Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. DNA/RNA Extraction from Respiratory Samples
2.3. DNA Extraction from Blood
2.4. Multiplex Real-Time PCR/RT-PCR for Pathogen Identification
2.5. Probe-Based Allelic Discrimination
2.6. Next-Generation Sequencing
2.7. Statistical Analysis
3. Results
3.1. Patients
3.2. Characteristics and Microbial Aetiology of CAP
3.3. Antimicrobial Resistance
3.4. Host Factors Associated with CAP
4. Discussion
4.1. Hospitalized Patient Characteristics
4.2. Aetiology of CAP and Antimicrobial Resistance in CAP Patients
4.3. Host Factors and the Incidence of Viral and Bacterial Infections
4.4. Genetic Host Factors Associated with CAP Severity
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lutfiyya, M.N.; Henley, E.; Chang, L.F.; Wessel Reyburn, S. Diagnosis and Treatment of Community-Acquired Pneumonia. Am. Fam. Physician 2006, 73, 442–450. [Google Scholar] [PubMed]
- Woodhead, M.; Blasi, F.; Ewig, S.; Garau, J.; Huchon, G.; Ieven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; van der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clinical Microbiology and Infection. Elsevier BV 2011, 17, E1–E59. [Google Scholar]
- Matthay, M.A.; Zemans, R.L. The acute respiratory distress syndrome: Pathogenesis and treatment. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 147–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccato, A.; Torres, A. Sepsis and community-acquired pneumonia. Ann. Res. Hosp. 2018, 2, 7. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; De Waele, J.; et al. Correction: ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med. 2023, 49, 615–632. [Google Scholar] [CrossRef]
- Illumina. Illumina RNA Prep with Enrichment, (L) Tagmentation Reference Guide (1000000124435). 2021. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/RNA/illumina-rna-prep-reference-guide-1000000124435-03.pdf (accessed on 6 January 2022).
- Sanz Herrero, F.; Blanquer Olivas, J. Microbiology and risk factors for community-acquired pneumonia. Semin. Respir. Crit. Care Med. 2012, 33, 220–231. [Google Scholar] [CrossRef]
- Zelviene, A.; Verschuuren, M.; Delnord, M.; Gissler, M.; Davia, S. The European Health Report 2021. Taking Stock of the Health-Related Sustainable Development Goals in the COVID-19 Era with a Focus on Leaving No One behind; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Holter, J.C.; Müller, F.; Bjørang, O.; Samdal, H.H.; Marthinsen, J.B.; Jenum, P.A.; Ueland, T.; Frøland, S.S.; Aukrust, P.; Husebye, E.; et al. Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: A 3-year prospective study in Norway. BMC Infect. Dis. 2015, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Thibodeau, K.P.; Viera, A.J. Atypical Pathogens and Challenges in Community-Acquired Pneumonia. Am. Fam. Physician 2004, 69, 1699–1707. [Google Scholar]
- Shoar, S.; Musher, D.M. Etiology of community-acquired pneumonia in adults: A systematic review. Pneumonia 2020, 12, 11. [Google Scholar] [CrossRef]
- Donald, H.M.; Scaife, W.; Amyes, S.G.B.; Young, H.-K. Sequence Analysis of ARI-1, a Novel OXA-Lactamase, Responsible for Imipenem Resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 2000, 44, 196–199. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. RRA—Carbapenem-Resistant Acinetobacter Baumannii in Healthcare Settings. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/8-Dec-2016-RRA-Acinetobacter%20baumannii-Europe.pdf (accessed on 12 March 2023).
