Analyzing the Interplay between COVID-19 Viral Load, Inflammatory Markers, and Lymphocyte Subpopulations on the Development of Long COVID
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Sample Processing Method
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 3 July 2023).
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Sivan, M.; Delaney, B.; Evans, R.; Milne, R. Long Covid—An Update for Primary Care. BMJ 2022, 378, e072117. [Google Scholar] [CrossRef]
- Ziauddeen, N.; Gurdasani, D.; O’Hara, M.E.; Hastie, C.; Roderick, P.; Yao, G.; Alwan, N.A. Characteristics and Impact of Long Covid: Findings from an Online Survey. PLoS ONE 2022, 17, e0264331. [Google Scholar] [CrossRef] [PubMed]
- Scharf, R.E.; Anaya, J.-M. Post-COVID Syndrome in Adults—An Overview. Viruses 2023, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A.; Rafiullah, M.; Alkhowaiter, M.; Alotaibi, N.; Alzahrani, M.; Binkhamis, K.; Siddiqui, K.; Youssef, A.; Altalhi, H.; Almaghlouth, I.; et al. Clinical and Biochemical Characteristics of People Experiencing Post-Coronavirus Disease 2019-Related Symptoms: A Prospective Follow-up Investigation. Front. Med. 2022, 9, 1067082. [Google Scholar] [CrossRef]
- Nair, C.V.; Moni, M.; Edathadathil, F.A.A.; Prasanna, P.; Pushpa Raghavan, R.; Sathyapalan, D.T.; Jayant, A. Incidence and Characterization of Post-COVID-19 Symptoms in Hospitalized COVID-19 Survivors to Recognize Syndemic Connotations in India: Single-Center Prospective Observational Cohort Study. JMIR Form. Res. 2023, 7, e40028. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef]
- Ji, G.; Chen, C.; Zhou, M.; Wen, W.; Wang, C.; Tang, J.; Cheng, Y.; Wu, Q.; Zhang, X.; Wang, M.; et al. Post-COVID-19 Fatigue among COVID-19 in Patients Discharged from Hospital: A Meta-Analysis. J. Infect. 2022, 84, 722–746. [Google Scholar] [CrossRef]
- Sukocheva, O.A.; Maksoud, R.; Beeraka, N.M.; Madhunapantula, S.V.; Sinelnikov, M.; Nikolenko, V.N.; Neganova, M.E.; Klochkov, S.G.; Amjad Kamal, M.; Staines, D.R.; et al. Analysis of Post COVID-19 Condition and Its Overlap with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Adv. Res. 2022, 40, 179–196. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Freidin, M.B.; Cheetham, N.; Duncan, E.L.; Steves, C.J.; Doores, K.J.; Malim, M.H.; Rossi, N.; Lord, J.M.; Franks, P.W.; Borsini, A.; et al. Long-COVID Fatigue Is Not Predicted by Pre-Pandemic Plasma IL-6 Levels in Mild COVID-19. Inflamm. Res. 2023, 72, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Çil, B.; Kabak, M. Department of Chest Diseases, Mardin Training and Research Hospital, Mardin, Turkey Persistent Post-COVID Symptoms and the Related Factors. Turk. Thorac. J. 2022, 23, 6–10. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or Post-COVID-19 Syndrome: Putative Pathophysiology, Risk Factors, and Treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.A.F.; das Neves, P.F.M.; Lima, S.S.; Lopes, J.d.C.; Torres, M.K.d.S.; Vallinoto, I.M.V.C.; Bichara, C.D.A.; dos Santos, E.F.; de Brito, M.T.F.M.; da Silva, A.L.S.; et al. Cytokine Profiles Associated with Acute COVID-19 and Long COVID-19 Syndrome. Front. Cell. Infect. Microbiol. 