Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Study Selection
2.2. Inclusion Criteria
- (1)
- A randomized controlled trial (RCT);
- (2)
- A clinical cohort and controls, with the clinical cohort’s intervention being the administration of probiotics or fatty acids;
- (3)
- Reports that utilized identical methodologies and scientific grading scales for depression;
- (4)
- Data reported as means ± SDs.
2.3. Extraction and Synthesis of Data
2.4. Assessment Quality
2.5. Statistical Analysis
2.6. Metagenome Analysis
3. Results
3.1. Fatty Acids Intervention
3.2. Probiotics Intervention
3.3. Evaluation of Probiotic Content in the Rat Model of Depression
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, A.J.; Charlson, F.J.; Norman, R.E.; Patten, S.B.; Freedman, G.; Murray, C.J.; Vos, T.; Whiteford, H.A. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med. 2013, 10, e1001547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, F.M.; Bloem, P.J.; Patton, G.C.; Ferguson, J.; Joseph, V.; Coffey, C.; Sawyer, S.M.; Mathers, C.D. Global burden of disease in young people aged 10–24 years: A systematic analysis. Lancet 2011, 377, 2093–2102. [Google Scholar] [CrossRef]
- Nestler, E.J.; Barrot, M.; DiLeone, R.J.; Eisch, A.J.; Gold, S.J.; Monteggia, L.M. Neurobiology of depression. Neuron 2002, 34, 13–25. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Depression. Available online: https://www.who.int/en/news-room/fact-sheets/detail/depression (accessed on 31 March 2023).
- Amidfar, M.; Reus, G.Z.; Quevedo, J.; Kim, Y.K. The role of memantine in the treatment of major depressive disorder: Clinical efficacy and mechanisms of action. Eur. J. Pharmacol. 2018, 827, 103–111. [Google Scholar] [CrossRef]
- Arroll, B.; Goodyear-Smith, F.; Crengle, S.; Gunn, J.; Kerse, N.; Fishman, T.; Falloon, K.; Hatcher, S. Validation of PHQ-2 and PHQ-9 to screen for major depression in the primary care population. Ann. Fam. Med. 2010, 8, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Levis, B.; Sun, Y.; He, C.; Wu, Y.; Krishnan, A.; Bhandari, P.M.; Neupane, D.; Imran, M.; Brehaut, E.; Negeri, Z.; et al. Accuracy of the PHQ-2 Alone and in Combination with the PHQ-9 for Screening to Detect Major Depression: Systematic Review and Meta-analysis. JAMA 2020, 323, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed.; Text Revision; American Psychiatric Association Publishing: Washington, DC, USA, 2022; 1050p. [Google Scholar]
- Ansari, F.; Pourjafar, H.; Tabrizi, A.; Homayouni, A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr. Pharm. Biotechnol. 2020, 21, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Kim, G. Systematic review and meta-analysis of omega-3-fatty acids in elderly patients with depression. Nutr. Res. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mead, G.E.; Morley, W.; Campbell, P.; Greig, C.A.; McMurdo, M.; Lawlor, D.A. Exercise for depression. Cochrane Database Syst. Rev. 2009, 3, CD004366. [Google Scholar] [CrossRef] [Green Version]
- Bender, A.; Hagan, K.E.; Kingston, N. The association of folate and depression: A meta-analysis. J. Psychiatr. Res. 2017, 95, 9–18. [Google Scholar] [CrossRef]
- Gowda, U.; Mutowo, M.P.; Smith, B.J.; Wluka, A.E.; Renzaho, A.M. Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials. Nutrition 2015, 31, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, B.; Song, X.; Zhang, D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, I.; Jakobsen, J.C. Network meta-analysis of antidepressants. Lancet 2018, 392, 1010. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Shen, X.; Du, X.; Jiang, H. Plasma levels of nesfatin-1 as a new biomarker in depression in Asians: Evidence from meta-analysis. Biomarkers 2020, 25, 228–234. [Google Scholar] [CrossRef]
- Appleton, K.M.; Sallis, H.M.; Perry, R.; Ness, A.R.; Churchill, R. Omega-3 fatty acids for depression in adults. Cochrane Database Syst. Rev. 2015, 11, CD004692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinan, T.G.; Cryan, J.F. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol. Motil. 2013, 25, 713–719. [Google Scholar] [CrossRef]
- Fond, G.; Boukouaci, W.; Chevalier, G.; Regnault, A.; Eberl, G.; Hamdani, N.; Dickerson, F.; Macgregor, A.; Boyer, L.; Dargel, A.; et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol. Biol. 2015, 63, 35–42. [Google Scholar] [CrossRef]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Kawai, M.; Kikuchi-Hayakawa, H.; Suda, K.; Ishikawa, H.; Gondo, Y.; Shimizu, K.; Matsuki, T.; et al. Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress. Appl. Environ. Microbiol. 2016, 82, 3649–3658. [Google Scholar] [CrossRef] [Green Version]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008, 43, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Antypa, N.; Smelt, A.H.; Strengholt, A.; Van der Does, A.J. Effects of omega-3 fatty acid supplementation on mood and emotional information processing in recovered depressed individuals. J. Psychopharmacol. 2012, 26, 738–743. [Google Scholar] [CrossRef]