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection 2022, 50, 83–92. [Google Scholar] [CrossRef]
- Gottesman, T.; Fedorowsky, R.; Yerushalmi, R.; Lellouche, J.; Nutman, A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infect. Prev. Pract. 2021, 3, 100113. [Google Scholar] [CrossRef] [PubMed]
- Ubukata, K.; Nonoguchi, R.; Matsuhashi, M.; Konno, M. Expression and Inducibility in Staphylococcus aureus of the mecA Gene, Which Encodes a Methicillin-Resistant S. aureus-Specific Penicillin-Binding Protein. J. Bacteriol. 1989, 171, 2882–2885. [Google Scholar] [CrossRef] [Green Version]
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleeman, K.; Mishin, V.P.; Guo, Z.; Garten, R.J.; Balish, A.; Fry, A.M.; Villanueva, J.; Stevens, J.; Gubareva, L.V. Antiviral susceptibility of variant influenza A(H3N2)v viruses isolated in the United States from 2011 to 2013. Antimicrob. Agents Chemother. 2014, 58, 2045–2051. [Google Scholar] [CrossRef] [Green Version]
- McCullers, J.A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 2014, 12, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Avadhanula, V.; Rodriguez, C.A.; DeVincenzo, J.P.; Wang, Y.; Webby, R.J.; Ulett, G.C.; Adderson, E.E. Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. J. Virol. 2006, 80, 1629–1636. [Google Scholar] [CrossRef] [Green Version]
- Shaul, P.W.; North, A.J.; Wu, L.C.; Wells, L.B.; Brannon, T.S.; Lau, K.S.; Michel, T.; Margraf, L.R.; Star, R.A. Endothelial Nitric Oxide Synthase Is Expressed in Cultured Human Bronchiolar Epithelium Key words: Airway * Clara cells * guanylyl cyclase * messenger RNA * polymerase chain reaction. J. Clin. Investig. 1994, 94, 2231–2236. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Place, A.T.; Chen, Z.; Brovkovych, V.M.; Vogel, S.M.; Muller, W.A.; Skidgel, R.A.; Malik, A.B.; Minshall, R.D. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 2012, 120, 1942–1952. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Paula, G.H.; Lacchini, R.; Tanus-Santos, J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2016, 575, 584–599. [Google Scholar] [CrossRef]
- Solé-Violán, J.; García-Laorden, M.I.; Marcos-Ramos, J.A.; de Castro, F.R.; Rajas, O.; Borderías, L.; Briones, M.L.; Herrera-Ramos, E.; Blanquer, J.; Aspa, J.; et al. The Fcγ receptor IIA-H/H131 genotype is associated with bacteremia in pneumococcal community-acquired pneumonia. Crit. Care Med. 2011, 39, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Flesch, B.K.; Nikolaus, S.; el Mokhtari, N.E.; Schreiber, S.; Nebel, A. The FCGR2A—Arg131 variant is no major mortality factor in the elderly—Evidence from a German centenarian study. Int. J. Immunogenet. 2006, 33, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Bouglé, A.; Max, A.; Mongardon, N.; Grimaldi, D.; Pène, F.; Rousseau, C.; Chiche, J.-D.; Bedos, J.-P.; Vicaut, E.; Mira, J.-P. Protective effects of FCGR2A polymorphism in invasive pneumococcal diseases. Chest 2012, 142, 1474–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yee, A.M.F.; Phan, H.M.; Zuniga, R.; Salmon, J.E.; Musher, D.M. Association Between FcgRIIa-R131 Allotype and Bacteremic Pneumococcal Pneumonia. Clin. Infect. Dis. 2000, 30, 25–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Ma, Y.; Li, H.; Yu, H. Association between FCGR2A rs1801274 and MUC5B rs35705950 variations and pneumonia susceptibility. BMC Med. Genet. 2020, 21, 71. [Google Scholar] [CrossRef] [PubMed]
