Impacts of a DUF2207 Family Protein on Streptococcus mutans Stress Tolerance Responses and Biofilm Formation
Abstract
:1. Introduction
2. Methods and Materials
2.1. Bacterial Strains and Cultivation
2.2. Construction of Mutants and Transcription Initiation Site Mapping
2.3. Biofilm Formation
2.4. Stress Tolerance Assays
2.5. Cell Envelope Antimicrobial Susceptibility Assays
2.6. Statistical Analysis
3. Results
3.1. Sequence Analysis of the SMU.243 Locus and Its Flanking Region
3.2. SMU.243-Deficiency Causes Major Defects in Growth
3.3. Deficiency of SMU.243 Significantly Weakens the Tolerance of the Deficient Mutant to Hydrogen Peroxide
3.4. Mutant with Deletion of SMU.243 Showed no Major Difference in Susceptibility to Cell Wall Antimicrobials
3.5. SMU.243 Deficiency Led to Major Compromises in Biofilm Formation
3.6. Deficiency of UppP Resulted in Alteration in Cell and Colony Morphology
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans . Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Crowley, P.J.; Brady, L.J.; Michalek, S.M.; Bleiweis, A.S. Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. Infect. Immun. 1999, 67, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Besingi, R.N.; Wenderska, I.B.; Senadheera, D.B.; Cvitkovitch, D.G.; Long, J.R.; Wen, Z.T.; Brady, L.J. Functional Amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c . Microbiology 2017, 163, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Bowen, W.H.; Koo, H. Biology of Streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011, 45, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.T.; Liao, S.; Bitoun, J.P.; De, A.; Jorgensen, A.; Feng, S.; Xu, X.; Chain, P.S.G.; Caufield, P.W.; Koo, H.; et al. Streptococcus mutans displays altered stress responses while enhancing biofilm formation by Lactobacillus casei in mixed-species consortium. Front. Cell Infect. Microbiol. 2017, 7, 524. [Google Scholar] [CrossRef]
- Bowen, W.H.; Burne, R.A.; Wu, H.; Koo, H. Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments. Trends Microbiol. 2017, 26, 229–242. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Klein, M.I.; Colonne, P.M.; Scott-Anne, K.; Gregoire, S.; Pai, C.H.; Gonzalez-Begne, M.; Watson, G.; Krysan, D.J.; Bowen, W.H.; et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun. 2014, 82, 1968–1981. [Google Scholar] [CrossRef] [Green Version]
- Merritt, J.; Qi, F. The mutacins of Streptococcus mutans: Regulation and ecology. Mol. Oral Microbiol. 2012, 27, 57–69. [Google Scholar] [CrossRef]
- Redanz, S.; Cheng, X.; Giacaman, R.A.; Pfeifer, C.S.; Merritt, J.; Kreth, J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol. Oral Microbiol. 2018, 33, 337–352. [Google Scholar] [CrossRef]
- Lemos, J.A.; Burne, R.A. A model of efficiency: Stress tolerance by Streptococcus mutans . Microbiology 2008, 154 Pt 11, 3247–3255. [Google Scholar] [CrossRef] [Green Version]
- Burne, R.A. Oral streptococci…products of their environment. J. Dent. Res. 1998, 77, 445–452. [Google Scholar] [CrossRef]
- Ahn, S.J.; Wen, Z.T.; Burne, R.A. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 2006, 74, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Biswas, I.; Drake, L.; Erkina, D.; Biswas, S. Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans . J. Bacteriol. 2008, 190, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Senadheera, M.D.; Guggenheim, B.; Spatafora, G.A.; Huang, Y.C.; Choi, J.; Hung, D.C.; Treglown, J.S.; Goodman, S.D.; Ellen, R.P.; Cvitkovitch, D.G. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 2005, 187, 4064–4076. [Google Scholar] [CrossRef] [Green Version]
- Suntharalingam, P.; Senadheera, M.D.; Mair, R.W.; Levesque, C.M.; Cvitkovitch, D.G. The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans . J. Bacteriol. 2009, 191, 2973–2984. [Google Scholar] [CrossRef] [Green Version]
