Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. E. coli Strains Used for Artificial Co-Contamination
2.2. Artificial E. coli Mixtures
2.3. Co-Contamination of Pasteurized Milk
2.4. DNA Extraction and Quality Control
2.5. Detection and Quantification of Commensal and Eae-Positive STEC Strains Using qPCR and qdPCR, Respectively
2.6. MinION Sequencing of Artificially Co-Contaminated Milk
2.7. Sequencing Data Analysis
3. Results
3.1. Estimation of the Inoculation Level Using Cell Counting and Post-Enrichment Quantification Using qdPCR
3.2. Characterization of the STEC Strain in Presence of Commensal E. coli Using STECmetadetector
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Tobe, T.; Beatson, S.A.; Taniguchi, H.; Abe, H.; Bailey, C.M.; Fivian, A.; Younis, R.; Matthews, S.; Marches, O.; Frankel, G.; et al. An Extensive Repertoire of Type III Secretion Effectors in Escherichia coli O157 and the Role of Lambdoid Phages in Their Dissemination. Proc. Natl. Acad. Sci. USA 2006, 103, 14941–14946. [Google Scholar] [CrossRef]
- EFSA; 2020 EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Pathogenicity Assessment of Shiga Toxin-Producing Escherichia coli (STEC) and the Public Health Risk Posed by Contamination of Food with STEC. EFSA J. 2020, 18, 5967. [Google Scholar] [CrossRef]
- ISO/TS 13136; Microbiology of Food and Animal Feed—Real-Time Polymerase Chain Reaction (PCR)—Based Method for the Detection of Food-Borne Pathogens—Horizontal Method for the Detection of Shiga Toxin-Producing Escherichia coli (STEC) and the Determination of O157, O111, O26, O103, and O145 Serogroups. ISO (International Organization for Standardization): Geneva, Switzerland, 2012.
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach. Appl. Environ. Microbiol. 2015, 81, 8183–8191. [Google Scholar] [CrossRef] [Green Version]
- Loman, N.J.; Constantinidou, C.; Christner, M.; Rohde, H.; Chan, J.Z.-M.; Quick, J.; Weir, J.C.; Quince, C.; Smith, G.P.; Betley, J.R.; et al. A Culture-Independent Sequence-Based Metagenomics Approach to the Investigation of an Outbreak of Shiga-Toxigenic Escherichia coli O104:H4. JAMA 2013, 309, 1502–1510. [Google Scholar] [CrossRef]
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing. PLoS ONE 2016, 11, e0167870. [Google Scholar] [CrossRef]
- Buytaers, F.E.; Saltykova, A.; Denayer, S.; Verhaegen, B.; Vanneste, K.; Roosens, N.H.C.; Piérard, D.; Marchal, K.; De Keersmaecker, S.C.J. A Practical Method to Implement Strain-Level Metagenomics-Based Foodborne Outbreak Investigation and Source Tracking in Routine. Microorganisms 2020, 8, 1191. [Google Scholar] [CrossRef]
- Buytaers, F.E.; Saltykova, A.; Denayer, S.; Verhaegen, B.; Vanneste, K.; Roosens, N.H.C.; Piérard, D.; Marchal, K.; De Keersmaecker, S.C.J. Towards Real-Time and Affordable Strain-Level Metagenomics-Based Foodborne Outbreak Investigations Using Oxford Nanopore Sequencing Technologies. Front. Microbiol. 2021, 12, 738284. [Google Scholar] [CrossRef]
- Jaudou, S.; Deneke, C.; Tran, M.-L.; Schuh, E.; Goehler, A.; Vorimore, F.; Malorny, B.; Fach, P.; Grützke, J.; Delannoy, S. A Step Forward for Shiga Toxin-Producing Escherichia coli Identification and Characterization in Raw Milk Using Long-Read Metagenomics. Microb. Genom. 2022, 8, mgen000911. [Google Scholar] [CrossRef]