- Bot, M.; Pouwer, F.; Assies, J.; Jansen, E.H.; Diamant, M.; Snoek, F.J.; Beekman, A.T.; de Jonge, P. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus: A randomized, double-blind placebo-controlled study. J. Affect. Disord. 2010, 126, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Harris, W.S. Omega-3 augmentation of sertraline in treatment of depression in patients with coronary heart disease: A randomized controlled trial. JAMA 2009, 302, 1651–1657. [Google Scholar] [CrossRef] [Green Version]
- Carney, R.M.; Freedland, K.E.; Rubin, E.H.; Rich, M.W.; Steinmeyer, B.C.; Harris, W.S. A Randomized Placebo-Controlled Trial of Omega-3 and Sertraline in Depressed Patients With or at Risk for Coronary Heart Disease. J. Clin. Psychiatry 2019, 80, 13302. [Google Scholar] [CrossRef]
- Chang, J.P.; Su, K.P.; Mondelli, V.; Satyanarayanan, S.K.; Yang, H.T.; Chiang, Y.J.; Chen, H.T.; Pariante, C.M. High-dose eicosapentaenoic acid (EPA) improves attention and vigilance in children and adolescents with attention deficit hyperactivity disorder (ADHD) and low endogenous EPA levels. Transl. Psychiatry 2019, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Dashti-Khavidaki, S.; Gharekhani, A.; Khatami, M.R.; Miri, E.S.; Khalili, H.; Razeghi, E.; Hashemi-Nazari, S.S.; Mansournia, M.A. Effects of omega-3 fatty acids on depression and quality of life in maintenance hemodialysis patients. Am. J. Ther. 2014, 21, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Frangou, S.; Lewis, M.; McCrone, P. Efficacy of ethyl-eicosapentaenoic acid in bipolar depression: Randomised double-blind placebo-controlled study. Br. J. Psychiatry 2006, 188, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, M.P.; Davis, M.; Sinha, P.; Wisner, K.L.; Hibbeln, J.R.; Gelenberg, A.J. Omega-3 fatty acids and supportive psychotherapy for perinatal depression: A randomized placebo-controlled study. J. Affect. Disord. 2008, 110, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fristad, M.A.; Vesco, A.T.; Young, A.S.; Healy, K.Z.; Nader, E.S.; Gardner, W.; Seidenfeld, A.M.; Wolfson, H.L.; Arnold, L.E. Pilot Randomized Controlled Trial of Omega-3 and Individual-Family Psychoeducational Psychotherapy for Children and Adolescents With Depression. J. Clin. Child Adolesc. Psychol. 2019, 48, S105–S118. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, V.; Freed, R.D.; Alonso, C.M.; Senger, S.; Stadterman, J.; Davison, B.A.; Klein, R.G. A Double-Blind Placebo-Controlled Trial of Omega-3 Fatty Acids as a Monotherapy for Adolescent Depression. J. Clin. Psychiatry 2018, 79, 13285. [Google Scholar] [CrossRef] [PubMed]
- Jahangard, L.; Sadeghi, A.; Ahmadpanah, M.; Holsboer-Trachsler, E.; Sadeghi Bahmani, D.; Haghighi, M.; Brand, S. Influence of adjuvant omega-3-polyunsaturated fatty acids on depression, sleep, and emotion regulation among outpatients with major depressive disorders-Results from a double-blind, randomized and placebo-controlled clinical trial. J. Psychiatr. Res. 2018, 107, 48–56. [Google Scholar] [CrossRef]
- Keshavarz, S.A.; Mostafavi, S.A.; Akhondzadeh, S.; Mohammadi, M.R.; Hosseini, S.; Eshraghian, M.R.; Chamari, M. Omega-3 supplementation effects on body weight and depression among dieter women with co-morbidity of depression and obesity compared with the placebo: A randomized clinical trial. Clin. Nutr. ESPEN 2018, 25, 37–43. [Google Scholar] [CrossRef]
- Lesperance, F.; Frasure-Smith, N.; St-Andre, E.; Turecki, G.; Lesperance, P.; Wisniewski, S.R. The efficacy of omega-3 supplementation for major depression: A randomized controlled trial. J. Clin. Psychiatry 2011, 72, 1054–1062. [Google Scholar] [CrossRef]
- Lucas, M.; Asselin, G.; Merette, C.; Poulin, M.J.; Dodin, S. Ethyl-eicosapentaenoic acid for the treatment of psychological distress and depressive symptoms in middle-aged women: A double-blind, placebo-controlled, randomized clinical trial. Am. J. Clin. Nutr. 2009, 89, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Marangell, L.B.; Martinez, J.M.; Zboyan, H.A.; Kertz, B.; Kim, H.F.; Puryear, L.J. A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am. J. Psychiatry 2003, 160, 996–998. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Yassini-Ardakani, M.; Karamati, M.; Shariati-Bafghi, S.E. Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: A randomized, double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2013, 23, 636–644. [Google Scholar] [CrossRef]