2022, 12, 922422. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.A.; Kudryavtsev, I.V.; Isakov, D.V.; Sadowski, I.S.; Belenyuk, V.D.; Borisov, A.G. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals 2023, 16, 537. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Ryan-Murua, P.; Rodríguez-Jiménez, J.; Palacios-Ceña, M.; Arendt-Nielsen, L.; Torres-Macho, J. Serological Biomarkers at Hospital Admission Are Not Related to Long-Term Post-COVID Fatigue and Dyspnea in COVID-19 Survivors. Respiration 2022, 101, 658–665. [Google Scholar] [CrossRef]
- Rao, S.N.; Manissero, D.; Steele, V.R.; Pareja, J. A Systematic Review of the Clinical Utility of Cycle Threshold Values in the Context of COVID-19. Infect. Dis. Ther. 2020, 9, 573–586. [Google Scholar] [CrossRef]
- Abdulrahman, A.; Mallah, S.I.; Alqahtani, M. COVID-19 Viral Load Not Associated with Disease Severity: Findings from a Retrospective Cohort Study. BMC Infect. Dis. 2021, 21, 688. [Google Scholar] [CrossRef]
- Kuri-Ayache, M.; Rivera-Cavazos, A.; Pérez-Castillo, M.F.; Santos-Macías, J.E.; González-Cantú, A.; Luviano-García, J.A.; Jaime-Villalón, D.; Gutierrez-González, D.; Romero-Ibarguengoitia, M.E. Viral Load and Its Relationship with the Inflammatory Response and Clinical Outcomes in Hospitalization of Patients with COVID-19. Front. Immunol. 2023, 13, 1060840. [Google Scholar] [CrossRef]
- Girón Pérez, D.A.; Fonseca-Agüero, A.; Toledo-Ibarra, G.A.; Gomez-Valdivia, J.d.J.; Díaz-Resendiz, K.J.G.; Benitez-Trinidad, A.B.; Razura-Carmona, F.F.; Navidad-Murrieta, M.S.; Covantes-Rosales, C.E.; Giron-Pérez, M.I. Post-COVID-19 Syndrome in Outpatients and Its Association with Viral Load. Int. J. Environ. Res. Public Health 2022, 19, 15145. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934. [Google Scholar] [CrossRef] [PubMed]
- PAXgene Blood RNA Tubes (IVD). Available online: https://www.qiagen.com/gb/products/discovery-and-translational-research/sample-collection-stabilization/rna/paxgene-blood-rna-tubes?cmpid=PC_NON_NON_paxgene-traffic_0421_SEA_GA&gclid=Cj0KCQjwldKmBhCCARIsAP-0rfznNNnjmK5B31lxRS3paK_1622wvUvvQxcLvM6liSL2oQ2tRrUUhnYaAj5nEALw_wcB#orderinginformation (accessed on 1 June 2023).
- Sisó-Almirall, A.; Brito-Zerón, P.; Conangla Ferrín, L.; Kostov, B.; Moragas Moreno, A.; Mestres, J.; Sellarès, J.; Galindo, G.; Morera, R.; Basora, J.; et al. Long COVID-19: Proposed Primary Care Clinical Guidelines for Diagnosis and Disease Management. Int. J. Environ. Res. Public Health 2021, 18, 4350. [Google Scholar] [CrossRef]
- Peghin, M.; Palese, A.; Venturini, M.; De Martino, M.; Gerussi, V.; Graziano, E.; Bontempo, G.; Marrella, F.; Tommasini, A.; Fabris, M.; et al. Post-COVID-19 Symptoms 6 Months after Acute Infection among Hospitalized and Non-Hospitalized Patients. Clin. Microbiol. Infect. 2021, 27, 1507–1513. [Google Scholar] [CrossRef]
- Notarte, K.I.; De Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D.; et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [CrossRef]
