17, 101–106. [Google Scholar]
- Hayward, A.C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef]
- Elsayed, T.R.; Jacquiod, S.; Nour, E.H.; Sørensen, S.J.; Smalla, K. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizospheremicrobiota and Ralstoniasolanacearum. Front. Microbiol. 2020, 10, 2835. [Google Scholar] [CrossRef] [PubMed]
- Nion, Y.A.; Toyota, K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 2015, 30, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.K.; Singh, D.; Kumar, N. Induction of defense-related enzymes by Bacillus amyloliquefaciens DSBA-11 in resistant and susceptible cultivars of tomato against bacterial wilt disease. Int. J. Agric. Res. 2017, 12, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Haggag, W.M. Enhancement of suppressive metabolites from Pseudomonas fluorescens against tomato damping-off pathogens. Arab. J. Biotechnol. 1999, 2, 1–14. [Google Scholar]
- Rugthaworn, P.; Dilokkunanant, U.; Sangchote, S.; Piadang, N.; Kitpreechavanich, V. A search and improvement of actinomycete strains for biological control of plant pathogens. Kasetsart J. Nat. Sci. 2007, 41, 248–254. [Google Scholar]
- Haq, I.; Ashraf, H.; Rani, S.; Qadeer, M.A. Biosynthesis of alpha amylase by chemically treated mutant of Bacillus subtilis GCBU-20. Pak. J. Biol. Sci. 2002, 2, 73–75. [Google Scholar]
- Haq, I.; Ashraf, H.; Abdullah, R.; Shah, A.H. Isolation and screening of Fungi for the biosynthesis of alpha- amylase. Biotechnology 2002, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Varalakshmi, K.N.; Kumudini, B.S.; Nandini, B.N.; Solomon, J.D.; Mahesh, B. Characterization of Alpha Amylase from Bacillus sp. isolated from paddy seeds. J. Appl. Bio. Sci. 2008, 1, 46–53. [Google Scholar]
- Haq, I.; Ali, S.; Javed, M.M.; Hameed, U.; Saleem, A. Production of alpha amylase from a randomly induced mutant strain of Bacillus amyloliquefaciens and its application as a desizer in textile industry. Pak. J. Bot. 2010, 42, 473–484. [Google Scholar]
- Singh, D.; Yadav, D.K.; Sinha, S.; Mondal, K.K.; Singh, G.; Pandey, R.R.; Singh, R. Genetic diversity of iturin producing strains of Bacillus species antagonistic to Ralstonia solanacearum causing bacterial wilt disease in tomato. Afr. J. Microbiol. Res. 2013, 7, 5459–5470. [Google Scholar]
- Kinsinger, R.F.; Shirk, M.C.; Fall, R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. Sep. 2003, 185, 5627–5631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fall, R.; Kearns, D.B.; Nguyen, T. A defined medium to investigate sliding motility in a Bacillus subtilis flagella-less mutant. BMC Microbial. 2006, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000, 97, 4885–4890. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.H.; Chuang, C.Y.; Zheng, J.L.; Chen, H.H.; Liang, Y.S.; Huang, T.P.; Lin, Y.H. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato. Phytopathology 2020, 110, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