- Mozurkewich, E.L.; Clinton, C.M.; Chilimigras, J.L.; Hamilton, S.E.; Allbaugh, L.J.; Berman, D.R.; Marcus, S.M.; Romero, V.C.; Treadwell, M.C.; Keeton, K.L.; et al. The Mothers, Omega-3, and Mental Health Study: A double-blind, randomized controlled trial. Am. J. Obstet. Gynecol. 2013, 208, 313.e1–313.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemets, B.; Stahl, Z.; Belmaker, R.H. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am. J. Psychiatry 2002, 159, 477–479. [Google Scholar] [CrossRef]
- Nishi, D.; Su, K.P.; Usuda, K.; Chang, J.P.; Hamazaki, K.; Ishima, T.; Sano, Y.; Ito, H.; Isaka, K.; Tachibana, Y.; et al. Plasma estradiol levels and antidepressant effects of omega-3 fatty acids in pregnant women. Brain Behav. Immun. 2020, 85, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Nishi, D.; Su, K.P.; Usuda, K.; Chiang, Y.J.; Guu, T.W.; Hamazaki, K.; Nakaya, N.; Sone, T.; Sano, Y.; Tachibana, Y.; et al. The synchronized trial on expectant mothers with depressive symptoms by omega-3 PUFAs (SYNCHRO): Study protocol for a randomized controlled trial. BMC Psychiatry 2016, 16, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomponi, M.; Loria, G.; Salvati, S.; Di Biase, A.; Conte, G.; Villella, C.; Righino, E.; Ciciarelli, C.; Bria, P.; La Torre, G.; et al. DHA effects in Parkinson disease depression. Basal Ganglia 2014, 4, 61–66. [Google Scholar] [CrossRef]
- Rogers, P.J.; Appleton, K.M.; Kessler, D.; Peters, T.J.; Gunnell, D.; Hayward, R.C.; Heatherley, S.V.; Christian, L.M.; McNaughton, S.A.; Ness, A.R. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: A randomised controlled trial. Br. J. Nutr. 2008, 99, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Rondanelli, M.; Giacosa, A.; Opizzi, A.; Pelucchi, C.; La Vecchia, C.; Montorfano, G.; Negroni, M.; Berra, B.; Politi, P.; Rizzo, A.M. Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: A double-blind, placebo-controlled, randomized clinical trial. J. Am. Coll. Nutr. 2010, 29, 55–64. [Google Scholar] [CrossRef]
- Su, K.P.; Huang, S.Y.; Chiu, C.C.; Shen, W.W. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2003, 13, 267–271. [Google Scholar] [CrossRef]
- Su, K.P.; Huang, S.Y.; Chiu, T.H.; Huang, K.C.; Huang, C.L.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids for major depressive disorder during pregnancy: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2008, 69, 644–651. [Google Scholar] [CrossRef]
- Tajalizadekhoob, Y.; Sharifi, F.; Fakhrzadeh, H.; Mirarefin, M.; Ghaderpanahi, M.; Badamchizade, Z.; Azimipour, S. The effect of low-dose omega 3 fatty acids on the treatment of mild to moderate depression in the elderly: A double-blind, randomized, placebo-controlled study. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, 539–549. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Majeed, S.; Ali, F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chahwan, B.; Kwan, S.; Isik, A.; van Hemert, S.; Burke, C.; Roberts, L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 2019, 253, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Morkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schoggl, H.; et al. PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression-A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef] [PubMed]
- Baiao, R.; Capitao, L.P.; Higgins, C.; Browning, M.; Harmer, C.J.; Burnet, P.W.J. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: A randomised, double-blind, placebo-controlled study. Psychol. Med. 2023, 53, 3437–3447. [Google Scholar] [CrossRef] [PubMed]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, S.; Zhang, M.; Ren, F.; Ren, Y.; Li, Y.; Liu, N.; Zhang, Y.; Zhang, Q.; Wang, R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2238. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.C.; Zhang, G.; Walsh, T.; Kirby, L.G.; Akanwa, A.; Brooks-Kayal, A.; Beck, S.G. Stress-hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF-mediated responses. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2011, 36, 721–734. [Google Scholar] [CrossRef] [Green Version]
- Nam, H.; Clinton, S.M.; Jackson, N.L.; Kerman, I.A. Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front. Behav. Neurosci. 2014, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Rittenhouse, P.A.; Lopez-Rubalcava, C.; Stanwood, G.D.; Lucki, I. Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology 2002, 27, 303–318. [Google Scholar] [CrossRef]
- Pare, W.P.; Blair, G.R.; Kluczynski, J.; Tejani-Butt, S. Gender differences in acute and chronic stress in Wistar Kyoto (WKY) rats. Integr. Physiol. Behav. Sci. Off. J. Pavlov. Soc. 1999, 34, 227–241. [Google Scholar] [CrossRef]