- Maguire, M.; Kase, J.A.; Roberson, D.; Muruvanda, T.; Brown, E.W.; Allard, M.; Musser, S.M.; González-Escalona, N. Precision Long-Read Metagenomics Sequencing for Food Safety by Detection and Assembly of Shiga Toxin-Producing Escherichia coli in Irrigation Water. PLoS ONE 2021, 16, e0245172. [Google Scholar] [CrossRef]
- Ørskov, F.; Ørskov, I. 2 Serotyping of Escherichia Coli The Terminology Used to Describe the Different Classes of Bacterial Antigens Is Explained in the Preface. However, the Authors Would like to Mention That a Different Convention Is Used in Some Laboratories, for Example O:L, K:L, H:7 Is Equivalent to O1:K1:H7. In Methods in Microbiology; Bergan, T., Ed.; Academic Press: London, UK, 1984; Volume 14, pp. 43–112. ISBN 0580-9517. [Google Scholar]
- Delannoy, S.; Beutin, L.; Mariani-Kurkdjian, P.; Fleiss, A.; Bonacorsi, S.; Fach, P. The Escherichia Coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-Antigen Gene Clusters. Front. Cell. Infect. Microbiol. 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Sandra, J.; Mai-Lan, T.; Fabien, V.; Patrick, F.; Sabine, D. Hybrid Assembly from 75 E. coli Genomes Isolated from French Bovine Food Products between 1995 and 2016. Microbiol. Resour. Announc. 2023, 12, e01095-22. [Google Scholar] [CrossRef]
- Perelle, S.; Dilasser, F.; Grout, J.; Fach, P. Detection by 5′-Nuclease PCR of Shiga-Toxin Producing Escherichia Coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, Associated with the World’s Most Frequent Clinical Cases. Mol. Cell. Probes 2004, 18, 185–192. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-Project.Org/ (accessed on 26 July 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Wickham, H. Reshaping Data with the Reshape Package. J. Stat. Soft. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Iguchi, A.; Iyoda, S.; Kikuchi, T.; Ogura, Y.; Katsura, K.; Ohnishi, M.; Hayashi, T.; Thomson, N.R. A Complete View of the Genetic Diversity of the Escherichia coli O-Antigen Biosynthesis Gene Cluster. DNA Res. 2015, 22, 101–107. [Google Scholar] [CrossRef] [Green Version]
- DebRoy, C.; Fratamico, P.M.; Yan, X.; Baranzoni, G.; Liu, Y.; Needleman, D.S.; Tebbs, R.; O’Connell, C.D.; Allred, A.; Swimley, M.; et al. Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing. PLoS ONE 2016, 11, e0147434. [Google Scholar] [CrossRef]
- Chase-Topping, M.; Gally, D.; Low, C.; Matthews, L.; Woolhouse, M. Super-Shedding and the Link between Human Infection and Livestock Carriage of Escherichia coli O157. Nat. Rev. Microbiol. 2008, 6, 904–912. [Google Scholar] [CrossRef]
- Stephens, T.P.; McAllister, T.A.; Stanford, K. Perineal Swabs Reveal Effect of Super Shedders on the Transmission of Escherichia coli O157:H7 in Commercial Feedlots. J. Anim. Sci. 2009, 87, 4151–4160. [Google Scholar] [CrossRef] [Green Version]
- Cookson, A.L.; Biggs, P.J.; Marshall, J.C.; Reynolds, A.; Collis, R.M.; French, N.P.; Brightwell, G. Culture Independent Analysis Using Gnd as a Target Gene to Assess Escherichia coli Diversity and Community Structure. Sci. Rep. 2017, 7, 841. [Google Scholar] [CrossRef] [Green Version]
- Baylis, C.L. Growth of Pure Cultures of Verocytotoxin-Producing Escherichia coli in a Range of Enrichment Media. J. Appl. Microbiol. 2008, 105, 1259–1265. [Google Scholar] [CrossRef]
