Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Construction of the Plasmid pET40 CamSP
2.3. Production of the Recombinant Protease CamSP
2.4. Isolation and Purification of the Recombinant Protease CamSP
2.5. Determination of the CamSP Proteolytic Activity
2.6. Influence of pH on the CamSP Proteolytic Activity
2.7. Determination of the CamSP Thermal Stability and Optimum Temperature
2.8. Effect of Divalent Metal Ions and Inhibitors on the CamSP Proteolytic Activity
2.9. Effect of NaCl and KCl on the CamSP Proteolytic Activity
2.10. Determination of the CamSP Molecular Weight
2.11. Determination of the CamSP Substrate Specificity
2.12. Determination of Kinetic Parameters for the Protease CamSP
2.13. Analysis of Nucleotide and Amino Acid Sequences
3. Results and Discussion
3.1. Structural Classification and 3D Modelling of CamSP
3.2. Calculated Structural Properties and Phylogenetic Relatedness of CamSP
3.3. Heterologous Expression and Isolation of CamSP
3.4. Effect of pH on CamSP Activity
3.5. Effect of Ionic Strength on CamSP Activity
3.6. Effect of Divalent Metals on CamSP Activity
3.7. Effect of Detergents, Chelators, and Organic Solvents on CamSP Activity
3.8. Effect of Temperature on CamSP Activity
3.9. Substrate Specificity of CamSP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niyonzima, F.N.; More, S. Detergent-compatible proteases: Microbial production, properties, and stain removal analysis. Prep. Biochem. Biotechnol. 2015, 45, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.-C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 2004, 11, 2105–2134. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.-C. Structural bioinformatics and its impact to biomedical science and drug discovery. Front. Med. Chem. 2006, 3, 455–502. [Google Scholar] [CrossRef]
- Chou, K.-C.; Howe, W.J. Prediction of the tertiary structure of the β-secretase zymogen. Biochem. Biophys. Res. Commun. 2002, 292, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic. Acids. Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.B.; Tanksale, A.M.; Ghatge, M.S.; Deshpande, V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998, 62, 597–635. [Google Scholar] [CrossRef]
- Gupta, R.; Beg, Q.K.; Lorenz, P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2002, 59, 15–32. [Google Scholar] [CrossRef]
- Mönttinen, H.A.M.; Ravantti, J.J.; Poranen, M.M. Structural comparison strengthens the higher-order classification of proteases related to chymotrypsin. PLoS ONE 2019, 14, e0216659. [Google Scholar] [CrossRef] [Green Version]
- Huesgen, P.F.; Miranda, H.; Lam, X.; Perthold, M.; Schuhmann, H.; Adamska, I.; Funk, C. Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochem. J. 2011, 435, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Merdanovic, M.; Burston, S.G.; Schmitz, A.L.; Köcher, S.; Knapp, S.; Clausen, T.; Kaiser, M.; Huber, R.; Ehrmann, M. Activation by substoichiometric inhibition. Proc. Natl. Acad. Sci. USA 2020, 117, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, Y.; Shao, H.; Ma, J.; Song, X.; Zhang, M.; Chang, Z. DegP functions as a critical protease for bacterial acid resistance. FEBS J. 2018, 285, 3525–3538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.H.; Dexter, P.; Evans, A.K.; Liu, C.; Hultgren, S.J.; Hruby, D.E. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: The PapA pilin. J. Bacteriol. 2002, 184, 5762–5771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehzad, S.; Pandey, R.; Malhotra, P.; Gupta, D. Computational Design of Novel Allosteric Inhibitors for Plasmodium falciparum DegP. Molecules 2021, 26, 2742. [Google Scholar] [CrossRef]
