Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, Medium, and Chemicals
2.2. Cloning and Expression of FAE and XYN
2.3. Activity Determination of FAE and XYN
2.4. Optimizing the Secretion of FAE and XYN
2.5. Release of FA by Recombinant E. coli Strains
2.6. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Best Signal Peptide for FAE and XYN
3.2. Optimization of the Secretion of FAE and XYN
3.3. Production of FA from the DSWB Using Recombinant E. coli Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gopalan, N.; Rodriguez-Duran, L.V.; Saucedo-Castaneda, G.; Nampoothiri, K.M. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. Bioresour. Technol. 2015, 193, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Bento-Silva, A.; Vaz Patto, M.C.; Bronze, M.d.R. Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem. 2018, 246, 360–378. [Google Scholar] [CrossRef] [PubMed]
- De Paiva, L.B.; Goldbeck, R.; dos Santos, W.D.; Squina, F.M. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci. 2013, 49, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Shirai, A.; Watanabe, T.; Matsuki, H. Inactivation of foodborne pathogenic and spoilage micro-organisms using ultraviolet-A light in combination with ferulic acid. Lett. Appl. Microbiol. 2017, 64, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martău, G.A.; Călinoiu, L.-F.; Vodna, D.C. Bio-vanillin: Towards a sustainable industrial production. Trends Food Sci. Technol. 2021, 109, 579–592. [Google Scholar] [CrossRef]
- Nieter, A.; Kelle, S.; Linke, D.; Berger, R.G. Feruloyl esterases from Schizophyllum commune to treat food industry side-streams. Bioresour. Technol. 2016, 220, 38–46. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zhai, H.C.; Wang, L.; Yu, G.H. Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. Protein Expr. Purif. 2013, 92, 36–40. [Google Scholar] [CrossRef]
- Uraji, M.; Arima, J.; Inoue, Y.; Harazono, K.; Hatanaka, T. Application of two newly identified and characterized feruloyl esterases from Streptomyces sp. in the enzymatic production of ferulic acid from agricultural biomass. PLoS ONE 2014, 9, e104584. [Google Scholar] [CrossRef]
- Damasio, A.R.L.; Pinto Braga, C.M.; Brenelli, L.B.; Citadini, A.P.; Mandelli, F.; Cota, J.; de Almeida, R.F.; Salvador, V.H.; Alvaredo Paixao, D.A.; Segato, F.; et al. Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl. Microbiol. Biotechnol. 2013, 97, 6759–6767. [Google Scholar] [CrossRef]
- Long, L.K.; Zhao, H.Y.; Ding, D.F.; Xu, M.J.; Ding, S.J. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess Biosyst. Eng. 2018, 41, 593–601. [Google Scholar] [CrossRef]
- Cheng, F.; Sheng, J.; Cai, T.; Jin, J.; Liu, W.; Lin, Y.; Du, Y.; Zhang, M.; Shen, L. A protease-insensitive feruloyl esterase from china holstein cow rumen metagenomic library: Expression, characterization, and utilization in ferulic acid release from wheat straw. J. Agric. Food Chem. 2012, 60, 2546–2553. [Google Scholar] [CrossRef]
- Ghadikolaei, K.K.; Noghabi, K.A.; Zahiri, H.S. Development of a bifunctional xylanase-cellulase chimera with enhanced activity on rice and barley straws using a modular xylanase and an endoglucanase procured from camel rumen metagenome. Appl. Microbiol. Biotechnol. 2017, 101, 6929–6939. [Google Scholar] [CrossRef]
- Brockmeier, U.; Caspers, M.; Freudl, R.; Jockwer, A.; Noll, T.; Eggert, T. Systematic screening of all signal peptides from Bacillus subtilis: A powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria. J. Mol. Biol. 2006, 362, 393–402. [Google Scholar] [CrossRef]