- Stading, R.; Chu, C.; Couroucli, X.; Lingappan, K.; Moorthy, B. Molecular role of cytochrome P4501A enzymes in oxidative stress. Curr. Opin. Toxicol. 2020, 20–21, 77–84. [Google Scholar] [CrossRef]
- Tian, L.X.; Tang, X.; Zhu, J.Y.; Luo, L.; Ma, X.Y.; Cheng, S.W.; Zhang, W.; Tang, W.Q.; Ma, W.; Yang, X.; et al. Cytochrome P450 1A1 enhances inflammatory responses and impedes phagocytosis of bacteria in macrophages during sepsis. Cell Commun. Signal. 2020, 18, 70. [Google Scholar] [CrossRef]
- Salnikova, L.E.; Smelaya, T.V.; Golubev, A.M.; Rubanovich, A.V.; Moroz, V.V. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications. Mol. Biol. Rep. 2013, 40, 6163–6176. [Google Scholar] [CrossRef] [PubMed]
- Guin, D.; Yadav, S.; Singh, P.; Singh, P.; Thakran, S.; Kukal, S.; Kanojia, N.; Paul, P.R.; Pattnaik, B.; Sardana, V.; et al. Human genetic factors associated with pneumonia risk, a cue for COVID-19 susceptibility. Infect. Genet. Evol. 2022, 102, 105299. [Google Scholar] [CrossRef] [PubMed]
- Tiancha, H.; Huiqin, W.; Jiyong, J.; Jingfen, J.; Wei, C. Association between lymphotoxin-α intron +252 polymorphism and sepsis: A meta-analysis. Scand. J. Infect. Dis. 2011, 43, 436–447. [Google Scholar] [CrossRef]
- Reilly, J.P.; Meyer, N.J.; Shashaty, M.G.; Anderson, B.J.; Ittner, C.; Dunn, T.G.; Lim, B.; Forker, C.; Bonk, M.P.; Kotloff, E.; et al. The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness. J. Clin. Investig. 2021, 131, e139700. [Google Scholar] [CrossRef]
- Taylor, S.L.; McGuckin, M.A.; Wesselingh, S.; Rogers, G.B. Infection’s Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility. Trends Microbiol. 2018, 26, 92–101. [Google Scholar] [CrossRef]
- Raza, M.W.; Blackwell, C.C.; Molyneaux, P.; James, V.S.; Ogilvie, M.M.; Inglis, J.M.; Weir, D.M. Association between secretor status and respiratory viral illness. Br. Med. J. 1991, 303, 815–818. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, K.E.; Ong, F.S.; Blackwell, W.L.B.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z.; Fuchs, S. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 2013, 65, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Engel, A.; Morcillo, L.; Aranda, F.J.; Ruiz, M.; Gaitan, M.J.; Mayor-Olea, Á.; Aranda, P.; Ferrario, C.M. Influence of Gender and Genetic Variability on Plasma Angiotensin Peptides. J. Renin-Angiotensin-Aldosterone Syst. 2006, 7, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, W.; Shen, L.; Yang, X.; Liu, Y.; Gai, Z. Association of the ACE, GSTM1, IL-6, NOS3, and CYP1A1 polymorphisms with susceptibility of mycoplasma pneumoniae pneumonia in Chinese children. Medicine 2017, 96, e6642. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yamaguchi, E.; Furuya, K.; Kawakami, Y. The ACE gene polymorphism and cough threshold for capsaicin after cilazapril usage. Respir. Med. 2001, 95, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Salnikova, L.E.; Smelaya, T.V.; Moroz, V.V.; Golubev, A.M.; Rubanovich, A.V. Host genetic risk factors for community-acquired pneumonia. Gene 2013, 518, 449–456. [Google Scholar] [CrossRef]
