Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
- Two replicates of fir wood panels treated with Silvanolin 1%.
- Two replicates of spruce wood panels treated with Silvanolin 1%.
- Two replicates of fir wood panels treated with Silvanolin 0.25%.
- Two replicates of spruce wood panels treated with Silvanolin 0.25%.
- T1 (June 15): after 6 days.
- T2 (June 29): after 20 days.
- T3 (July 19): after 40 days.
2.3. Abundance and Community Structure of Microalgal Biofilm via Light Microscopy
- Abundance (cm2) = N * VF/2 VC where
- N = number of counted cells;
- VF = final sample volume (mL), depending on the applied dilution;
- VC = volume of the counting chamber (mL);
- 2 = division factor to express the abundance from 2 cm2 to cm2.
2.4. Microalgal Biofilm via Confocal Microscopy and Electron Microscopy
2.5. Statistical Analyses
3. Results
3.1. Abundance and Community Structure of Microalgal Biofilm
3.2. Multivariate Analyses of Microalgal Biofilm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monaco, A.L.; Balletti, F.; Pelosi, C. Wood in Cultural Heritage. Properties and Conservation of Historical Wooden Artefacts. Eur. J. Sci. Theol. 2018, 14, 161–171. [Google Scholar]
- Treu, A.; Zimmer, K.; Brischke, C.; Larnøy, E.; Ross, L.; Aloui, F.; Cragg, S.M.; Fl, P.-O.; Westin, M.; Borges, L.; et al. Durability and Protection of Timber Structures in Marine Environments in Europe: An Overview. Timber in marine environments. BioResources 2019, 14, 10161–10184. [Google Scholar] [CrossRef]
- Guarneri, I.; Moschino, V.; Nesto, N.; Marceta, T.; Sigovini, M.; Borella di Torre, E.; Dametto, L.; Pasqual, S.; Humar, M.; Lesar, B.; et al. DuraSoft Project: A Multidisciplinary Approach for Softwood Protection. In Proceedings of the Proceedings IRG Annual Meeting 2021, Online Webinar, 1 November 2021. [Google Scholar]
- Underwood, G.J.; Dumbrell, A.J.; McGenity, T.J.; McKew, B.A.; Whitby, C. The Microbiome of Coastal Sediments. In The Marine Microbiome; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 479–534. [Google Scholar]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. In Microbial Biofilms; Ghannoum, M., Parsek, M., Whiteley, M., Mukherjee, P.K., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 63–90. ISBN 978-1-68367-091-9. [Google Scholar]
- Sutherland, I.W. Biofilm Exopolysaccharides: A Strong and Sticky Framework. Microbiology 2001, 147, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Hubas, C.; Passarelli, C.; Paterson, D.M. Microphytobenthic Biofilms: Composition and Interactions. In Mudflat Ecology; Beninger, P.G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-99192-4. [Google Scholar]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I. The Ecology and Biogeochemistry of Stream Biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef]
- Larned, S.T. A Prospectus for Periphyton: Recent and Future Ecological Research. J. North Am. Benthol. Soc. 2010, 29, 182–206. [Google Scholar] [CrossRef]
- Romero, F.; Sabater, S.; Timoner, X.; Acuña, V. Multistressor Effects on River Biofilms under Global Change Conditions. Sci. Total Environ. 2018, 627, 1–10. [Google Scholar] [CrossRef]
- Dobretsov, S.; Abed, R.M.M.; Teplitski, M. Mini-Review: Inhibition of Biofouling by Marine Microorganisms. Biofouling 2013, 29, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Papadatou, M.; Robson, S.C.; Dobretsov, S.; Watts, J.E.M.; Longyear, J.; Salta, M. Marine Biofilms on Different Fouling Control Coating Types Reveal Differences in Microbial Community Composition and Abundance. MicrobiologyOpen 2021, 10, e1231. [Google Scholar] [CrossRef]
- Camps, M.; Barani, A.; Gregori, G.; Bouchez, A.; Le Berre, B.; Bressy, C.; Blache, Y.; Briand, J.-F. Antifouling Coatings Influence Both Abundance and Community Structure of Colonizing Biofilms: A Case Study in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 2014, 80, 4821–4831. [Google Scholar] [CrossRef]
- Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N. Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment. A Review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Salta, M.; Dennington, S.; Wharton, J. Biofilm Inhibition by Novel Natural Product- and Biocide-Containing Coatings Using High-Throughput Screening. Int. J. Mol. Sci. 2018, 19, 1434. [Google Scholar] [CrossRef] [PubMed]
- Somma, E.; Terlizzi, A.; Costantini, M.; Madeira, M.; Zupo, V. Global Changes Alter the Successions of Early Colonizers of Benthic Surfaces. J. Mar. Sci. Eng. 2023, 11, 1232. [Google Scholar] [CrossRef]
- Corcoll, N.; Yang, J.; Backhaus, T.; Zhang, X.; Eriksson, K.M. Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. Front. Microbiol. 2019, 9, 3248. [Google Scholar] [CrossRef] [PubMed]
- CEN European Committee for Standardization, EN 335. Durability of Wood and Wood-Based Products. Use Classes: Definitions, Application to Solid Wood and Wood-Based Products; European Committee for Standardization: Brussels, Belgium, 2013; ISBN 978-0-580-75630-6. [Google Scholar]
- Humar, M.; Lesar, B. Performance of Native and Copper-Ethanolamine-Treated Wood Exposed to Seawater at Port of Koper, Slovenia. Drv. Ind. 2013, 64, 273–279. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Winfield, M.O.; Downer, A.; Longyear, J.; Dale, M.; Barker, G.L. Comparative Study of Biofilm Formation on Biocidal Antifouling and Fouling-Release Coatings Using next-Generation DNA Sequencing. Biofouling 2018, 34, 464–477. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I.; et al. Assessing, Quantifying and Valuing the Ecosystem Services of Coastal Lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Jelic-Mrcelic, G.; Sliskovic, M.; Antolic, B. Biofouling Communities on Test Panels Coated with TBT and TBT-Free Copper Based Antifouling Paints. Biofouling 2006, 22, 293–302. [Google Scholar] [CrossRef]
- Franzo, A.; Caffau, M.; Nasi, F.; Marrocchino, E.; Paletta, M.G.; Bazzaro, M.; Cibic, T. Benthic Foraminifera for the Ecological Status Assessment of Tourist Marinas. Ecol. Indic. 2023, 147, 110006. [Google Scholar] [CrossRef]
- Pandey, L.K.; Sharma, Y.C.; Park, J.; Choi, S.; Lee, H.; Lyu, J.; Han, T. Evaluating Features of Periphytic Diatom Communities as Biomonitoring Tools in Fresh, Brackish and Marine Waters. Aquat. Toxicol. 2018, 194, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Belando, M.D.; Marín, A.; Aboal, M.; García-Fernández, A.J.; Marín-Guirao, L. Combined in Situ Effects of Metals and Nutrients on Marine Biofilms: Shifts in the Diatom Assemblage Structure and Biological Traits. Sci. Total Environ. 2017, 574, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual Characterization of the Nutrients and Trophic State in a Mediterranean Coastal Lagoon: The Marano and Grado Lagoon (Northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132–144. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bajo, M.; Bellafiore, D.; Cucco, A.; De Pascalis, F.; Ghezzo, M.; Umgiesser, G. Toward Homogenization of Mediterranean Lagoons and Their Loss of Hydrodiversity. Geophys. Res. Lett. 2014, 41, 5935–5941. [Google Scholar] [CrossRef]
- Scroccaro, I.; Pittaluga, F.; Mattassi, G. Anoxia Monitoring System for Transitional Waters–The Case of the Marano and Grado Lagoon (Italy). In Coastal Management: Changing Coast, Changing Climate, Changing Minds; ICE Publishing: Amsterdam, The Netherlands, 2016; pp. 49–58. [Google Scholar]
- Bettoso, N.; Aleffi, I.F.; Faresi, L.; D’Aietti, A.; Acquavita, A. Macrozoobenthos Monitoring in Relation to Dredged Sediment Disposal: The Case of the Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Reg. Stud. Mar. Sci. 2020, 33, 100916. [Google Scholar] [CrossRef]
- Torresan, S.; Critto, A.; Dalla Valle, M.; Harvey, N.; Marcomini, A. Assessing Coastal Vulnerability to Climate Change: Comparing Segmentation at Global and Regional Scales. Sustain. Sci. 2008, 3, 45–65. [Google Scholar] [CrossRef]