- Heesakkers, H.; Van Der Hoeven, J.G.; Corsten, S.; Janssen, I.; Ewalds, E.; Simons, K.S.; Westerhof, B.; Rettig, T.C.D.; Jacobs, C.; Van Santen, S.; et al. Clinical Outcomes Among Patients With 1-Year Survival Following Intensive Care Unit Treatment for COVID-19. JAMA 2022, 327, 559. [Google Scholar] [CrossRef]
- Rousseau, A.-F.; Minguet, P.; Colson, C.; Kellens, I.; Chaabane, S.; Delanaye, P.; Cavalier, E.; Chase, J.G.; Lambermont, B.; Misset, B. Post-Intensive Care Syndrome after a Critical COVID-19: Cohort Study from a Belgian Follow-up Clinic. Ann. Intensive Care 2021, 11, 118. [Google Scholar] [CrossRef]
- Karlsson, A.C.; Humbert, M.; Buggert, M. The Known Unknowns of T Cell Immunity to COVID-19. Sci. Immunol. 2020, 5, eabe8063. [Google Scholar] [CrossRef]
- Ryan, F.J.; Hope, C.M.; Masavuli, M.G.; Lynn, M.A.; Mekonnen, Z.A.; Yeow, A.E.L.; Garcia-Valtanen, P.; Al-Delfi, Z.; Gummow, J.; Ferguson, C.; et al. Long-Term Perturbation of the Peripheral Immune System Months after SARS-CoV-2 Infection. BMC Med. 2022, 20, 26. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xi, X.; Wang, W.; Gu, B. Immune Response, Viral Shedding Time, and Clinical Characterization in COVID-19 Patients with Gastrointestinal Symptoms. Front. Med. 2021, 8, 593623. [Google Scholar] [CrossRef] [PubMed]
- Scalia, G.; Raia, M.; Gelzo, M.; Cacciapuoti, S.; Rosa, A.D.; Pinchera, B.; Scotto, R.; Tripodi, L.; Mormile, M.; Fabbrocini, G.; et al. Lymphocyte Population Changes at Two Time Points during the Acute Period of COVID-19 Infection. J. Clin. Med. 2022, 11, 4306. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, C.; Calcaterra, F.; Coianiz, N.; Terzoli, S.; Voza, A.; Mikulak, J.; Della Bella, S.; Mavilio, D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front. Immunol. 2022, 13, 888248. [Google Scholar] [CrossRef]
- Malengier-Devlies, B.; Filtjens, J.; Ahmadzadeh, K.; Boeckx, B.; Vandenhaute, J.; De Visscher, A.; Bernaerts, E.; Mitera, T.; Jacobs, C.; Vanderbeke, L.; et al. Severe COVID-19 Patients Display Hyper-Activated NK Cells and NK Cell-Platelet Aggregates. Front. Immunol. 2022, 13, 861251. [Google Scholar] [CrossRef] [PubMed]
- Galán, M.; Vigón, L.; Fuertes, D.; Murciano-Antón, M.A.; Casado-Fernández, G.; Domínguez-Mateos, S.; Mateos, E.; Ramos-Martín, F.; Planelles, V.; Torres, M.; et al. Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals with Long-COVID: Identification of Diagnostic Biomarkers. Front. Immunol. 2022, 13, 848886. [Google Scholar] [CrossRef]
- Mitsuyama, Y.; Yamakawa, K.; Kayano, K.; Maruyama, M.; Umemura, Y.; Wada, T.; Fujimi, S. Residual Persistence of Cytotoxicity Lymphocytes and Regulatory T Cells in Patients with Severe CORONAVIRUS DISEASE 2019 over a 1-year Recovery Process. Acute Med. Surg. 2022, 9, e803. [Google Scholar] [CrossRef]
- Nune, A.; Durkowski, V.; Titman, A.; Gupta, L.; Hadzhiivanov, M.; Ahmed, A.; Musat, C.; Sapkota, H.R. Incidence and Risk Factors of Long Covid in the Uk: A Single-Centre Observational Study. J. R. Coll. Physicians Edinb. 2021, 51, 338–343. [Google Scholar] [CrossRef]