- Sands, S.A.; Strong, R.; Corbitt, J.; Morilak, D.A. Effects of acute restraint stress on tyrosine hydroxylase mRNA expression in locus coeruleus of Wistar and Wistar-Kyoto rats. Brain Res. Mol. Brain Res. 2000, 75, 1–7. [Google Scholar] [CrossRef]
- Bao, A.M.; Swaab, D.F. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep. 2019, 6, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Eliwa, H.; Belzung, C.; Surget, A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem. Pharmacol. 2017, 141, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Dantzer, R.; Kelley, K.W.; Lawson, M.A.; Woolwine, B.J.; Vogt, G.; Spivey, J.R.; Saito, K.; Miller, A.H. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: Relationship to CNS immune responses and depression. Mol. Psychiatry 2010, 15, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimaki, M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Capuron, L.; Gumnick, J.F.; Musselman, D.L.; Lawson, D.H.; Reemsnyder, A.; Nemeroff, C.B.; Miller, A.H. Neurobehavioral effects of interferon-alpha in cancer patients: Phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2002, 26, 643–652. [Google Scholar] [CrossRef]
- Simpson, W.; Steiner, M.; Coote, M.; Frey, B.N. Relationship between inflammatory biomarkers and depressive symptoms during late pregnancy and the early postpartum period: A longitudinal study. Braz. J. Psychiatry 2016, 38, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Bloch, M.; Daly, R.C.; Rubinow, D.R. Endocrine factors in the etiology of postpartum depression. Compr. Psychiatry 2003, 44, 234–246. [Google Scholar] [CrossRef]
- Jans, L.A.; Riedel, W.J.; Markus, C.R.; Blokland, A. Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Mol. Psychiatry 2007, 12, 522–543. [Google Scholar] [CrossRef]
- Doornbos, B.; Dijck-Brouwer, D.A.; Kema, I.P.; Tanke, M.A.; van Goor, S.A.; Muskiet, F.A.; Korf, J. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 1250–1254. [Google Scholar] [CrossRef] [PubMed]
- Fasching, P.A.; Faschingbauer, F.; Goecke, T.W.; Engel, A.; Haberle, L.; Seifert, A.; Voigt, F.; Amann, M.; Rebhan, D.; Burger, P.; et al. Genetic variants in the tryptophan hydroxylase 2 gene (TPH2) and depression during and after pregnancy. J. Psychiatr. Res. 2012, 46, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Gur, E.B.; Gokduman, A.; Turan, G.A.; Tatar, S.; Hepyilmaz, I.; Zengin, E.B.; Eskicioglu, F.; Guclu, S. Mid-pregnancy vitamin D levels and postpartum depression. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 179, 110–116. [Google Scholar] [CrossRef]
- Robinson, M.; Whitehouse, A.J.; Newnham, J.P.; Gorman, S.; Jacoby, P.; Holt, B.J.; Serralha, M.; Tearne, J.E.; Holt, P.G.; Hart, P.H.; et al. Low maternal serum vitamin D during pregnancy and the risk for postpartum depression symptoms. Arch. Women’s Ment. Health 2014, 17, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojcik, J.; Dudek, D.; Schlegel-Zawadzka, M.; Grabowska, M.; Marcinek, A.; Florek, E.; Piekoszewski, W.; Nowak, R.J.; Opoka, W.; Nowak, G. Antepartum/postpartum depressive symptoms and serum zinc and magnesium levels. Pharmacol. Rep. 2006, 58, 571–576. [Google Scholar] [PubMed]
- Sontrop, J.; Avison, W.R.; Evers, S.E.; Speechley, K.N.; Campbell, M.K. Depressive symptoms during pregnancy in relation to fish consumption and intake of n-3 polyunsaturated fatty acids. Paediatr. Perinat. Epidemiol. 2008, 22, 389–399. [Google Scholar] [CrossRef]
- Golding, J.; Steer, C.; Emmett, P.; Davis, J.M.; Hibbeln, J.R. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology 2009, 20, 598–603. [Google Scholar] [CrossRef]
- Rees, A.M.; Austin, M.P.; Owen, C.; Parker, G. Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Res. 2009, 166, 254–259. [Google Scholar] [CrossRef]
- Kidd, P.M. Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev. 2007, 12, 207–227. [Google Scholar]
- Tassoni, D.; Kaur, G.; Weisinger, R.S.; Sinclair, A.J. The role of eicosanoids in the brain. Asia Pac. J. Clin. Nutr. 2008, 17, 220–228. [Google Scholar]
- Sinclair, A.J.; Begg, D.; Mathai, M.; Weisinger, R.S. Omega 3 fatty acids and the brain: Review of studies in depression. Asia Pac. J. Clin. Nutr. 2007, 16, 391–397. [Google Scholar]
- Maes, M.; Smith, R.; Christophe, A.; Cosyns, P.; Desnyder, R.; Meltzer, H. Fatty acid composition in major depression: Decreased omega 3 fractions in cholesteryl esters and increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids. J. Affect. Disord. 1996, 38, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.L.; Locke, C.A.; Marangell, L.B.; Severus, W.E. Omega-3 fatty acids and bipolar disorder: A review. Prostaglandins Leukot. Essent. Fat. Acids 1999, 60, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, W.; Shaikh, S.R.; Zerouga, M.; Siddiqui, R.; Wassall, S.R. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Dev. 2005, 45, 559–579. [Google Scholar] [CrossRef] [Green Version]