- Salnikova, L.E.; Smelaya, T.V.; Moroz, V.V.; Golubev, A.M.; Rubanovich, A.V. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int. J. Infect. Dis. 2013, 17, e433–e442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadsby, N.; McHugh, M.; Russell, C.; Mark, H.; Morris, A.C.; Laurenson, I.; Hill, A.; Templeton, K. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clin. Microbiol. Infect. 2015, 21, 788.e1–788.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corless, C.E.; Guiver, M.; Borrow, R.; Edwards-Jones, V.; Fox, A.J.; Kaczmarski, E.B. Simultaneous Detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in Suspected Cases of Meningitis and Septicemia Using Real-Time PCR. J. Clin. Microbiol. 2001, 39, 1553–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winchell, J.M.; Thurman, K.A.; Mitchell, S.L.; Thacker, W.L.; Fields, B.S. Evaluation of three real-time PCR assays for detection of Mycoplasma pneumoniae in an outbreak investigation. J. Clin. Microbiol. 2008, 46, 3116–3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, S.L.; Budhiraja, S.; Thurman, K.A.; Lanier Thacker, W.; Winchell, J.M. Evaluation of two real-time PCR chemistries for the detection of Chlamydophila pneumoniae in clinical specimens. Mol. Cell. Probes 2009, 23, 309–311. [Google Scholar] [CrossRef]
- Nazarian, E.J.; Bopp, D.J.; Saylors, A.; Limberger, R.J.; Musser, K.A. Design and implementation of a protocol for the detection of Legionella in clinical and environmental samples. Diagn. Microbiol. Infect. Dis. 2008, 62, 125–132. [Google Scholar] [CrossRef]
- Barletta, F.; Vandelannoote, K.; Collantes, J.; Evans, C.A.; Arévalo, J.; Rigouts, L. Standardization of a TaqMan-based real-time PCR for the detection of Mycobacterium tuberculosis-complex in human sputum. Am. J. Trop. Med. Hyg. 2014, 91, 709–714. [Google Scholar] [CrossRef]
- Pernica, J.M.; Moldovan, I.; Chan, F.; Slinger, R. Real-time polymerase chain reaction for microbiological diagnosis of parapneumonic effusions in Canadian children. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Who, T.; Centre, C.; Atlanta, C.D.C.; States, U. CDC Protocol of Realtime RTPCR for Influenza A(H1N1); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2009; Volume 1.
- Selvaraju, S.B.; Selvarangan, R. Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses. J. Clin. Microbiol. 2010, 48, 3870–3875. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.M.; Chittaganpitch, M.; Baggett, H.C.; Peret, T.C.; Dare, R.K.; Sawatwong, P.; Thamthitiwat, S.; Areerat, P.; Sanasuttipun, W.; Fischer, J. The burden of hospitalized lower respiratory tract infection due to respiratory syncytial virus in rural thailand. PLoS ONE 2010, 5, e15098. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Holloway, B.; Dare, R.K.; Kuypers, J.; Yagi, S.; Williams, J.V.; Hall, C.B.; Erdman, D.D. Real-time reverse transcription-PCR assay for comprehensive detection of human rhinoviruses. J. Clin. Microbiol. 2008, 46, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Watzinger, F.; Suda, M.; Preuner, S.; Baumgartinger, R.; Ebner, K.; Baskova, L.; Niesters, H.G.M.; Lawitschka, A.; Lion, T. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients. J. Clin. Microbiol. 2004, 42, 5189–5198. [Google Scholar] [CrossRef] [Green Version]