- Pittaluga, F.; Aleffi, I.F.; Bettoso, N.; Blasutto, O.; Celio, M.; Codarin, A.; Cumani, F.; Faresi, L.; Guiatti, D.; Orlandi, C.; et al. The SHAPE Project: An Innovative Approach to Understanding Seasonal and Diel Dissolved Oxygen Dynamics in the Marano and Grado Lagoon (Adriatic Sea) under the WFD/2000/60/CE. J. Mar. Sci. Eng. 2022, 10, 208. [Google Scholar] [CrossRef]
- Humar, M.; Pohleven, F.; Kosmerl, S. Solution for Wood Preservation. U.S. Patent US7935182B2, 3 September 2008. [Google Scholar]
- Rep, G.; Pohleven, F. Wood Modification-a Promising Method for Wood Preservation. Drv. Ind. 2001, 52, 71–76. [Google Scholar]
- Zingone, A.; Totti, C.M.; Sarno, D.; Cabrini, M.; Caroppo, C.; Giacobbe, M.G.; Lugliè, A.; Nuccio, C.; Socal, G. Fitoplancton: Metodiche Di Analisi Quali-Quantitativa. In Metodologie di Campionamento e di Studio del Plancton Marino; ISPRA: Rome, Italy, 2010; Volume 56, pp. 213–237. ISBN 88-448-0427-1. [Google Scholar]
- Péragallo, H.; Péragallo, M. Diatomées Marines de France et Des Districts Maritimes Voisins; MJ Tempère: Grez-sur-Loing, France, 1897; Volume 1. [Google Scholar]
- Van Heurck, H. Traité des Diatomées; Édité aux Frais de L’Auteur: Anvers, Belgium, 1899. [Google Scholar]
- Hustedt, F. Bacillariophyta (Diatomeae). In Die Süsswasser-Flora Mitteleuropas; Pascher, A., Ed.; Gustav Fischer: Jena, Germany, 1930; Volume 10, pp. 72–81. [Google Scholar]
- Hendey, N.I. An Introductory Account of the Smaller Algae of British Coastal Waters; Otto Koeltz Science Publishers: Koenigstein, Germany, 1976; p. 317. ISBN 978-3-87429-103-3. [Google Scholar]
- Germain, H. Flore Des Diatomées, Diatomophycées: Eaux Douces et Saumâtres Du Massif Armoricain et Des Contrées Voisines d’Europe Occidentale. Collection Faunes et Flores Actuelles. Société Nouvelle des Editions Boubée, Paris. 1981, p. 444. Available online: https://diatombase.org/aphia.php?p=sourcedetails&id=268231 (accessed on 22 August 2023).
- Jin, D.; Cheng, Z.; Lin, J.; Liu, S. The Marine Benthic Diatoms in China; China Ocean Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 1985; Available online: https://www.springer.com/series/451 (accessed on 22 August 2023).
- Ricard, M.; Sournia, A. Diatomophycées:Atlas du Phytoplancton Marin; du Centre National du la Richerche Scientifique: Paris, France, 1987; ISBN 978-2-222-03987-7. [Google Scholar]
- Round, F.E.; Crawford, R.M.; Mann, D.G. Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990; ISBN 978-0-521-36318-1. [Google Scholar]
- Tomas, C.R. Identifying Marine Phytoplankton; Elsevier Science: Amsterdam, The Netherlands, 1997; ISBN 978-0-08-053442-8. [Google Scholar]
- Lange-Bertalot, H.; Witkowski, A.; Metzeltin, D. Iconographia Diatomologica: Annotated Diatom Micrographs; Diversity—Taxonomy—Identification. Diatom Flora of Marine Coasts; Koeltz Scientific Books: Königstein, Germany, 2000; Volume 7, p. 219. [Google Scholar]
- Guiry, M.D.; Guiry, G.M.; Morrison, L.; Rindi, F.; Miranda, S.V.; Mathieson, A.C.; Parker, B.C.; Langangen, A.; John, D.M.; Bárbara, I.; et al. AlgaeBase: An On-Line Resource for Algae. Cryptogam. Algol. 2014, 35, 105–115. [Google Scholar] [CrossRef]
- Ahyong, S.; Boyko, C.B.; Bailly, N.; Bernot, J.; Bieler, R.; Brandão, S.N.; Daly, M.; De Grave, S.; Gofas, S.; Hernandez, F.; et al. World Register of Marine Species (WoRMS). Available online: https://www.marinespecies.org/ (accessed on 1 August 2023).
- Baldassarre, L.; Natali, V.; De Pascale, F.; Vezzi, A.; Banchi, E.; Bazzaro, M.; Relitti, F.; Tagliapietra, D.; Cibic, T. The Impact of MOSE (Experimental Electromechanical Module) Flood Barriers on Microphytobenthic Community of the Venice Lagoon. Microorganisms 2023, 11, 936. [Google Scholar] [CrossRef] [PubMed]
- JASP Team JASP (Version 0.17.3) 2023. Available online: https://jasp-stats.org/ (accessed on 24 August 2023).