- Cho, H.; Choi, Y.; Min, K.; Son, J.B.; Park, H.; Lee, H.H.; Kim, S. Over-activation of a nonessential bacterial protease DegP as an antibiotic strategy. Commun. Biol. 2020, 3, 547. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Bose, R.; Bose, K. Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2. Front. Mol. Biosci. 2022, 9, 824846. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Li, X.; Zhao, S.; Pu, H.; Shen, J.; Adam, Z.; Clausen, T.; Zhang, L. The crystal structure of Deg9 reveals a novel octameric-type HtrA protease. Nat. Plants 2017, 3, 973–982. [Google Scholar] [CrossRef]
- Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases applications. Front. in Bioeng. Biotechol. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Kocher, G.S.; Mishra, S. Immobilization of Bacillus circulans MTCC 7906 for enhanced production of alkaline protease under batch and packed bed fermentation conditions. Int. J. Microbiol. 2009, 7, 359–378. [Google Scholar] [CrossRef]
- Singhal, P.; Nigam, V.; Vidyarthi, A. Studies on production, characterization and applications of microbial alkaline proteases. Int. J. Adv. Biotechnol. Res. 2012, 3, 653–669. [Google Scholar]
- Singh, P.; Rani, A.; Chaudhary, N. Isolation and characterization of protease producing Bacillus sp. from soil. Int. J. Pharm. Sci. Res. 2015, 6, 633–639. [Google Scholar]
- Sellami-Kamoun, A.; Haddar, A.; Ali, N.E.-H.; Ghorbel-Frikha, B.; Kanoun, S.; Nasri, M. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 2008, 163, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, R.; Ananthan, G.; Arun, J. Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatal. Agric. Biotechnol. 2015, 4, 214–220. [Google Scholar] [CrossRef]
- Singh, R.; Mittal, A.; Kumar, M.; Mehta, P.K. Microbial protease in commercial applications. J. Pharm. Chem. Biol. Sci. 2016, 4, 365–374. [Google Scholar]
- Satyanarayana, T.; Sharma, A.; Mehta, D.; Puri, A.K.; Kumar, V.; Mohanan, N.; Joshi, S. Biotechnological applications of biocatalysts from the Firmicutes bacillus and Geobacillus species. In Microorganisms in Sustainable Agriculture and Biotechnology; Satyanarayana, T., Johri, B., Prakash, A., Eds.; Springer: Dordrecht, Germany, 2012; pp. 343–379. [Google Scholar] [CrossRef]
- Thakur, S.; Sharma, N.K.; Thakur, N.; Bhalla, T.C.S. Organic solvent tolerant metallo protease of novel isolate Serratia marcescens PPB-26: Production and characterization. 3 Biotech 2016, 6, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.L.; Zhang, Y.Z.; Gao, P.J.; Luan, X.-W. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar. Biol. 2003, 143, 989–993. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Oda, K.; Murao, S. Purification and some properties of acid proteinase A and B of Scytalidium lignicolum ATCC 24568. Agric. Biol. Chem. 1974, 38, 2435–2444. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of structural protein during the assembly of the head 385 of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Erlanger, B.F.; Kokowsky, N.; Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 1961, 95, 271–278. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic. Acids. Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Armenteros, J.J.A.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Pati, P.K.; Pati, A.M.; Nagpal, A.K. Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE 2020, 15, e0239836. [Google Scholar] [CrossRef]
- Vidyasagar, M.; Prakash, S.; Mahajan, V.; Shouche, Y.S.; Sreeramulu, K. Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz. J. Microbiol. 2009, 40, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Fitriani, D.; Saifur, R.M.; da Irfan, D.P. Proteolytic activity of recombinant DegP from Chromohalobacter salexigens BKL5. Electron. J. Biotechnol. 2017, 29, 7–12. [Google Scholar] [CrossRef]
- Fullana, N.; Braña, V.; Marizcurrena, J.J.; Morales, D.; Betton, J.-M.; Marín, M.; Castro-Sowinski, S. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate. AIMS Bioeng. 2017, 4, 386–401. [Google Scholar] [CrossRef]