- Templeton, K.E.; Scheltinga, S.A.; Beersma, M.F.C.; Kroes, A.C.M.; Claas, E.C.J. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J. Clin. Microbiol. 2004, 42, 1564–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiveljung-Lindell, A.; Rotzén-Östlund, M.; Gupta, S.; Ullstrand, R.; Grillner, L.; Zweygberg-Wirgart, B.; Allander, T. Development and implementation of a molecular diagnostic platform for daily rapid detection of 15 respiratory viruses. J. Med. Virol. 2009, 81, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Heim, A.; Ebnet, C.; Harste, G.; Pring-Åkerblom, P. Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J. Med. Virol. 2003, 70, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Tryfonos, C.; Richter, J.; Koptides, D.; Yiangou, M.; Christodoulou, C.G. Molecular typing and epidemiology of enteroviruses in Cyprus, 2003–2007. J. Med. Microbiol. 2011, 60, 1433–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Wang, L.; Sakthivel, S.K.; Whitaker, B.; Murray, J.; Kamili, S.; Lynch, B.; Malapati, L.; Burke, S.A.; Harcourt, J.; et al. US CDC real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1654–1665. [Google Scholar] [CrossRef]
Characteristics | Patients |
---|---|
Age ꝉ | 62.5 (18–90) * |
Female/Male ꝉ | 33/67 |
Patients with comorbid conditions | 64 (76.2) |
COPD | 19 (22.62) |
Asthma | 8 (9.52) |
Neoplastic disorder | 8 (9.52) |
Renal disease | 9 (10.71) |
Congestive heart failure | 17 (20.24) |
Immunosuppression | 6 (7.14) |
Diabetes | 11 (13.10) |
Liver disease | 1 (1.19) |
Pneumococcal vaccine | 5 (5.95) |
Influenza vaccine | 7 (8.33) |
Antibiotics prior to hospital admission | 13 (15.48) |
CURB-65 | 2 (0.12) ‡ |
Days of hospitalization | 6 (4–10) § |
In-hospital mortality | 3 (3.6) |
30-day mortality | 2 (2.4) |
White blood cell count | |
4000 cells/mm3 | 0 |
10,000 cells/mm3 | 46 (54.8) |
C-reactive protein > 80 mg/L | 49 (58.3) |
PaO2/FiO2 ≤ 250 mmHg | 17 (20.2) |
Chest infiltrates | |
Left | 26 (31) |
Right | 30 (35.7) |
Bilateral | 18 (21.4) |
Parapneumonic pleural effusions | 11 (13.1) |
Empyema | 3 (3.6) |
Sputum | BAL | PF | Swab | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | + | % | Total | + | % | Total | + | % | Total | + | % | |
Total samples | 45 | 41 | 91.1 | 33 | 28 | 84.8 | 15 | 10 | 66.7 | 7 | 6 | 85.7 |
Bacterial infection | 10 | 22.2 | 6 | 18.2 | 2 | 13.3 | 2 | 28.6 | ||||
Viral infection | 6 | 13.3 | 11 | 33.3 | 7 | 46.7 | 1 | 14.3 | ||||
Viral/bacterial co-infection | 25 | 55.6 | 11 | 33.3 | 1 | 6.7 | 3 | 42.9 | ||||
Negative | 4 | 8.9 | 5 | 15.2 | 5 | 33.3 | 1 | 14.3 |
Pathogens | Sputum (n) | BAL (n) | PF (n) | Swab (n) | Real-Time PCR/RT-PCR | RPIP Analysis | ||
---|---|---|---|---|---|---|---|---|
Total respiratory pathogens | 79 | 46 | 13 | 11 | 136 | 96 | 10 | |
Bacterial pathogens | 46 | 18 | 3 | 6 | 69 | 51 | 4 | |