- Bitoun, J.P.; Liao, S.; Yao, X.; Ahn, S.-J.; Isoda, R.; Nguyen, A.H.; Brady, L.J.; Burne, R.A.; Abranches, A.; Wen, Z.T. BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans . Appl. Environ. Microbiol. 2012, 78, 2914–2922. [Google Scholar] [CrossRef] [Green Version]
- Bitoun, J.P.; Liao, S.; McKey, B.A.; Yao, X.; Fan, Y.; Abranches, J.; Beatty, W.L.; Wen, Z.T. Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans . Microbiology 2013, 159 Pt 3, 493–506. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Liao, S.; Bitoun, J.P.; Roth, R.; Beatty, W.L.; Wu, H.; Wen, Z.T. Deficiency of RgpG causesmajor defects in cell division and biofilm formation, and deficiency of LytR-CpsA-Psr Family proteins leads to accumulation of cell wall antigens in culture medium by Streptococcus mutans . Appl. Environ. Mmicrobiol. 2017, 83, e00928-17. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Shibata, Y.; Nakano, Y.; Tsuda, H.; Kido, N.; Ohta, M.; Koga, T. A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans . J. Bacteriol. 1999, 181, 6556–6559. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, C.J.; Faustoferri, R.C.; Bischer, A.P.; Quivey, R.G., Jr. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol. Microbiol. 2019, 112, 944–959. [Google Scholar] [CrossRef]
- De, A.; Jorgensen, A.N.; Beatty, W.L.; Lemos, J.; Wen, Z.T. Deficiency of MecA in Streptococcus mutans causes major defects in cell envelope biogenesis, cell division, and biofilm formation. Front. Microbiol. 2018, 9, 2130. [Google Scholar] [CrossRef] [PubMed]
- Shaaly, A.; Kalamorz, F.; Gebhard, S.; Cook, G.M. Undecaprenyl pyrophosphate phosphatase confers low-level resistance to bacitracin in Enterococcus faecalis . J. Antimicrobial. Chemother. 2013, 68, 1583–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, N.; Tian, X.L.; Dong, G.; Upham, J.; Chen, C.; Parcells, M.; Li, Y.H. Identification and characterization of SMU.244 encoding a putative undecaprenyl pyrophosphate phosphatase protein required for cell wall biosynthesis and bacitracin resistance in Streptococcus mutans . Microbiology 2015, 161, 1857–1870. [Google Scholar] [CrossRef] [PubMed]
- LeBanc, D.; Lee, L. Replication function of pVA380-1. In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci; Dunny, G., Cleary, P.P., Mckay, L.L., Eds.; ASM Press: Washington, DC, USA, 1991; pp. 235–239. [Google Scholar]
- Lau, P.C.Y.; Sung, C.K.; Lee, J.H.; Morrison, D.A.; Cvitkovitch, D.G. PCR ligation mutagenesis in transformable streptococci: Application and efficiency. J. Microbiol. Methods 2002, 49, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Burne, R.A.; Abranches, J.; Ahn, S.J.; Lemos, J.A.; Wen, Z.T.; Zeng, L. Functional Genomics of Streptococcus mutans . In Oral Microbial Communities: Genomic Inquires and Interspecies Communication; Kolenbrander, P.E., Ed.; ASM Press: Washington, DC, USA, 2011; pp. 185–204. [Google Scholar]
- Wen, Z.T.; Burne, R.A. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans . Appl. Environ. Microbiol. 2002, 68, 1196–1203. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.Z.; Suntharaligham, P.; Cvitkovitch, D.G.; Burne, R.A. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect. Immun. 2005, 73, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.A.; Abranches, J.; Koo, H.; Marquis, R.E.; Burne, R.A. Protocols to study the physiology of oral biofilms. Methods Mol. Biol. 2010, 666, 87–102. [Google Scholar]
- Wen, Z.T.; Baker, H.V.; Burne, R.A. Influence of BrpA on critical virulence attributes of Streptococcus mutans . J. Bacteriol. 2006, 188, 2983–2992. [Google Scholar] [CrossRef] [Green Version]
- Heydorn, A.; Nielsen, A.T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersboll, B.K.; Molin, S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000, 146 Pt 10, 2395–2407. [Google Scholar] [CrossRef] [Green Version]