- Sánchez-Porro, C.; Mellado, E.; Bertoldo, C.; Antranikian, G.; Ventosa, A. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 2003, 7, 221–228. [Google Scholar] [CrossRef]
- Kalwasińska, A.; Jankiewicz, U.; Felföldi, T.; Burkowska-But, A.; Brzezinska, M.S. Alkaline and Halophilic Protease Production by Bacillus luteus H11 and Its Potential Industrial Applications. Food Technol. Biotechnol. 2018, 56, 553–561. [Google Scholar] [CrossRef]
- Bhatt, H.B.; Singh, S.P. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease from a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26. Front. Microbiol. 2020, 11, 941. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2020.00941 (accessed on 20 April 2023). [CrossRef] [PubMed]
- Zabolotskaya, M.V.; Demidyuk, I.V.; Akimkina, T.V.; Kostrov, S.V. A novel neutral protease from Thermoactinomyces species 27a: Sequencing of the gene, purification, and characterization of the enzyme. Protein. J. 2004, 23, 483–492. [Google Scholar] [CrossRef]
- Damare, S.; Mishra, A.; D’Souza-Ticlo-Diniz; Krishnaswamy, D.A.; Raghukumar, C. A deep-sea hydrogen peroxide-stable alkaline serine protease from Aspergillus flavus. 3 Biotech 2020, 10, 528. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Kumar, R.; Singh, J.; Suman, D. Production of Extracellular Alkaline Serine Protease from Pediococcus acidilactici NCDC 252: Isolation, Purification, Physicochemical and Catalytic Characterization. Catal. Lett. 2021, 151, 324–337. [Google Scholar] [CrossRef]
- Zhou, C.; Qin, H.; Chen, X.; Zhang, Y.; Xue, Y.; Ma, Y. A novel alkaline protease from alkaliphilic Idiomarina sp. C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Sci. Rep. 2018, 8, 16467. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–608. [Google Scholar]
- Golotin, V.A.; Balabanova, L.A.; Likhatskaya, G.N.; Rasskazov, V.A. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotechnol. 2015, 17, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Noskova, Y.; Likhatskaya, G.; Terentieva, N.; Son, O.; Tekutyeva, L.; Balabanova, L. A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Mar. Drugs 2019, 17, 657. [Google Scholar] [CrossRef] [Green Version]
- Nordin, N.; Guskov, A.; Phua, T.; Sahaf, N.; Xia, Y.; Lu, S.; Eshaghi, H.; Eshaghi, S. Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem. J. 2013, 451, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Dulay, H.; Tabares, M.; Kashefi, K.; Reguera, G. Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium Geobacter sulfurreducens. Front. Microbiol. 2020, 11, 600463. [Google Scholar] [CrossRef]
- Arif, S.; Nacke, H.; Schliekmann, E.; Reimer, A.; Arp, G.; Hoppert, M. Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif. Biogeosciences 2022, 19, 4883–4902. [Google Scholar] [CrossRef]
- Kumar, D.; Bhalla, T.C. Microbial proteases in peptide synthesis: Approaches and applications. Appl. Microbiol. Biotechnol. 2005, 68, 726–736. [Google Scholar] [CrossRef]
Purification Step | Total Proteolytic Activity (Units) | Total Protein (mg) | Proteolytic Activity (U mg−1) | Yield (%) | Purification (Fold) |
---|---|---|---|---|---|
Crude homogenate | 431 × 103 | 650.8 | 585.3 | 100 | 1 |
Ni-IMAC-Sepharose | 111.6 × 103 | 108.3 | 1030.6 | 26 | 1.7 |
Source 15 Q | 15.9 × 103 | 19.3 | 823.1 | 4 | 1.4 |
HisTrap™ HP | 12.4 × 103 | 8 | 1550.9 | 3 | 2.6 |
Strain | Classification | Proteolytic Activity, U/mg | Optimum pH | Optimum T °C | NaCl, M | Weight, kDa | Metal Ions | Km | Substrate | Resistance | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Cobetia amphilecti KMM 296 (WP_216059789) | Serine protease | 1550.9 | 6.0-6.2 | 50 | 0.3 | 65 | Co2+ | 41.7 µg/mL min−1 | Casein, BSA | Ethanol, Isopropanol | This study |
