Sampling and Characterization of Bioaerosols in Poultry Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Locations
2.2. Plating and Analysis
2.3. Quantitative Polymerase Chain Reaction (qPCR)
2.4. Fatty Acid Methyl Ester (FAME) Analysis
2.5. Statistical Analysis
3. Results
3.1. Bacterial CFU Counts
3.2. Bacterial DNA in Filter Samples
3.3. Identification of Pathogens
3.4. Bioaerosol Collection with the WWC in the CAFU Environment
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, B.-M.; Chen, J.-S.; Hsu, G.-J.; Koner, S.; Nagarajan, V.; Tsai, H.-C. Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics 2022, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, W.; Xie, C.; Zhu, Y.; Tang, W.; Zhou, X.; Xiao, H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. Sci. Total. Environ. 2022, 846, 157420. [Google Scholar] [CrossRef]
- Du, L.; Yang, L.; Yang, C.; Dominy, R.; Hu, C.; Du, H.; Li, Q.; Yu, C.; Xie, L.; Jiang, X. Investigation of bio-aerosol dispersion in a tunnel-ventilated poultry house. Comput. Electron. Agric. 2019, 167, 105043. [Google Scholar] [CrossRef]
- Sun, X.; Li, D.; Li, B.; Sun, S.; Yabo, S.D.; Geng, J.; Ma, L.; Qi, H. Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. J. Hazard. Mater. 2020, 398, 122984. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ma, D.; Huang, Q.; Tang, W.; Wei, M.; Li, Y.; Jiang, L.; Zhu, H.; Yu, X.; Zheng, W.; et al. Aerosol Concentrations and Fungal Communities within Broiler Houses in Different Broiler Growth Stages in Summer. Front. Vet. Sci. 2021, 8, 775502. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.E.; Pak, H.; Gerlich, R.; Jantrania, A.; Smith, B.L.; King, M.D. Aerosol partitioning potential of bacteria presenting antimicrobial resistance from different stages of a small decentralized septic treatment system. Aerosol Sci. Technol. 2023, 57, 517–531. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Zhang, H.; Yao, X.; Zhou, M.; Wang, J.; He, Z.; Zhang, H.; Lou, L.; Mao, W.; et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 2018, 233, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Indoor bioaerosol dynamics. Indoor Air 2014, 26, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.-J.; Liu, W.-T.; Chin, H.-T.; Lin, C.-H.; Chen, I.-C.; Chang, Y.-T. An Investigation of Airborne Bioaerosols and Endotoxins Present in Indoor Traditional Wet Markets before and after Operation in Taiwan: A Case Study. Int. J. Environ. Res. Public Health 2021, 18, 2945. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Information about Psittacosis for Employers and Employees at Poultry Slaughter Plants. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/pneumonia/atypical/psittacosis/surveillance-reporting/outbreaks/poultry-slaughter-plants-factsheet.html (accessed on 22 March 2022).
- Kasaeinasab, A.; Jahangiri, M.; Karimi, A.; Tabatabaei, H.R.; Safari, S. Respiratory Disorders Among Workers in Slaughterhouses. Saf. Health Work. 2017, 8, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartung, J.; Schulz, J. Risks Caused by Bio-Aerosols in Poultry Houses. In Proceedings of the International Conference: Poultry in the 21st Century, Avian Influenza and Beyond, Bangkok, Thailand, 5–7 November 2007. [Google Scholar]
- Younis, F.; Salem, E. Respiratory health disorders associated with occupational exposure to bioaerosols among workers in poultry breeding farms. Environ. Sci. Pollut. Res. 2020, 27, 19869–19876. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johler, S.; Sihto, H.-M.; Macori, G.; Stephan, R. Sequence Variability in Staphylococcal Enterotoxin Genes seb, sec, and sed. Toxins 2016, 8, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, D.V.T.; Venkitanarayanan, K.; Kollanoor Johny, A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worrall, L.J.; Vuckovic, M.; Strynadka, N.C.J. Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA. Protein Sci. 2010, 19, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Portes, A.B.; Panzenhagen, P.; dos Santos, A.M.P.; Junior, C.A.C. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics 2023, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial Resistance in Campylobacter Species: Mechanisms and Genomic Epidemiology. Adv. Appl. Microbiol. 2018, 103, 1–47. [Google Scholar] [CrossRef]
- McFarland, A.R.; Haglund, J.S.; King, M.D.; Hu, S.; Phull, M.S.; Moncla, B.W.; Seo, Y. Wetted Wall Cyclones for Bioaerosol Sampling. Aerosol Sci. Technol. 2010, 44, 241–252. [Google Scholar] [CrossRef]
- King, M.D.; McFarland, A.R. Bioaerosol Sampling with a Wetted Wall Cyclone: Cell Culturability and DNA Integrity of Escherichia coli Bacteria. Aerosol Sci. Technol. 2012, 46, 82–93. [Google Scholar] [CrossRef]
- Kirthi, P.S.; Kanchana, S.N.P. Isolation and Identification of Bacterial Strains with Fatty Acid Methyl Ester (FAME) Analysis. Asian J. Biol. Life Sci. 2021, 10, 197–201. [Google Scholar] [CrossRef]
- Sekora, N.S.; Lawrence, K.S.; Agudelo, P.; Van Santen, E.; McInroy, J.A. Using FAME analysis to compare, differentiate, and identify multiple nematode species. J. Nematol. 2009, 41, 163–173. [Google Scholar]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Martiny, A.C. High proportions of bacteria are culturable across major biomes. ISME J. 2019, 13, 2125–2128. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba, S. Quantitative real-time PCR using TaqMan and SYBR green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 2003, 39, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Stewart, T.M.; Nawaz, M.S. PCR identification of Campylobacter coli and Campylobacter jejuni by partial sequencing of virulence genes. Mol. Cell Probes 2005, 19, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yang, Y.; Jong, A.Y. Mini-prep in ten minutes. Biotechniques 1990, 8, 172–173. [Google Scholar] [PubMed]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; Galán, J.E.; Ginocchio, C.; Curtis, I.I.I.R.; Gyles, C.L. Amplification of an invA sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell Probes 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-C.; Chang, L.-T.; Lin, C.-W.; Yang, C.-Y.; Tsen, H.-Y. PCR primers for the detection of staphylococcal enterotoxins K, L, and M and survey of staphylococcal enterotoxin types in Staphylococcus aureus isolates from food poisoning cases in Taiwan. J. Food Prot. 2006, 69, 1072–1079. [Google Scholar] [CrossRef]
- Kennedy, A.C. Carbon Utilization and Fatty Acid Profiles for Characterization of Bacteria. In Methods of Soil Analysis. Part 2 Microbiological and Biochemical Properties; Weaver, R., Angle, J.S., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 543–554. [Google Scholar]
- Sherlock. Microbial Identification System Version (6.2); MIDI, Inc.: Newark, DE, USA, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B.L.; King, M.D. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms 2023, 11, 2068. https://doi.org/10.3390/microorganisms11082068
Smith BL, King MD. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms. 2023; 11(8):2068. https://doi.org/10.3390/microorganisms11082068
Chicago/Turabian StyleSmith, Brooke L., and Maria D. King. 2023. "Sampling and Characterization of Bioaerosols in Poultry Houses" Microorganisms 11, no. 8: 2068. https://doi.org/10.3390/microorganisms11082068
APA StyleSmith, B. L., & King, M. D. (2023). Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms, 11(8), 2068. https://doi.org/10.3390/microorganisms11082068