- Murakami, S. Multidrug Efflux Transporter, AcrB—The Pumping Mechanism. Curr. Opin Struct. Biol. 2008, 18, 459–465. [Google Scholar] [CrossRef]
- Amagliani, G.; Rotundo, L.; Carloni, E.; Omiccioli, E.; Magnani, M.; Brandi, G.; Fratamico, P. Detection of Shiga Toxin-Producing Escherichia coli (STEC) in Ground Beef and Bean Sprouts: Evaluation of Culture Enrichment Conditions. Food Res. Int. 2018, 103, 398–405. [Google Scholar] [CrossRef]
- Mancusi, R.; Trevisani, M. Enumeration of Verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in Milk by Quantitative PCR. Int. J. Food Microbiol. 2014, 184, 121–127. [Google Scholar] [CrossRef]
- Bosák, J.; Hrala, M.; Micenková, L.; Šmajs, D. Non-Antibiotic Antibacterial Peptides and Proteins of Escherichia coli: Efficacy and Potency of Bacteriocins. Expert Rev. Anti-Infect. Ther. 2021, 19, 309–322. [Google Scholar] [CrossRef]
- Pollock, J.; Glendinning, L.; Wisedchanwet, T.; Watson, M. The Madness of Microbiome: Attempting To Find Consensus “Best Practice” for 16S Microbiome Studies. Appl. Environ. Microbiol. 2018, 84, e02627-17. [Google Scholar] [CrossRef] [Green Version]
- Goussarov, G.; Mysara, M.; Vandamme, P.; Van Houdt, R. Introduction to the Principles and Methods Underlying the Recovery of Metagenome-Assembled Genomes from Metagenomic Data. Microbiologyopen 2022, 11, e1298. [Google Scholar] [CrossRef]
- Browne, P.D.; Nielsen, T.K.; Kot, W.; Aggerholm, A.; Gilbert, M.T.P.; Puetz, L.; Rasmussen, M.; Zervas, A.; Hansen, L.H. GC Bias Affects Genomic and Metagenomic Reconstructions, Underrepresenting GC-Poor Organisms. Gigascience 2020, 9, giaa008. [Google Scholar] [CrossRef]
- Sato, M.P.; Ogura, Y.; Nakamura, K.; Nishida, R.; Gotoh, Y.; Hayashi, M.; Hisatsune, J.; Sugai, M.; Takehiko, I.; Hayashi, T. Comparison of the Sequencing Bias of Currently Available Library Preparation Kits for Illumina Sequencing of Bacterial Genomes and Metagenomes. DNA Res. 2019, 26, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.G.; Russ, C.; Costello, M.; Hollinger, A.; Lennon, N.J.; Hegarty, R.; Nusbaum, C.; Jaffe, D.B. Characterizing and Measuring Bias in Sequence Data. Genome Biol. 2013, 14, R51. [Google Scholar] [CrossRef] [Green Version]
- Sevim, V.; Lee, J.; Egan, R.; Clum, A.; Hundley, H.; Lee, J.; Everroad, R.C.; Detweiler, A.M.; Bebout, B.M.; Pett-Ridge, J.; et al. Shotgun Metagenome Data of a Defined Mock Community Using Oxford Nanopore, PacBio and Illumina Technologies. Sci. Data 2019, 6, 285. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.M.; Creed, T.B.; Reardon, C.L.; Manter, D.K. Comparison of Oxford Nanopore Technologies and Illumina MiSeq Sequencing with Mock Communities and Agricultural Soil. Sci. Rep. 2023, 13, 9323. [Google Scholar] [CrossRef]
- Delahaye, C.; Nicolas, J. Sequencing DNA with Nanopores: Troubles and Biases. PLoS ONE 2021, 16, e0257521. [Google Scholar] [CrossRef]
- Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J. Assessing the Performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kazantseva, E.; Donmez, A.; Pop, M.; Kolmogorov, M. StRainy: Assembly-Based Metagenomic Strain Phasing Using Long Reads. bioRxiv 2023. [Google Scholar] [CrossRef]
- Luo, X.; Kang, X.; Schönhuth, A. Enhancing Long-Read-Based Strain-Aware Metagenome Assembly. Front. Genet. 2022, 13, 868280. [Google Scholar] [CrossRef]