- Clarke, K.; Ainsworth, M. A Method of Linking Multivariate Community Structure to Environmental Variables. Mar. Ecol. Prog. Ser. 1993, 92, 205–219. [Google Scholar] [CrossRef]
- Kruskal, J.; Wish, M. Multidimensional Scaling; Sage: Thousand Oaks, CA, USA, 1978. [Google Scholar]
- Husmann, E.; Klaas, C. Testing the Use of the Silica Deposition Fluorescent Probe PDMPO to Estimate in Situ Growth Rates of Diatoms. Limnol. Oceanogr. Methods 2022, 20, 568–580. [Google Scholar] [CrossRef]
- Polst, B.H.; Anlanger, C.; Risse-Buhl, U.; Larras, F.; Hein, T.; Weitere, M.; Schmitt-Jansen, M. Hydrodynamics Alter the Tolerance of Autotrophic Biofilm Communities Toward Herbicides. Front. Microbiol. 2018, 9, 2884. [Google Scholar] [CrossRef]
- Cibic, T.; Rogelja, M.; Querin, S.; Segarich, M.; Del Negro, P. Microphytobenthic Community Development under Different Hydrodynamic Conditions Nearby the Rocky Outcrops of the Northern Adriatic Sea. Biol. Mar. Mediterr. 2016, 23, 174–177. [Google Scholar]
- Rogelja, M.; Cibic, T.; Pennesi, C.; De Vittor, C. Microphytobenthic Community Composition and Primary Production at Gas and Thermal Vents in the Aeolian Islands (Tyrrhenian Sea, Italy). Mar. Environ. Res. 2016, 118, 31–44. [Google Scholar] [CrossRef]
- Cibic, T.; Fazi, S.; Nasi, F.; Pin, L.; Alvisi, F.; Berto, D.; Viganò, L.; Zoppini, A.; Del Negro, P. Natural and Anthropogenic Disturbances Shape Benthic Phototrophic and Heterotrophic Microbial Communities in the Po River Delta System. Estuar. Coast. Shelf Sci. 2019, 222, 168–182. [Google Scholar] [CrossRef]
- Gonçalves, S.; Kahlert, M.; Almeida, S.F.P.; Figueira, E. Assessing Cu Impacts on Freshwater Diatoms: Biochemical and Metabolomic Responses of Tabellaria Flocculosa (Roth) Kützing. Sci. Total Environ. 2018, 625, 1234–1246. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An Essential Metal in Biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef]
- Martínez, Y.J.; Siqueiros-Beltrones, D.A.; Marmolejo-Rodríguez, A.J. Response of Benthic Diatom Assemblages to Contamination by Metals in a Marine Environment. J. Mar. Sci. Eng. 2021, 9, 443. [Google Scholar] [CrossRef]
- Hodson, O.M.; Monty, J.P.; Molino, P.J.; Wetherbee, R. Novel Whole Cell Adhesion Assays of Three Isolates of the Fouling Diatom Amphora Coffeaeformis Reveal Diverse Responses to Surfaces of Different Wettability. Biofouling 2012, 28, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Franzo, A.; Cibic, T.; Del Negro, P.; Solidoro, C. Microphytobenthic Response to Mussel Farm Biodeposition in Coastal Sediments of the Northern Adriatic Sea. Mar. Pollut. Bull. 2014, 79, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Cibic, T.; Belmonte, M.; Rogelja, M. Microbenthic Community Structure and Trophic Status of Sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Environ. Sci. Pollut. Res. 2016, 23, 12624–12644. [Google Scholar] [CrossRef] [PubMed]
- Rogelja, M.; Cibic, T.; Rubino, F.; Belmonte, M.; Del Negro, P. Active and Resting Microbenthos in Differently Contaminated Marine Coastal Areas: Insights from the Gulf of Trieste (Northern Adriatic, Mediterranean Sea). Hydrobiologia 2018, 806, 283–301. [Google Scholar] [CrossRef]
- Figueroa-Torres, G.M.; Pittman, J.K.; Theodoropoulos, C. A Highly Productive Mixotrophic Fed-Batch Strategy for Enhanced Microalgal Cultivation. Sustain. Energy Fuels 2022, 6, 2771–2782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natali, V.; Malfatti, F.; Cibic, T. Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea). Microorganisms 2023, 11, 2196. https://doi.org/10.3390/microorganisms11092196
Natali V, Malfatti F, Cibic T. Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea). Microorganisms. 2023; 11(9):2196. https://doi.org/10.3390/microorganisms11092196
Chicago/Turabian StyleNatali, Vanessa, Francesca Malfatti, and Tamara Cibic. 2023. "Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea)" Microorganisms 11, no. 9: 2196. https://doi.org/10.3390/microorganisms11092196
APA StyleNatali, V., Malfatti, F., & Cibic, T. (2023). Ecological Effect of Differently Treated Wooden Materials on Microalgal Biofilm Formation in the Grado Lagoon (Northern Adriatic Sea). Microorganisms, 11(9), 2196. https://doi.org/10.3390/microorganisms11092196