- Lesa, G.M.; Palfreyman, M.; Hall, D.H.; Clandinin, M.T.; Rudolph, C.; Jorgensen, E.M.; Schiavo, G. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J. Cell Sci. 2003, 116, 4965–4975. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 fatty acids and depression: Scientific evidence and biological mechanisms. Oxid. Med. Cell. Longev. 2014, 2014, 313570. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Scanlon, M.J.; Owada, Y.; Yamamoto, Y.; Porter, C.J.; Nicolazzo, J.A. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid. Mol. Pharm. 2015, 12, 4375–4385. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.; Silver, D.L. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014, 509, 503–506. [Google Scholar] [CrossRef]
- Vecchio, A.J.; Simmons, D.M.; Malkowski, M.G. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J. Biol. Chem. 2010, 285, 22152–22163. [Google Scholar] [CrossRef] [Green Version]
- Jazayeri, S.; Keshavarz, S.A.; Tehrani-Doost, M.; Djalali, M.; Hosseini, M.; Amini, H.; Chamari, M.; Djazayery, A. Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res. 2010, 178, 112–115. [Google Scholar] [CrossRef]
- Lynch, A.M.; Loane, D.J.; Minogue, A.M.; Clarke, R.M.; Kilroy, D.; Nally, R.E.; Roche, O.J.; O’Connell, F.; Lynch, M.A. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol. Aging 2007, 28, 845–855. [Google Scholar] [CrossRef]
- Reigstad, C.S.; Salmonson, C.E.; Rainey, J.F., 3rd; Szurszewski, J.H.; Linden, D.R.; Sonnenburg, J.L.; Farrugia, G.; Kashyap, P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015, 29, 1395–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reus, G.Z.; Jansen, K.; Titus, S.; Carvalho, A.F.; Gabbay, V.; Quevedo, J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J. Psychiatr. Res. 2015, 68, 316–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekhbat, M.; Howell, P.A.; Rowson, S.A.; Kelly, S.D.; Tansey, M.G.; Neigh, G.N. Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain Behav. Immun. 2019, 76, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Gunther, J.; Schulte, K.; Wenzel, D.; Malinowska, B.; Schlicker, E. Prostaglandins of the E series inhibit monoamine release via EP3 receptors: Proof with the competitive EP3 receptor antagonist L-826,266. Naunyn Schmiedebergs Arch. Pharmacol. 2010, 381, 21–31. [Google Scholar] [CrossRef]
- Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015, 29, 2207–2222. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, V.; Zaidi, S.Y.; Young, A.H.; Cleare, A.J.; Stone, J.M. Gut feeling: Randomized controlled trials of probiotics for the treatment of clinical depression: Systematic review and meta-analysis. Ther. Adv. Psychopharmacol. 2019, 9, 2045125319859963. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, H.; Rao, X.; Yu, Y.; Li, W.; Zheng, P.; Zhao, L.; Zhou, C.; Pu, J.; Yang, D.; et al. Comprehensive analysis of the lysine acetylome and succinylome in the hippocampus of gut microbiota-dysbiosis mice. J. Adv. Res. 2021, 30, 27–38. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, J.; Zhang, H.; Perry, S.W.; Yin, B.; Tan, X.; Chai, T.; Liang, W.; Huang, Y.; Li, Y.; et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol. Psychiatry 2021, 26, 2380–2392. [Google Scholar] [CrossRef]
- Chevalier, G.; Siopi, E.; Guenin-Mace, L.; Pascal, M.; Laval, T.; Rifflet, A.; Boneca, I.G.; Demangel, C.; Colsch, B.; Pruvost, A.; et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 2020, 11, 6363. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Rao, X.; Zeng, B.; Yu, Y.; Zhou, C.; Zeng, L.; Zheng, P.; Pu, J.; Xu, S.; et al. Integrated phosphoproteomic and metabolomic profiling reveals perturbed pathways in the hippocampus of gut microbiota dysbiosis mice. Transl. Psychiatry 2020, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Gui, S.; Zeng, B.; Pu, J.; Zheng, P.; Zeng, L.; Luo, Y.; Wu, Y.; Zhou, C.; et al. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl. Psychiatry 2021, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Zhu, J.; Sun, C.; Li, M.; Liu, J.; Wu, S.; Ning, K.; He, L.J.; Zhao, X.M.; Chen, W.H. GMrepo v2: A curated human gut microbiome database with special focus on disease markers and cross-dataset comparison. Nucleic Acids Res. 2022, 50, D777–D784. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ishima, T.; Zhang, J.; Qu, Y.; Chang, L.; Pu, Y.; Fujita, Y.; Tan, Y.; Wang, X.; Hashimoto, K. Ingestion of Lactobacillus intestinalis and Lactobacillus reuteri causes depression- and anhedonia-like phenotypes in antibiotic-treated mice via the vagus nerve. J. Neuroinflammation 2020, 17, 241. [Google Scholar] [CrossRef]