Acinetobacter baumannii | ✓ | 0 | 7 | 0 | 1 | 8 | 6 | |
Achromobacter xyosylans | ✓ | 1 | 0 | 0 | 0 | 1 | 0 | |
Bacteroides fragilis | 0 | 1 | 0 | 0 | 0 | 1 | 1 | |
Chlamydia pneumoniae | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Chlamydia psittaci | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
Escherichia coli | ✓ | 4 | 2 | 0 | 0 | 6 | 2 | |
Haemophilus influenzae | ✓ | 10 | 1 | 0 | 1 | 12 | 12 | |
Klebsiella pneumoniae | ✓ | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
Legionella pneumophilla | ✓ | 1 | 1 | 0 | 0 | 2 | 2 | |
Moraxella catarrhalis | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Mycoplasma pneumoniae | ✓ | 2 | 0 | 0 | 0 | 2 | 1 | |
Mycobacterium tuberculosis | ✓ | 2 | 0 | 0 | 1 | 3 | 3 | |
Neisseria meningitidis | ✓ | 0 | 0 | 1 | 0 | 1 | 0 | |
Pseudomonas aeruginosa | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Staphylococcus aureus | ✓ | 9 | 3 | 0 | 1 | 13 | 8 | |
Streptococcus pneumoniae | ✓ | 16 | 3 | 1 | 1 | 20 | 14 | 1 |
Streptococcus pyogenes | ✓ | 0 | 0 | 1 | 0 | 1 | 0 | |
Viral pathogens | 33 | 28 | 9 | 5 | 67 | 45 | 6 | |
Human adenovirus | ✓ | 2 | 0 | 0 | 0 | 1 | 0 | |
Human bocavirus | ✓ | 0 | 0 | 2 | 0 | 2 | 0 | |
Human coronavirus OC43 | ✓ | 3 | 0 | 0 | 0 | 3 | 1 | |
Human coronavirus 229E | ✓ | 1 | 0 | 0 | 0 | 1 | 1 | |
Human coronavirus NL63 | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Human coronavirus HKU1 | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Human metapneumovirus | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Human rhinovirus | ✓ | 6 | 1 | 4 | 1 | 10 | 8 | 2 |
Herpes simplex virus 1 | 0 | 1 | 0 | 0 | 0 | 1 | ||
Influenza A | ✓ | 13 | 5 | 0 | 2 | 17 | 13 | 3 |
Influenza B | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Influenza C | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Human parainfluenza virus 1 | ✓ | 1 | 0 | 0 | 1 | 2 | 0 | |
Human parainfluenza virus 2 | ✓ | 4 | 3 | 1 | 0 | 8 | 2 | |
Human parainfluenza virus 3 | ✓ | 0 | 0 | 0 | 0 | 0 | 0 | |
Human parainfluenza virus 4 | ✓ | 0 | 0 | 2 | 1 | 3 | 0 | |
Respiratory syncytial virus | ✓ | 3 | 2 | 0 | 0 | 5 | 3 | |
Severe acute respiratory distress syndrome coronavirus 2 | ✓ | 0 | 16 | 0 | 0 | 15 | 16 | 1 |
Pathogens Correlated with AMR | AMR Family | AMR Gene | AMR Identified (n) | Confidence Score | AMR Associated Drug Class | |
---|---|---|---|---|---|---|
Streptococcus pneumoniae | Tet | tetM | 1 | High | Tetracycline | |
ABC-F | mel | 1 | Medium | Lincosamide Oxazolidinone | Macrolide Tetracycline | |
Erm | ErmC | 1 | High | Lincosamide | Macrolide | |
Staphylococcus aureus | Erm | ErmB | 1 | High | Lincosamide | Macrolide |
Erm | ErmF | 1 | High | Lincosamide | Macrolide | |
ABC-F | mel | 1 | Medium | Lincosamide Oxazolidinone | Macrolide Tetracycline | |
ABC-F | lsaC | 2 | Medium | Lincosamide Oxazolidinone | Macrolide Tetracycline | |
blaZ | blaZ | 2 | High | Penicillin | ||
mecA | 4 | High | Beta-Lactam Carbapenem Cephalosporins 1–4 | Beta-lactamase Inhibitor Penicillin | ||
LNU | lnuC | 1 | High | Lincosamide | ||
ANT(4’) | ANT(4’)-Ib | 2 | High | Aminoglycoside | ||
Dfr | dfrC | 1 | High | Diaminopyrimidine | ||