E. coli (NP_414703) | DegP protease | - | 7.4-8.0 | 45 | - | 47 | Mg2+ Mn2+ Ca2+ | - | β-Casein | - | [11,12] |
Chromohalobacter sp. TVSP101 | Extremely Halophilic Thermophilic protease | 5225 | 8.0 | 75 | 4.5 | 66 | Mg2+ Ca2+ | - | Azocasein | DMSO DMF Ethanol Acetone | [34] |
Chromohalobacter salexigens BKL5 (MF071199) | Serine protease | - | - | 30 | - | 45 | - | - | Casein | - | [35] |
Pseudoaltermonas sp. SM9913 MPC-01 (AY305857) | Serine protease | 2890.1 | 6.5–7.0 | 30–35 | - | 60.7 | Ca2+ | 0.18% | Casein | - | [26] |
Pseudoaltermonas sp. SM9913 MPC-02 | Mesophilic metalloprotease | 536.3 | 8.0 | 50–55 | - | 36 | Zn2+ | 0,36% | Casein | - | [26] |
Pseudomonas sp. AU10 (MF375895) | Cold-active serine-metalloprotease | 109.7 | 8.0 | 40 | - | 50 | Ca2+ | - | Azocasein | - | [36] |
Pseudoalteromonas sp. CP76 | serine metalloprotease | 133 | 8.5 | 55 | 1 | 38 | - | 7.1 mκM | Casein | Bestatin, Himostatin, Leipeptin, Pepstatin | [37] |
Bacillus licheniformis RP1 | Serine thermophilic protease | 233 | 10.0–11.0 | 65–70 | - | 27.5 | Ca2+ | - | Casein | Tween 20% Triton X-100, SDS | [21] |
Bacillus subtilis GA CAS8 (JX627400) | Salt tolerant metalloprotease | 87.79 | 9.0 | 50 | - | 41 | Mg2+ Ca2+ | - | Peanut cake, cabbage leaf | Tween 20, Tween 40 and SDS. | [22] |
Serratia marcescens PPB-26 (KJ735909) | Metalloprotease | 17.5 | 7.5 | 30 | 0.9 | - | Fe2+ Cu2+ | 0.3% | Casein | Methanol Ethanol | [25] |
Bacillus luteus H11 | Serine halotolerant subtilisin-like endoprotease | 115.2 | 10.5 | 45 | 3.0 | 37 | Mg2+ Ca2+ Ba2+ | - | Azocasein, N-succinyl-l-phenylalanine-p-nitroanilide | Tween 80 DMSO Ethanol | [38] |
Alkalihalobacillus lehensis JO-26 (MH104891) | Serine subtilisin protease | 4912 | 7.0 | 10 | - | 28.34 | Ca2+ | 1.38 mg/mL | Casein | SDS, Chloroform, Toluene, n-Butanol Benzene | [39] |
Thermoactinomyces sp. 27a (AY280367) | Serine thermolysin-like metalloprotease- | 155 | 6.5–7.5 | 55 | - | 34.19 | Ca2+ | - | Azocasein, 3-(2-furyl)acryloyl-glycyl-L-leucine amide (FAGLA) | - | [40] |
Aspergillus flavus (MT380801) | serine protease | 39.035 | 10.0 | 45 | - | 42.57 | Ca2+ | - | Azocasein | Sucrose Tween 20 Sorbitol Glycerin H2O2 | [41] |
Pediococcus acidilactici NCDC 252 | serine protease | 23.3 | 8.5 | 37 | - | 37.1 | - | 38 mκM | Nα-Benzoyl-DL-arginine 4-nitroanilide hydrochloride (BAPNA) | - | [42] |
Idiomarina sp. C9-1 | serine alkaline protease | 42567.1 | 10.5 | 60 | - | 56 | Ca2+ Cu2+ Mr2+ Co2+ Mn2+ Ba2+ | 3.76 mg mL−1 | Casein | H2O2, Triton X-155 | [43] |
Metal Salt | Concentration, mM | Relative Activity, % |
---|---|---|
None | - | 100 |
ZnSO4 | 2 mM | 131 |
CuSO4 | 2 mM | 115 |
MnCl2 | 2 mM | 116 |
NiCl2 | 2 mM | 89 |
CoCl2 | 2 mM | 222 |
LiCl2 | 2 mM | 118 |
MgCl2 | 2 mM | 136 |
CaCl2 | 2 mM | 119 |
Reagents | Concentration | Relative Activity, % |
---|---|---|
None | - | 100 |
PMSF | 5 mM | 65 |
EGTA | 50 mM | 87 |
EDTA | 5 mM | 95 |
EDTA | 50 mM | 74 |
SDS | 1% | 50 |
Triton-X-100 | 1% | 198 |
Ethanol | 10% | 444 |
Isopropanol | 10% | 378 |
Glycerol | 10% | 198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noskova, Y.; Son, O.; Tekutyeva, L.; Balabanova, L. Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms 2023, 11, 1852. https://doi.org/10.3390/microorganisms11071852
Noskova Y, Son O, Tekutyeva L, Balabanova L. Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms. 2023; 11(7):1852. https://doi.org/10.3390/microorganisms11071852
Chicago/Turabian StyleNoskova, Yulia, Oksana Son, Liudmila Tekutyeva, and Larissa Balabanova. 2023. "Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296" Microorganisms 11, no. 7: 1852. https://doi.org/10.3390/microorganisms11071852
APA StyleNoskova, Y., Son, O., Tekutyeva, L., & Balabanova, L. (2023). Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms, 11(7), 1852. https://doi.org/10.3390/microorganisms11071852