- Partrick, K.A.; Rosenhauer, A.M.; Auger, J.; Arnold, A.R.; Ronczkowski, N.M.; Jackson, L.M.; Lord, M.N.; Abdulla, S.M.; Chassaing, B.; Huhman, K.L. Ingestion of probiotic (Lactobacillus helveticus and Bifidobacterium longum) alters intestinal microbial structure and behavioral expression following social defeat stress. Sci. Rep. 2021, 11, 3763. [Google Scholar] [CrossRef]
- Duranti, S.; Milani, C.; Lugli, G.A.; Mancabelli, L.; Turroni, F.; Ferrario, C.; Mangifesta, M.; Viappiani, A.; Sanchez, B.; Margolles, A.; et al. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci. Rep. 2016, 6, 23971. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Xie, J.P.; Deng, K.; Li, X.; Yuan, Y.; Xuan, Q.; Xie, J.; He, X.M.; Wang, Q.; Li, J.J.; et al. Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Front. Behav. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhao, L.; Cheng, Y.; Lei, W.; Wang, Y.; Liu, X.; Zheng, N.; Shao, L.; Chen, X.; Sun, Y.; et al. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front. Cell. Infect. Microbiol. 2023, 13, 1167116. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gomez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 2007, 13, 35–37. [Google Scholar] [CrossRef]
- Sanders, M.E. Impact of probiotics on colonizing microbiota of the gut. J. Clin. Gastroenterol. 2011, 45, S115–S119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofford, R.S.; Russo, S.J.; Kiraly, D.D. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur. J. Neurosci. 2019, 50, 2562–2573. [Google Scholar] [CrossRef]
- Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. Adv. Exp. Med. Biol. 2014, 817, 195–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schousboe, A.; Waagepetersen, H.S. GABA: Homeostatic and pharmacological aspects. Prog. Brain Res. 2007, 160, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, S.D.; Schwarz, J.M. The immune system and developmental programming of brain and behavior. Front. Neuroendocrinol. 2012, 33, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, K.T.; Larson, P.; Starr, P.A.; Okun, M.S.; Wharen, R.E., Jr.; Uitti, R.J.; Guthrie, B.L.; Peichel, D.; Pahwa, R.; Walker, H.C.; et al. Benefits and risks of unilateral and bilateral ventral intermediate nucleus deep brain stimulation for axial essential tremor symptoms. Park. Relat. Disord. 2019, 60, 126–132. [Google Scholar] [CrossRef]
- Jang, H.M.; Lee, K.E.; Kim, D.H. The Preventive and Curative Effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on Immobilization Stress-Induced Anxiety/Depression and Colitis in Mice. Nutrients 2019, 11, 819. [Google Scholar] [CrossRef] [Green Version]
Author Year | Country | Sample (Female) | Depression Criterion | Depression Assessments | Fatty Acid | Methodology | Ref. |
---|---|---|---|---|---|---|---|
Antypa, N. 2012 | Netherlands | 71 (58) | Beck Depression Inventory-II (BDI-II) | BDI-II | 2.3 g of n-3 PUFA (including 1.74 g eicosapentaenoic acid (EPA) + 0.25 g docosahexaenoic acid (DHA) for 4 w | Double-blind; concealment allocation without statement; other anti-depressants with permission. | [27] |
M Bot 2010 | Netherlands | 25 (13) | Composite International Diagnostic Interview | Montgomery Åsberg Depression Rating Scale (MADRS) | omega-3 (E-EPA) (1 g/day) for 12 w | Double-blind; concealment allocation without statement; other anti-depressants with permission. | [28] |
Robert M Carney 2009 | USA | 122 (41) | Patient Health Questionnaire(PHQ-9)/BDI-II/Depression Interview and Structured Hamilton (DISH) | BDI-II/Hamilton Rating Scale for Depression (HAM-D) | 930 mg of EPA and 750 mg of DHA for 10 w | Double-blind; other anti-depressants without permission. | [29] |
Carney, R. M., 2019 | USA | 144 (56) | PHQ-9 and DISH | BDI-II/HAM-D/PHQ-9 | 50 mg/day of sertraline and 2 g/day of EPA for 10 w | Double-blind; without statement (permission) of concealment allocation/other anti-depressants | [30] |
Jane Pei- Chen Chang, 2019 | China | 59 (38) | HAMD | BDI/HAMD | 2 g per day of EPA and 1 g of DHA for 12 w | Double-blind; without statement (permission) concealment allocation is/other anti-depressants | [31] |
Simin Dashti-Khavidaki, 2014 | Iran | 34 (17) | BDI | BDI | 180 mg EPA and 120 mg DHA for 4 m | Double-blind; without statement (permission) of concealment allocation/ other anti-depressants | [32] |
Frangou, S. 2006 | British | 51 (38) | HRSD | HRSD | 1 g/day (n = 24) or 2 g/day (n = 25) of ethyl-EPA for 12 w | Double-blind; without statement (permission) of concealment allocation/other anti-depressants | [33] |