Escherichia coli | Erm | ErmC | 1 | High | Lincosamide | Macrolide |
Dfr | dfrC | 2 | High | Diaminopyrimidine | ||
ANT(4’) | ANT(4’)-Ib | 2 | High | Aminoglycoside | ||
TEM | TEM-1 | 1 | High | Penicillin | ||
Sul | sul2 | 1 | High | Sulfonamide | ||
Erm | ErmX | 1 | High | Lincosamide | Macrolide | |
Acinetobacter baumannii | ABC-F | msrE | 6 | High | Lincosamide Oxazolidinone | Macrolide Tetracycline |
Sul | Sul1 | 4 | High | Sulfonamide | ||
OXA | OXA-23 | 6 | High | Carbapenem Penicillin | Cephalosporin 1st Cephalosporin 3rd | |
16S RMTase | armA | 6 | High | Aminoglycoside | ||
MPH | mphE | 6 | High | Macrolide | ||
Mycobacterium tuberculosis | Qnr | mfpA | 2 | High | Fluoroquinolone | |
AAC(2’) | AAC(2’)-Ic | 2 | High | Aminoglycoside | ||
Erm | ErmB | 1 | High | Lincosamide | Macrolide | |
Haemophilus influenzae | TEM | TEM-1 | 2 | High | Penicillin | |
Bacteroides fragilis | Tet | tetQ | 1 | High | Tetracycline | |
Klebsiella pneumoniae | Qnr | QnrD1 | 1 | High | Fluoroquinolone | |
ANT(4’) | ANT(4’)-Ib | 1 | High | Aminoglycoside | ||
Pathogens correlated with AMR variants | Gene name | Nucleotide change | Protein Change | Allele frequency | Depth | Drug Resistance |
Streptococcus pneumoniae | parC | 245C > T | S82F | 1 | 80 | Fluoroquinolone |
Mycobacterium tuberculosis | embC | 2941G > C | V981L | 1 | 26 | Polyamine antibiotic |
thyA | 604A > G | T202A | 1 | 101 | Para-aminosalicylic Acid |
SNP | Gene | Homozygote Wild-Type n (%) | Heterozygote n (%) | Homozygote Mutant n (%) |
---|---|---|---|---|
rs601338 | Fut2 | G/G n = 35 (42.17) | G/A n = 34 (40.1) | A/A n = 14 (16.9) |
rs1800795 | IL6 | C/C n = 4 (5.2) | C/G n = 23 (29.9) | G/G n = 50 (64.9) |
rs1799983 | NOS3 | T/T n = 6 (8.1) | T/G n = 33 (44.6) | G/G n = 35 (47.3) |
rs1801274 | FCGR2A | A/A n = 27 (35.5) | A/G n = 38 (50) | G/G n = 11 (14.5) |
rs1800629 | TNF | G/G n = 65 (84.4) | G/A n = 12 (15.6) | A/A n = 0 |
rs2606345 | CYP1A1 | C/C n = 10 (13) | C/A n = 40 (52) | A/A n = 27 (35) |
rs1800896 | IL10 | T/T n = 31 (40.2) | T/C n = 39 (50.7) | C/C n = 7 (9.1) |
rs1799752 * | ACE | del n = 29 (38.7) | del/ins n = 41 (54.7) | ins n = 5 (6.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladas, P.; Porfyridis, I.; Tryfonos, C.; Ioannou, A.; Adamide, T.; Christodoulou, C.; Richter, J. Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms 2023, 11, 2051. https://doi.org/10.3390/microorganisms11082051
Ladas P, Porfyridis I, Tryfonos C, Ioannou A, Adamide T, Christodoulou C, Richter J. Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms. 2023; 11(8):2051. https://doi.org/10.3390/microorganisms11082051
Chicago/Turabian StyleLadas, Petros, Ilias Porfyridis, Christina Tryfonos, Anna Ioannou, Tonia Adamide, Christina Christodoulou, and Jan Richter. 2023. "Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus" Microorganisms 11, no. 8: 2051. https://doi.org/10.3390/microorganisms11082051
APA StyleLadas, P., Porfyridis, I., Tryfonos, C., Ioannou, A., Adamide, T., Christodoulou, C., & Richter, J. (2023). Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms, 11(8), 2051. https://doi.org/10.3390/microorganisms11082051