- Ray, R.; Singh, P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022, 11, 1332. [Google Scholar] [CrossRef]
- Dewsbury, D.M.A.; Cernicchiaro, N.; Sanderson, M.W.; Dixon, A.L.; Ekong, P.S. A Systematic Review and Meta-Analysis of Published Literature on Prevalence of Non-O157 Shiga Toxin-Producing Escherichia coli Serogroups (O26, O45, O103, O111, O121, and O145) and Virulence Genes in Feces, Hides, and Carcasses of Pre- and Peri-Harvest Cattle Worldwide. Anim. Health Res. Rev. 2022, 23, 1–24. [Google Scholar] [CrossRef]
Mix | O26:O2 Estimated Ratio | STEC Inoculum (X CFU.mL−1) | Commensal Inoculum (X CFU.mL−1) | Final STEC:Commensal Estimated Inoculum in Milk (X CFU.mL−1) |
---|---|---|---|---|
1 | 1:1 | 102 | 102 | 5:5 |
2 | 1:10 | 102 | 103 | 5:50 |
3 | 1:100 | 102 | 104 | 5:500 |
4 | 10:1 | 103 | 102 | 50:5 |
5 | 100:1 | 104 | 102 | 500:5 |
Genetic Marker | Sequence (5′-3′) | Reference |
---|---|---|
wzxO2 | Primer F- GCCAAGTGCAAAGTTTAATCACAAT Primer R- CTTGCCAATTTTCCGCAGTATAT Probe [6FAM]- CCTCTGCACCTGTAAGCACTGGCCTT-[BHQ1] | [13] |
wzxO26 | Primer F- CGCGACGGCAGAGAAAATT Primer R- AGCAGGCTTTTATATTCTCCAACTTT Probe [6FAM]-CCCCGTTAAATCAATACTATTTCACGAGGTTGA-[BHQ1] | [15] |
Sample | Desired Inoculum O26:O2 Ratio | O2 Inoculum Estimated Using Cell Counting (CFU.mL−1) | O26 Inoculum Estimated Using Cell Counting (CFU.mL−1) | Estimated O26:O2 Ratio | Relative Quantification of O2 after Enrichment Using qdPCR (wzxO2, copies.mL−1) | Relative Quantification of O26 after Enrichment Using qdPCR (wzxO26, copies.mL−1) | O26:O2 Ratio Post-Enrichment |
---|---|---|---|---|---|---|---|
Pmilk_Mix1 | 1:1 | 1.43 × 102 | 6.30 × 101 | 1:2 | 1.48 × 106 | 2.59 × 108 | 175:1 |
Pmilk_Mix2 | 1:10 | 1.39 × 103 | 6.30 × 101 | 1:22 | 3.55 × 107 | 4.81 × 108 | 13:1 |
Pmilk_Mix3 | 1:100 | 1.39 × 104 | 6.30 × 101 | 1:221 | 1.66 × 108 | 3.86 × 108 | 2:1 |
Pmilk_Mix4 | 10:1 | 1.43 × 102 | 6.00 × 102 | 4:1 | 4.08 × 105 | 4.57 × 108 | 1119:1 |
Pmilk_Mix5 | 100:1 | 1.43 × 102 | 6.00 × 103 | 41:1 | 2.53 × 105 | 3.46 × 108 | 1367:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaudou, S.; Deneke, C.; Tran, M.-L.; Salzinger, C.; Vorimore, F.; Goehler, A.; Schuh, E.; Malorny, B.; Fach, P.; Grützke, J.; et al. Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli. Microorganisms 2023, 11, 2043. https://doi.org/10.3390/microorganisms11082043
Jaudou S, Deneke C, Tran M-L, Salzinger C, Vorimore F, Goehler A, Schuh E, Malorny B, Fach P, Grützke J, et al. Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli. Microorganisms. 2023; 11(8):2043. https://doi.org/10.3390/microorganisms11082043
Chicago/Turabian StyleJaudou, Sandra, Carlus Deneke, Mai-Lan Tran, Carina Salzinger, Fabien Vorimore, André Goehler, Elisabeth Schuh, Burkhard Malorny, Patrick Fach, Josephine Grützke, and et al. 2023. "Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli" Microorganisms 11, no. 8: 2043. https://doi.org/10.3390/microorganisms11082043
APA StyleJaudou, S., Deneke, C., Tran, M. -L., Salzinger, C., Vorimore, F., Goehler, A., Schuh, E., Malorny, B., Fach, P., Grützke, J., & Delannoy, S. (2023). Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli. Microorganisms, 11(8), 2043. https://doi.org/10.3390/microorganisms11082043