Duration of Exposure (Min) | Lethality Rate (%) | Variant Strain | Area of Inhibition Zone (cm2) |
---|---|---|---|
MUV-5 | 1.13 ij | ||
10 | 53.11 | MUV-8 | 1.80 g |
MUV-9 | 1.73 g | ||
MUV-10 | 1.66 g | ||
20 | 57.4 | MUV-11 | 2.56 de |
MUV-15 | 2.40 ef | ||
MUV-14 | 2.23 f | ||
30 | 85.75 | MUV-16 | 3.10 bc |
MUV-19 | 3.42 ab | ||
MUV-20 | 3.23 ab | ||
- | - | DSBA-11 * | 3.35 a |
NTG Treatment | HNO2 Treatment | |||||
---|---|---|---|---|---|---|
Concentration of Chemical Mutagen (μg/mL) | Lethality Rate (%) | Isolate Code | Area of Inhibition Zone (cm2) | Lethality Rate (%) | Isolate Code | Area of Inhibition Zone (cm2) |
50 | 61.02 | MNTG-1 | 2.70 defg | 58.59 | MHNO2-2 | 1.10 ij |
MNTG-2 | 2.10 fghij | MHNO2-3 | 1.06 j | |||
100 | 69.22 | MNTG-6 | 1.70 hij | 66.27 | MHNO2-5 | 1.33 hij |
MNTG-7 | 1.66 ij | MHNO2-6 | 1.40 hi | |||
150 | 74.74 | MNTG-9 | 2.06 ghij | 80.6 | MHNO2-7 | 1.70 fg |
MNTG-10 | 2.46 fghi | MHNO2-8 | 1.56 fgh | |||
MNTG-11 | 2.73 cdefg | MHNO2-9 | 1.26 hij | |||
200 | 80.91 | MNTG-13 | 2.83 bcdef | 88.15 | MHNO2-10 | 1.83 f |
MNTG-14 | 2.93 bcdef | MHNO2-11 | 1.83 f | |||
MNTG-15 | 3.30 abcde | MHNO2-11 | 2.84 e | |||
250 | 85.88 | MNTG-16 | 3.33 abcd | 91.40 | MHNO2-13 | 2.46 e |
MNTG-17 | 3.40 abcd | MHNO2-14 | 2.63 e | |||
MNTG-18 | 3.50 abcd | MHNO2-16 | 3.70 c | |||
500 | 90.32 | MNTG-20 | 3.43 abcd | 95.70 | MHNO2-18 | 4.50 a |
MNTG-21 | 3.56 abc | MHNO2-19 | 4.40 b | |||
MNTG-22 | 3.46 ab | MHNO2-20 | 4.60 a | |||
- | DSBA-11 * | 3.35 a | - | DSBA-11 * | 3.35 d |
Compounds | DSBA-11 | MUV-19 | MNTG-21 | MHNO2-20 | RT |
---|---|---|---|---|---|
Cyclohexanone | 0.58 | 0.22 | 0.11 | 0.79 | 4.75 |
1-Methylhexyacetate | 3.68 | 3.05 | 5.01 | 4.01 | 5.23 |
Benzaldehyde | 0.32 | 0.40 | 0.22 | 0.58 | 6.42 |
Phenol | 0.73 | - | - | - | 7.01 |
4-Hydroxy-5-methyl-2-hexanone | 0.89 | 0.83 | 1.48 | 1.33 | 7.17 |
Benzyl alcohol | 2.35 | 2.03 | 3.39 | 2.66 | 7.89 |
2,4-Dimethyl-2-pentanol | 2.27 | 1.54 | 2.37 | 2.13 | 14.95 |
2,6,8-Trimethyldecane | 0.22 | 0.07 | 0.07 | 0.21 | 15.39 |
1-Tridecanol | 0.96 | 0.09 | 0.37 | 0.54 | 23.55 |
2,7,11-Trimethyldodecane | 0.43 | 0.04 | 0.29 | 0.28 | 23.89 |
2,4-di-tert-Butylphenol | 0.47 | 0.34 | 0.18 | 0.18 | 28.47 |
Hexadecane | 0.9 | 0.23 | 0.27 | 0.27 | 31.55 |
Hexahydropyrrolo (1,2,α) pyrazine-1,4-dione | 4.78 | 4.10 | 1.27 | 1.57 | 39.86 |
Diethylphthalate | 37.55 | 31.80 | 62.82 | 50.0 | 41.38 |
Butylisobutyl phthalate | 1.31 | 1.58 | 2.23 | 1.82 | 42.92 |
3- Isobutyl hexahydropyrrolo (1,2,α) pyrazine-1,4-dione | 4.13 | 1.26 | 1.56 | 4.67 | 43.19 |