- Peng, C.; Shi, C.; Cao, X.; Li, Y.; Liu, F.; Lu, F. Factors influencing recombinant protein secretion efficiency in gram-positive bacteria: Signal peptide and beyond. Front. Bioeng. Biotechnol. 2019, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Pang, C.; Liu, S.; Zhang, G.; Zhou, J.; Du, G.; Li, J. Enhancing extracellular production of lipoxygenase in Escherichia coli by signal peptides and autolysis system. Microb. Cell Fact. 2022, 21, 42. [Google Scholar] [CrossRef]
- Low, K.O.; Mahadi, N.M.; Illias, R.M. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl. Microbiol. Biotechnol. 2013, 97, 3811–3826. [Google Scholar] [CrossRef]
- Gonzalez-Perez, D.; Ratcliffe, J.; Tan, S.K.; Wong, M.C.M.; Yee, Y.P.; Nyabadza, N.; Xu, J.-H.; Wong, T.S.; Tee, K.L. Random and combinatorial mutagenesis for improved total production of secretory target protein in Escherichia coli. Sci. Rep. 2021, 11, 5290. [Google Scholar] [CrossRef]
- Zhang, S.B.; Pei, X.Q.; Wu, Z.L. Multiple amino acid substitutions significantly improve the thermostability of feruloyl esterase A from Aspergillus niger. Bioresour. Technol. 2012, 117, 140–147. [Google Scholar] [CrossRef]
- Duan, X.L.; Dai, Y.W.; Zhang, T. Characterization of feruloyl esterase from Bacillus pumilus SK52.001 and its application in ferulic acid production from de-starched wheat bran. Foods 2021, 10, 1229. [Google Scholar] [CrossRef]
- Wang, R.N.; Yang, J.S.; Jang, J.M.; Liu, J.W.; Zhang, Y.; Liu, L.; Yuan, H.L. Efficient ferulic acid and xylo-oligosaccharides production by a novel multi-modular bifunctional xylanase/feruloyl esterase using agricultural residues as substrates. Bioresour. Technol. 2020, 297, 122487. [Google Scholar] [CrossRef]
- Xu, Z.S.; Wang, T.; Zhang, S.S. Extracellular secretion of feruloyl esterase derived from Lactobacillus crispatus in Escherichia coli and its application for ferulic acid production. Bioresour. Technol. 2019, 288, 121526. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Wu, L.; Lin, Q.; Ding, S. Highly efficient extraction of ferulic acid from cereal brans by a new type A feruloyl esterase from Eupenicillium parvum in combination with dilute phosphoric acid pretreatment. Appl. Biochem. Biotechnol. 2020, 190, 1561–1578. [Google Scholar] [CrossRef] [PubMed]
- Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 2018, 17, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, C.; Ban, X.; Gu, Z.; Li, C.; Cheng, L.; Hong, Y.; Li, Z. Non-classical secretion of 1,4-alpha-glucan branching enzymes without signal peptides in Escherichia coli. Int. J. Biol. Macromol. 2019, 132, 759–765. [Google Scholar] [CrossRef]
- Chao, S.; Liu, Y.; Ding, N.; Lin, Y.; Wang, Q.; Tan, J.; Li, W.; Zheng, Y.; Hu, X.; Li, J. Highly Expressed Soluble Recombinant Anti-GFP VHHs in Escherichia coli via Optimized Signal Peptides, Strains, and Inducers. Front. Mol. Biosci. 2022, 9, 848829. [Google Scholar] [CrossRef]
- He, X.Y.; Li, Y.; Tao, Y.H.; Qi, X.L.; Ma, R.Q.; Jia, H.H.; Yan, M.; Chen, K.Q.; Hao, N. Discovering and efficiently promoting the extracellular secretory expression of Thermobacillus sp. ZCTH02-B1 sucrose phosphorylase in Escherichia coli. Int. J. Biol. Macromol. 2021, 173, 532–540. [Google Scholar] [CrossRef]
SPs, Plasmids, and Strains | Features | Source |
---|---|---|
SPs | ||
SP1 | MEGNTREDNFKHLLGNDNVK | Bacillus sp. [17] |
SP2 | MSRITIERDGLTLVGDREEP | Lactobacillus amylovorus [18] |
SP3 | MSRVTIERDGLTLVGDREEP | L. crispatus [19] |
SP4 | MSRITIERDSLTLVGDREEP | L. helveticus [18] |
SP5 | MEITIKRDGLKLYGLLEGT | L. reuteri [18] |
pelB | MKYLLPTAAAGLLLLAAQPAMA | pET22b(+) |
OsmY | Genebank: CP060121.1 | E. coli BL21 [20] |
Plasmids | ||
pET22b(+) | Ampr | This lab |
pETDuet-1 | Kanr | This lab |
pET22b-pelB-fae | Ampr, pET22b(+) vector ligated with fae gene | This study |
pETDuet-SP1-fae | Ampr, pETDuet-1 vector ligated with SP1 and fae gene | This study |
pETDuet-SP2-fae | Ampr, pETDuet-1 vector ligated with SP2 and fae gene | This study |
pETDuet-SP3-fae | Ampr, pETDuet-1 vector ligated with SP3 and fae gene | This study |