Freeman, Marlene P. 2008 | USA | 51 (51) | Structured Clinical Interview for DSM-IV (SCID) | HAM-D and Edinburgh Postnatal Depression Scale (EPDS) | 1.9 g/day EPA and DHA for 8 w | Double-blind; without statement (permission) of concealment allocation/other anti-depressants | [34] |
Mary A. Fristad, 2016 | USA | 36 (21) | DSM-IV/Children’s Depression Rating Scale-Revised(CDRS-R) | CDRS-R | 350 mg EPA 50 mg DHA, 68 mg other Ω3 (total 1870 mg) for 12 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [35] |
Vilma Gabbay 2018 | USA | 51 (28) | Clinical Global Impressions—Improvement (CGI-I) | CDRS-R/BDI-II | Increased 0.6 g/d every 2 weeks (min:1.2 maximum possible dose of 3.6 g/d, combined EPA 2.4 g plus DHA 1.2 g | Double-Blind; without statement(permission) of concealment allocation/other anti-depressants | [36] |
Leila Jahangard, 2018 | Iran | 50 (34) | DSM 5 | BDI/MADS | 1080 mg EPA, and 720 mg DHA per day for 12 w | Double-blind; without statement(permission) of concealment allocation is not stated/other anti-depressants | [37] |
Seyed Ali Keshavarz, 2018 | Iran | 55 (55) | DSM-5 | BDI | 1080 mg EPA, and 720 mg DHA per day for 12 w | Double-blind, concealment allocation is not stated; other anti-depressants are not allowed. | [38] |
Lesperance, Francois, 2011 | Canada | 432 (296) | Inventory of Depressive Symptomatology(IDS-SR30) | IDS-SR30 MADRS | 1050 mg/d of EPA and 150 mg/d of DHA for 8 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants. | [39] |
Lucas, M. 2009 | USA | 120 (120) | Psychological General Well-Being (PGWB) | 20-item Hopkins Symptom Checklist Depression Scale (HSCL-D-20)/HAM-D-21 | 1.05 g E-EPA/d plus 0.15 g EHA/d for 8 w | Double-blind; without statement(permission) of concealment allocation/ other anti-depressants | [40] |
Lauren B. Marangell, M.D. 2003 | USA | 35 | DSM-IV | MADRS | 2 g/day of DHA for 6 w. | Double-blind; without statement(permission) of concealment allocation is not stated/other anti-depressants | [41] |
Mozaffari-Khosravi, Hassan, 2013 | Iran | 46 (26) | DSM-IV | HDRS | 1 g/d of EPA or DHA for 12 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [42] |
Mozurkewich, E. L. 2013 | USA | 80 (80) | BDI | BDI | EPA-rich fish oil supplementation (1060 mg EPA plus 274 mg DHA) | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [43] |
Nemets, B. 2002 | Israel | 20 (17) | DSM-IV | HDRS | 2 g/day E-EPA for 4 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [44] |
Nishi, D. 2020 | Japan and Taiwan | 100 (100) | EPDS | HAMD | 1800 mg omega-3 fatty acids (1206 mg EPA and 609 mg DHA) for 12 weeks | Double-blind; without a statement(permission) of concealment allocation, but permitted other anti-depressants | [45] |
Nishi, D. 2016 | Japan and Taiwan | 31 (31) | EPDS | HAMD | 1206 mg EPA and 609 mg DHA daily for 12 w | Double-blind; without statement concealment allocation; but permitted other anti-depressants. | [46] |
Pomponi, M. 2014 | Italy | 24 (11) | DSM-IV | HDRS | 800 mg/d DHA and 290 mg/d eicosapentaenoic acid for 6 m | Double-blind; without statement(permission) of concealment allocation is not stated/other anti-depressants | [47] |
Rogers, Peter J. 2008 | UK | 190 | DASS depression | DASS depression/BDI | 630 mg EPA, 850 mg DHA, 870 mg olive oil for 12 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [48] |
Rondanelli, Mariangela, 2010 | Italy | 46 (46) | Geriatric Depression Scale (GDS) | GDS | 1.67 g of EPA and 0.83 g of DHA for 8 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [49] |
Su, K. P. 2003 | China | 22 (18) | HRSD/ DSM-IV | HRSD | 440 mg of EPA and 220 mg of DHA for 8 w | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [50] |
Su, K. P., 2008 | China | 24 (24) | EPDS | HAMD | 2.2 g of EPA and 1.2 g of DHA for 8 weeks | Double-blind; without statement(permission) of concealment allocation/other anti-depressants | [51] |
Tajalizadekhoob, Yaser, 2011 | Iran | 66 (46) | Geriatric Depression Scale-15 (GDS-15) | GDS-15 | 180 mg eicosapentaenoic acid (EPA) and 120 mg DHA for 6 months | Double-blind; without statement(permission) of concealment allocation/other anti-depressants. | [52] |
Author Year | Country | Sample (Female) | Depression Criterion | Depression Criterion | Probiotics | Methodology | Ref. |
---|---|---|---|---|---|---|---|
Akkasheh, G. 2016 | Iran | 40 (34) | DSM-IV/HDRS | BDI | Lactobacillus acidophilus (2 × 109 CFU/g), Lacticaseibacillus casei (2 × 109 CFU/g), and Bifidobacterium bifidum (2 × 109 CFU/g) for 8 w | Double-blind; without statement (permission) of other antidepressant drugs | [23] |
