Macromonas nakdongensis sp. nov., Isolated from Freshwater and Characterization of Bacteriophage BK-30P—The First Phage That Infects Genus Macromonas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacterial Strain
2.2. 16S rRNA Gene Phylogeny
2.3. Polyphasic Taxonomy
2.4. Genome Sequencing, Assembly, and Annotation
2.5. Phage Isolation and Genomic DNA Preparation
2.6. Morphological and Genomic Characterization of Macromonasphage BK-30P
3. Results
3.1. 16S rRNA Gene Phylogeny
3.2. Polyphasic Taxonomic Characterization
3.3. Genome Characterization
3.4. Macromonasphage Analysis
4. Discussion
5. Conclusions
6. Protologue
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Willems, A.; De Ley, J.; Gillis, M.; Kersters, K. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol. 1991, 41, 445–450. [Google Scholar] [CrossRef]
- Utermöhl, H.; Koppe, F. Genus Macromonas. Die Schlammflora der ostholsteinischen Seen und des Bodensees. Arch. Hydrobiol. 1924, 14, 619–672. [Google Scholar]
- Willems, A. The Family Comamonadaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 777–851. [Google Scholar]
- Dubinina, G.A.; Rainey, F.A.; Gijs Kuenen, J. Genus VII. Macromonas 1924, 632AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Garrity, G.M., Brenner, D.J., Krieg, N.R., Staley, J.T., Eds.; Volume 2: The Proteobacteria, Part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; Springer: New York, NY, USA, 2005; pp. 721–724. [Google Scholar]
- Dubinina, G.A.; Grabovich, M.Y. Isolation, cultivation, and characteristics of Macromonas bipunctata. Microbiology 1984, 53, 610–617. [Google Scholar]
- Spring, S.; Wagner, M.; Schumann, P.; Kämpfer, P. Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 621–629. [Google Scholar] [CrossRef]
- Bird, L.J.; Kuenen, J.G.; Osburn, M.R.; Tomioka, N.; Ishii, S.; Barr, C.; Nealson, K.H.; Suzuki, S. Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov., Serpentinimonas barnesii sp. nov. and Serpentinimonas maccroryi sp. nov., hyperalkaliphilic and facultative autotrophic bacteria isolated from terrestrial serpentinizing springs. Int. J. Syst. Evol. Microbiol. 2021, 71, 004945. [Google Scholar] [CrossRef]
- Sime-Ngando, T. Environmental bacteriophages: Viruses of microbes in aquatic ecosystems. Front. Microbiol. 2014, 5, 355. [Google Scholar] [CrossRef]
- Edwards, R.A.; Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 2005, 3, 504–510. [Google Scholar] [CrossRef]
- Reimer, L.C.; Sardà Carbasse, J.; Koblitz, J.; Ebeling, C.; Podstawka, A.; Overmann, J. BacDive in 2022: The knowledge base for standardized bacterial and archaeal data. Nucleic Acids Res. 2022, 50, D741–D746. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar]
- Fitch, W.M. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Bernardet, J.-F.; Nakagawa, Y.; Holmes, B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 2002, 52, 1049–1070. [Google Scholar]
- Smibert, R.M.; Krieg, N.R. Phenotypic characteristics. In Methods for General and Molecular Bacteriology; Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R., Eds.; American Society for Microbiology: Washington, DC, USA, 1994; pp. 607–654. [Google Scholar]
- Minnikin, D.E.; O’Donnell, A.G.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schall, A.; Parlett, J.H. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Collins, M.D. Analysis of isoprenoid quinones. Methods Microbiol. 1985, 18, 329–363. [Google Scholar]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 2008, 9, 75. [Google Scholar] [CrossRef]
- Lee, I.; Kim, Y.O.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Auch, A.F.; von Jan, M.; Klenk, H.-P.; Göker, M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genom. Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Na, S.I.; Kim, Y.O.; Yoon, S.H.; Ha, S.M.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Besemer, J.; Borodovsky, M. Heuristic approach to deriving models for gene finding. Nucleic Acids Res. 1999, 27, 3911–3920. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumdr, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Haft, D.H.; Selengut, J.D.; Richter, R.A.; Harkins, D.; Basu, M.K.; Beck, E. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 2013, 41, D387–D395. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Rosselló-Mora, R.; Amann, R. The species concept for prokaryotes. FEMS Microbiol. Rev. 2001, 25, 39–67. [Google Scholar] [CrossRef] [PubMed]
Characteristic | 1 | 2 |
---|---|---|
Cell shape | Rod | Irregular rod |
Temperature range for growth (°C) | 5–35 | 10–35 |
Flagella | - | Polar tuft * |
API 20EN: | ||
Gelatinase | + | - |
Enzyme activities (API ZYME): | ||
Valine | + | - |
Acid phosphatase and β-glucuronidase | - | + |
Utilization of carbon sources (Biolog GN2): | ||
dextrin, Tween 40, D-fructose, α-D-glucose, L-rhamnose, sucrose, pyruvic acid methyl ester, D-galacturonic acid, α-hydroxybutyric acid, α-keto butyric acid, α-ketoglutaric acid, DL-lactic acid, propionic acid, succinic acid, bromosuccinic acid, L-alanine, L-glutamic acid, L-phenylalanine, L-proline, L-serine, L-threonine, γ-aminobutyric acid, glycerol | + | - |
Hydrolysis of the following: | ||
tyrosine, hypoxanthine, xanthine, Tween 20, Tween 40 | + | - |
DNA G+C content (%) | 67.3 | 63.8 |
Fatty Acid | 1 | 2 |
---|---|---|
Straight-chain | ||
C12:0 | 2.5 | - |
C14:0 | tr | 5.1 |
C15:0 | 1.2 | - |
C16:0 | 27.5 | 22.4 |
C17:0 | 1.6 | - |
C18:0 | 1.0 | tr |
Non-straight-chain | ||
C15:1 ω6c | 1.0 | - |
C17:1 ω8c | 1.8 | - |
Hydroxy | ||
C13:0 2OH | tr | 1.5 |
Branched-chain | ||
anteiso-C17:0 | - | 2.1 |
Summed features * | ||
3 (C16:1 ω6c and/or C16:1 ω7c) | 49.6 | 56.1 |
7 (C19:0 ω6c and/or C19:0 cyclo ω7c) | 2.4 | - |
8 (C18:1 ω6c and/or C18:1 ω7c) | 9.2 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, K.; Choi, A. Macromonas nakdongensis sp. nov., Isolated from Freshwater and Characterization of Bacteriophage BK-30P—The First Phage That Infects Genus Macromonas. Microorganisms 2023, 11, 2237. https://doi.org/10.3390/microorganisms11092237
Baek K, Choi A. Macromonas nakdongensis sp. nov., Isolated from Freshwater and Characterization of Bacteriophage BK-30P—The First Phage That Infects Genus Macromonas. Microorganisms. 2023; 11(9):2237. https://doi.org/10.3390/microorganisms11092237
Chicago/Turabian StyleBaek, Kiwoon, and Ahyoung Choi. 2023. "Macromonas nakdongensis sp. nov., Isolated from Freshwater and Characterization of Bacteriophage BK-30P—The First Phage That Infects Genus Macromonas" Microorganisms 11, no. 9: 2237. https://doi.org/10.3390/microorganisms11092237
APA StyleBaek, K., & Choi, A. (2023). Macromonas nakdongensis sp. nov., Isolated from Freshwater and Characterization of Bacteriophage BK-30P—The First Phage That Infects Genus Macromonas. Microorganisms, 11(9), 2237. https://doi.org/10.3390/microorganisms11092237