3-Bezylhexahydropyrrolo (1,2,α) pyrazine-1,4-dione | 2.16 | 7.26 | 2.22 | 3.73 | 56.34 |
Diisooctyl adipate | 1.95 | 6.55 | 1.78 | 2.57 | 57.32 |
Media and Concentration (%) | Duration (h) | Colony Size of Bacteria (Diameter in cm) | |||
---|---|---|---|---|---|
DSBA-11 | MUV 19 | MNTG-21 | MHNO2-20 | ||
Luria agar (1%) | 24 | 4.24 d | 5.75 d | 4.74 c | 5.36 d |
48 | 4.55 c | 6.56 c | 5.15 b | 5.45 c | |
72 | 4.63 b | 6.85 b | 5.16 b | 5.5 b | |
96 | 4.92 a | 7.15 a | 5.35 a | 5.76 a | |
Luria agar (1.5%) | 24 | 0.86 j | 1.27 j | 1.35 j | 1.15 m |
48 | 1.15 i | 1.37 ij | 1.47 i | 1.26 l | |
72 | 1.07 i | 1.37 ij | 1.43 i | 1.26 l | |
96 | 1.25 h | 1.46 i | 1.7 h | 1.36 k | |
Nutrient agar (1%) | 24 | 1.86 g | 4.2 f | 1.8 fg | 2.16 h |
48 | 2.13 f | 4.3 f | 1.85 f | 2.26 g | |
72 | 2.13 f | 4.5 e | 2.13 d | 2.4 f | |
96 | 2.07 f | 4.66 e | 2.03 e | 2.56 e | |
Nutrient agar (1.5%) | 24 | 2.07 f | 2.25 h | 1.23 k | 1.14 m |
48 | 2.37 e | 2.37 h | 1.7 h | 1.36 k | |
72 | 2.37 e | 2.4 h | 1.75 gh | 1.45 j | |
96 | 2.45 e | 2.5 g | 1.76 fgh | 1.58 i |
Treatments | Wilt Disease Incidence (%) | Biocontrol Efficacy (%) | Length of Plant (cm) | Dry Weight (gm/Plant) | GPE (%) | ||
---|---|---|---|---|---|---|---|
Root | Shoot | Root | Shoot | ||||
Un-inoculated | 0 f* | - | 3.16 e | 31.96 e | 0.62 e | 1.89 e | - |
DSBA-11 + UTT-25 | 15.40 d | 81.35 | 6.16 b | 56.10 b | 0.95 b | 2.26 b | 27.88 |
R. solanacearum UTT-25 | 82.57 a | - | 2.92 f | 28.36 f | 0.49 f | 1.27 f | −29.88 |
MHNO2-20 + UTT-25 | 9.28 e | 88.75 | 7.09 a | 67.85 a | 1.03 a | 2.78 a | 51.79 |
MNTG-21 + UTT-25 | 20.28 c | 75.47 | 4.33 c | 51.40 c | 0.98 c | 2.15 c | 24.70 |
MUV-19 + UTT-25 | 32.55 b | 60.59 | 3.66 d | 39.70 d | 0.91 d | 2.06 d | 18.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, D.K.; Devappa, V.; Kashyap, A.S.; Kumar, N.; Rana, V.S.; Sunita, K.; Singh, D. Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum. Microorganisms 2023, 11, 1790. https://doi.org/10.3390/microorganisms11071790
Yadav DK, Devappa V, Kashyap AS, Kumar N, Rana VS, Sunita K, Singh D. Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum. Microorganisms. 2023; 11(7):1790. https://doi.org/10.3390/microorganisms11071790
Chicago/Turabian StyleYadav, Dhananjay Kumar, Venkatappa Devappa, Abhijeet Shankar Kashyap, Narendra Kumar, V. S. Rana, Kumari Sunita, and Dinesh Singh. 2023. "Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum" Microorganisms 11, no. 7: 1790. https://doi.org/10.3390/microorganisms11071790
APA StyleYadav, D. K., Devappa, V., Kashyap, A. S., Kumar, N., Rana, V. S., Sunita, K., & Singh, D. (2023). Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum. Microorganisms, 11(7), 1790. https://doi.org/10.3390/microorganisms11071790