- McBain, A.J.; Ledder, R.G.; Sreenivasan, P.; Gilbert, P. Selection for high-level resistance by chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 2004, 53, 772–777. [Google Scholar] [CrossRef]
- Ajdic, D.; McShan, W.M.; McLaughlin, R.E.; Savic, G.; Chang, J.; Carson, M.B.; Primeaux, C.; Tian, R.; Kenton, S.; Jia, H.; et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 2002, 99, 14434–14439. [Google Scholar] [CrossRef]
- Bitoun, J.P.; Nguyen, A.H.; Fan, Y.; Burne, R.A.; Wen, Z.T. Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans . FEMS Microbiol. Lett. 2011, 320, 110–117. [Google Scholar] [CrossRef]
- Tian, X.L.; Dong, G.; Liu, T.; Gomez, Z.A.; Wahl, A.; Hols, P.; Li, Y.H. MecA protein acts as a negative regulator of genetic competence in Streptococcus mutans . J. Bacteriol. 2013, 195, 5196–5206. [Google Scholar] [CrossRef] [Green Version]
- Workman, S.D.; Strynadka, N.C.J. A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid. J. Molecul. Biol. 2020, 432, 4964–4982. [Google Scholar] [CrossRef]
- Turner, M.E.; Huynh, K.; Carney, O.V.; Gross, D.; Carroll, R.K.; Ahn, S.J.; Rice, K.C. Genomic instability of TnSMU2 contributes to Streptococcus mutans biofilm development and competence in a cidB mutant. MicrobiologyOpen 2019, 8, e934. [Google Scholar] [CrossRef] [Green Version]
- El Ghachi, M.; Derbise, A.; Bouhss, A.; Mengin-Lecreulx, D. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli . J. Biolog. Chem. 2005, 280, 18689–18695. [Google Scholar] [CrossRef] [Green Version]
- Lis, M.; Kuramitsu, H.K. The stress-responsive dgk gene from Streptococcus mutans encodes a putative undecaprenol kinase activity. Infect. Immun. 2003, 71, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.Y.; Wang, S.C.; Cheng, T.R.; Wong, C.H. Undecaprenyl Phosphate Phosphatase Activity of Undecaprenol Kinase Regulates the Lipid Pool in Gram-Positive Bacteria. Biochemistry 2017, 56, 5417–5427. [Google Scholar] [CrossRef]
Strains/Plasmids | Major Characteristics | References/Sources |
---|---|---|
S. mutans UA159 | wild-type | ATCC |
S. mutans TW434s | UA159/∆smu.243, Spr | This study |
S. mutans TW434k | UA159/∆smu.243, Kanr | This study |
S. mutans TW434c | UA159/∆smu.243/gtfA::Psmu.243, Spr, Kanr | This study |
S. mutans TW435w | UA159/∆uppP, wet variant, Spr | This study |
S. mutans TW435d | UA159/∆uppP, dry variant, Spr | This study |
S. mutans TW435dc | UA159/∆uppP/gtfA::PuppP, Kanr, Spcr | This study |
S. mutans TW435wc | UA159/∆uppP/gtfA::PuppP, Kanr, Spcr | This study |
pBGK3(2) | Integration vector, Kanr | [18] |
pDL278 | Shuttle vector, Spr | [24] |
E. coli DH10B | Cloning host, mcrA, mcrBC, mrr, and hsd | Invitrogen, Inc. |
pBGK3:Psum.243 | pBGK3 with the SMU.243 gene plus its promoter region | This study |
pBGK3:PuppP | pBGK3 with the uppP gene plus its promoter region | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Laird, C.G.; Riley, P.P.; Wen, Z.T. Impacts of a DUF2207 Family Protein on Streptococcus mutans Stress Tolerance Responses and Biofilm Formation. Microorganisms 2023, 11, 1982. https://doi.org/10.3390/microorganisms11081982
Huang X, Laird CG, Riley PP, Wen ZT. Impacts of a DUF2207 Family Protein on Streptococcus mutans Stress Tolerance Responses and Biofilm Formation. Microorganisms. 2023; 11(8):1982. https://doi.org/10.3390/microorganisms11081982
Chicago/Turabian StyleHuang, Xiaochang, Camile G. Laird, Paul P. Riley, and Zezhang Tom Wen. 2023. "Impacts of a DUF2207 Family Protein on Streptococcus mutans Stress Tolerance Responses and Biofilm Formation" Microorganisms 11, no. 8: 1982. https://doi.org/10.3390/microorganisms11081982
APA StyleHuang, X., Laird, C. G., Riley, P. P., & Wen, Z. T. (2023). Impacts of a DUF2207 Family Protein on Streptococcus mutans Stress Tolerance Responses and Biofilm Formation. Microorganisms, 11(8), 1982. https://doi.org/10.3390/microorganisms11081982