Arumugam, S. 2018 | India | 40 (34) | Diagnostic and Statistical Manual of Mental Disorders | HAM-D/MADRS/Center for Epidemiological Studies Depression Scale (CES-D) | Bacillus coagulans MTCC 5856 (600 mg) for 90 d | Double-blind; without statement of other antidepressant drugs | [53] |
Bahia Chahwan, 2019 | Australia | 71 (49) | BDI-II | BDI | 2 g Ecologic®Barrier (2.5 × 109 CFU/g) is constituted of the following nine bacterial strains: Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Bifidobacterium lactis W52, L. acidophilus W37, Levilactobacillus brevis W63, Lacticaseibacillus casei W56, Ligilactobacillus salivarius W24, Lactococcus lactis W19 and Lactococcus lactis W58 (total cell count 1 × 1010 CFU/day) for 8 w | Triple-blinded; without permission of other antidepressant drugs | [54] |
Reininghaus, E. Z. 2020 | Austria | 61 (47) | HAMD/ BDI-II | HAMD/ BDI-II | Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Bifidobacterium lactis W52, Lactobacillus acidophilus W22, Lacticaseibacillus casei W56, Lacticaseibacillus paracasei W20, Lactiplantibacillus plantarum W62, Ligilactobacillus salivarius W24 and Lactococcus lactis W19 for 28 d | Double-Blind; with permission of other antidepressant drugs | [55] |
Rita Baião 2021 | UK | 71 (45) | PHQ-9 | PHQ-9 | Four capsules. The probiotic (Bio-Kult® Advanced, ADM Protexin Ltd.), consisted of 14 species of bacteria, (Bacillus subtilis PXN® 21, Bifidobacterium bifidum PXN® 23, Bifidobacterium breve PXN® 25, Bifidobacterium infantis PXN® 27, B. longum PXN® 30, Lactobacillus acidophilus PXN® 35, Lactobacillus delbrueckii ssp. bulgaricus PXN® 39, Lacticaseibacillus casei PXN® 37, Lactiplantibacillus plantarum PXN® 47, Lacticaseibacillus rhamnosus PXN® 54, Lactobacillus helveticus PXN® 45, Ligilactobacillus salivarius PXN® 57, Lactococcus lactis ssp. lactis PXN® 63, Streptococcus thermophilus PXN® 66), encapsulated at 2 × 109 CFU for 4 w | Double-blind, without permission of other antidepressant drugs | [56] |
Romijn, A. R., 2017 | New Zealand | 79 (62) | Quick Inventory of Depressive Symptomatology (QIDS-SR16)/DASS-42 | MADRS | Lactobacillus helveticus R0052B. longum R0175 ≥ 3 × 109 CFU for 8 w | Double-blind; without permission of other antidepressant drugs | [57] |
Zhang, X., 2021 | China | 69 (44) | DSM-5 | BDI/HAMD | 100 mL of a Lacticaseibacillus casei Shirota beverage (108 CFU/mL) for 9 w | Double-Blind; without permission of other antidepressant drugs | [58] |
Probiotics | Strain | Patients/Animal Models | Mechanism | |
---|---|---|---|---|
1 | Bifidobacterium Longum | Bifidobacterium longum (strain) 1714 | Patients/Rat models | Mediating vagal tone/Increasing in brain-derived neurotrophic factor (BDNF) |
2 | Lacticaseibacillus rhamnosus | Rat models | Altering the neurotransmission of GABA | |
3 | Lactobacillus Helveticus | Lactobacillus helveticus (strain NS8) | Rat models | Reducing blood pressure/Decreasing neuroinflammation |
4 | Lactiplantibacillus plantarum | Lactiplantibacillus plantarum C29 | Rat models | Increasing BDNF/Decreasing inflammation |
5 | Bifidobacterium Animalis | Rat models | Inhibiting and/or reducing neuroinflammation | |
6 | Lacticaseibacillus casei | Lacticaseibacillus casei Shirota/Lacticaseibacillus casei W56 | Patients | |
7 | Bifidobacterium Infantis | - | Rat models | Modulating monoamine (serotonin and dopamine)/reducing inflammatory |
8 | Bifidobacterium Breve | Bifidobacterium breve 1205/Levilactobacillus brevis W63 | Patients/Rat models | Unclear |
9 | Lactobacillus Acidophilus | Lactobacillus acidophilus NCFM | Rat models | Upregulating peripheral (and possibly central) CB2 receptors/modulating the cannabinoid and mu-opioid receptor |
10 | Trans-Galactooligosaccharides | - | Patients | Unclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; He, C.; Xin, S.; Hua, R.; Du, Y.; Wang, B.; Gong, F.; Yu, X.; Pan, L.; Gao, L.; et al. Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Microorganisms 2023, 11, 2018. https://doi.org/10.3390/microorganisms11082018
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Gao L, et al. Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Microorganisms. 2023; 11(8):2018. https://doi.org/10.3390/microorganisms11082018
Chicago/Turabian StyleGao, Han, Chengwei He, Shuzi Xin, Rongxuan Hua, Yixuan Du, Boya Wang, Fengrong Gong, Xinyi Yu, Luming Pan, Lei Gao, and et al. 2023. "Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression" Microorganisms 11, no. 8: 2018. https://doi.org/10.3390/microorganisms11082018
APA StyleGao, H., He, C., Xin, S., Hua, R., Du, Y., Wang, B., Gong, F., Yu, X., Pan, L., Gao, L., & Xu, J. (2023). Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Microorganisms, 11(8), 2018. https://doi.org/10.3390/microorganisms11082018