pETDuet-SP4-fae | Ampr, pETDuet-1 vector ligated with SP4 and fae gene | This study |
pETDuet-SP5-fae | Ampr, pETDuet-1 vector ligated with SP5 and fae gene | This study |
pETDuet-osmY-fae | Ampr, pETDuet-1 vector ligated with osmY and fae gene | This study |
pET22b-pelB-xyn | Ampr, pET22b(+) vector ligated with xyn gene | This study |
pETDuet-SP1-xyn | Ampr, pETDuet-1 vector ligated with SP1 and xyn gene | This study |
pETDuet-SP2-xyn | Ampr, pETDuet-1 vector ligated with SP2 and xyn gene | This study |
pETDuet-SP3-xyn | Ampr, pETDuet-1 vector ligated with SP3 and xyn gene | This study |
pETDuet-SP4-xyn | Ampr, pETDuet-1 vector ligated with SP4 and xyn gene | This study |
pETDuet-SP5-xyn | Ampr, pETDuet-1 vector ligated with SP5 and xyn gene | This study |
pETDuet-osmY-xyn | Ampr, pETDuet-1 vector ligated with osmY and xyn gene | This study |
pETDuet-SP1-fae-SP4-xyn | Ampr, pETDuet-1 vector ligated with SP1, fae gene, SP4 and xyn gene | This study |
Strains | ||
JM109 | E. coli, gene cloning | This lab |
BL21(DE3) | E. coli, gene expression | This lab |
E. coli pelB-F | BL21 containing pET22b-pelB-fae | This study |
E. coli SP1-F | BL21 containing pETDuet-SP1-fae | This study |
E. coli SP2-F | BL21 containing pETDuet-SP2-fae | This study |
E. coli SP3-F | BL21 containing pETDuet-SP3-fae | This study |
E. coli SP4-F | BL21 containing pETDuet-SP4-fae | This study |
E. coli SP5-F | BL21 containing pETDuet-SP5-fae | This study |
E. coli OsmY-F | BL21 containing pETDuet-osmY-fae | This study |
E. coli pelB-X | BL21 containing pET22b-pelB-xyn | This study |
E. coli SP1-X | BL21 containing pETDuet-SP1-xyn | This study |
E. coli SP2-X | BL21 containing pETDuet-SP2-xyn | This study |
E. coli SP3-X | BL21 containing pETDuet-SP3-xyn | This study |
E. coli SP4-X | BL21 containing pETDuet-SP4-xyn | This study |
E. coli SP5-X | BL21 containing pETDuet-SP5-xyn | This study |
E. coli OsmY-X | BL21 containing pETDuet-osmY-xyn | This study |
E. coli SP1-F-SP4-X | BL21 containing pETDuet-SP1-fae-SP4-xyn | This study |
Strains DSWB Content (%) | FA Release Rate (%) | FA Titer (mg/L) | Reducing Sugar (mg/L) | |||
---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | 24 h | 48 h | |
CK, 4% | 0 | 0 | 0 | 0 | 0 | 0 |
SP1-F, 4% | 36.8 ± 0.4 | 47.0 ± 0.5 | 51.40 ± 0.92 | 65.62 ± 0.64 | 0 | 0 |
SP4-X, 4% | 0 | 0 | 0 | 0 | 1156.01 ± 2.83 | 1531.32 ± 1.05 |
SP1-F-SP4-X1, 4% | 77.5 ± 0.2 | 91.1 ± 0.7 | 108.22 ± 1.36 | 127.20 ± 1.43 | 1396.25 ± 1.54 | 1681.43 ± 1.76 |
SP1-F-SP4-X2, 4% | 35.3 ± 0.6 | 68.8 ± 0.4 | 49.20 ± 0.27 | 96.00 ± 1.39 | 1636.48 ± 1.08 | 1966.72 ± 2.16 |
SP1-F-SP4-X, 8% | 70.1 ± 0.3 | 92.0 ± 0.8 | 195.70 ± 1.43 | 256.81 ± 1.52 | 2627.24 ± 2.37 | 3573.15 ± 2.71 |
SP1-F-SP4-X, 10% | 65.3 ± 0.1 | 90.0 ± 0.5 | 227.82 ± 2.58 | 314.10 ± 2.48 | 3137.70 ± 2.55 | 4023.42 ± 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, J.; Ji, S.; Yang, C.; Cai, G.; Lu, J.; Li, X. Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues. Microorganisms 2023, 11, 1869. https://doi.org/10.3390/microorganisms11081869
Lan J, Ji S, Yang C, Cai G, Lu J, Li X. Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues. Microorganisms. 2023; 11(8):1869. https://doi.org/10.3390/microorganisms11081869
Chicago/Turabian StyleLan, Jiaxin, Shujie Ji, Chuanjia Yang, Guolin Cai, Jian Lu, and Xiaomin Li. 2023. "Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues" Microorganisms 11, no. 8: 1869. https://doi.org/10.3390/microorganisms11081869
APA StyleLan, J., Ji, S., Yang, C., Cai, G., Lu, J., & Li, X. (2023). Extracellular Expression of Feruloyl Esterase and Xylanase in Escherichia coli for Ferulic Acid Production from Agricultural Residues. Microorganisms, 11(8), 1869. https://doi.org/10.3390/microorganisms11081869