- Baig, A.M. Chronic Long-COVID Syndrome: A Protracted COVID-19 Illness with Neurological Dysfunctions. CNS Neurosci. Ther. 2021, 27, 1433–1436. [Google Scholar] [CrossRef]
- Lui, D.T.W.; Lee, C.H.; Chow, W.S.; Lee, A.C.H.; Tam, A.R.; Pang, P.; Ho, T.Y.; Fong, C.H.Y.; Law, C.Y.; Leung, E.K.H.; et al. Long COVID in Patients with Mild to Moderate Disease: Do Thyroid Function and Autoimmunity Play a Role? Endocr. Pract. 2021, 27, 894–902. [Google Scholar] [CrossRef]
Variable n = 79 | Frequency (%) |
---|---|
Long COVID | 33 (41.8) |
Fatigue | 15 (45.5) |
Tiredness | 14 (42.4) |
Difficulty breathing | 8 (24.2) |
Paresthesia | 3 (9.1) |
Palpitations | 2 (6.1) |
Cough | 2 (6.1) |
Muscle pain | 2 (6.1) |
Chest pain | 2 (6.1) |
Dysgeusia | 1 (3) |
Difficulty swallowing | 1 (3) |
Alopecia | 1 (3) |
Insomnia | 1 (3) |
Variable | Long COVID n = 33 | No Long COVID n = 39 | p-Value |
---|---|---|---|
Age | 45.67 (15.95) a | 52.43 (17.33) a | 0.081 a |
Males | 22 (66.7) | 34 (73.9) | 0.484 |
Vaccination | 2 (21.2) | 19 (42.2) | 0.128 |
Obesity | 23 (69.7) | 27 (58.7) | 0.317 |
Diabetes mellitus type 2 | 10 (30.3) | 15 (32.6) | 0.828 |
Systematic arterial hypertension | 6 (18.2) | 17 (37) | 0.070 |
Asthma | 5 (15.2) | 2 (4.3) | 0.096 |
Smoking | 4 (8.7) | 4 (12.1) | 0.619 |
Ischemic heart failure | 3 (9.1) | 4 (8.7) | 0.951 |
Variable | Long COVID n = 33 | No Long COVID n = 46 | p-Value |
---|---|---|---|
ICU | 4 (12.5) * | 2 (4.3) | 0.184 a |
Low flow oxygenation | 26 (78.8) | 28 (60.9) | 0.091 b |
High flow oxygenation | 10 (30.3) | 8 (17.4) | 0.177 b |
Mechanical ventilation | 4 (12.1) | 2 (4.3) | 0.198 a |
Reservoir mask | 1 (3) | 4 (8.7) | 0.394 a |
Tracheostomy | 2 (6.1) | 0 (0) | 0.910 a |
Variable | Long COVID | No Long COVID | p-Value |
---|---|---|---|
Hemoglobin A1c (n = 62) | 6.005 (0.6) b | 6.2 (1.53) b | 0.701 |
Max. peak leukocytes (n = 79) | 8770 (3630) b | 7655 (3700) b | 0.173 |
Max. peak lymphocytes (n = 79) | 2419.24 (1080.72) a | 1967.15 (574.93) a | 0.034 |
Max. peak neutrophils (n = 79) | 6920 (3170) b | 5550 (3773) b | 0.340 |
Max. peak lactate dehydrogenase (n = 75) | 447.2 (224.7) b | 399 (174.25) b | 0.280 |
Max. peak IL-6 (n = 79) | 98 (434.2) b | 89.15 (109.95) b | 0.846 |
Max. peak C-reactive protein (n = 79) | 14.36 (11.84) b | 13.79 (10.27) b | 0.846 |
Max. peak D-dimer (n = 79) | 680 (1090) b | 595 (455) b | 0.178 |
Max. peak ferritin (n = 79) | 1558 (2390.5) b | 1468.53 (1732) b | 0.811 |
Max. peak procalcitonin (n = 70) | 0.11 (0.2) b | 0.14 (0.36) b | 0.775 |
Max. peak viral load (n = 79) | 462 (1155.82) b | 259.0 (707.42) b | 0.067 |
Variable | Long COVID (n = 33) | No Long COVID (n = 46) | p-Value |
---|---|---|---|
Total leukocyte subpopulation | 7084.77 (2884.83) a | 6067.31 (2360.05) a | 0.089 |
Total lymphocyte subpopulation | 1510.74 (1304.57) a | 1133.77 (483.08) a | 0.025 |
CD3+ T lymphocytes subpopulation | 859.81 (882.7) b | 685.7 (550.16) b | 0.128 |
Subpopulation of helper T lymphocytes | 498.53 (524.89) b | 408.11 (333.53) b | 0.223 |
CD8+ suppressor T lymphocyte subpopulation | 255.62 (277.26) b | 263.74 (277.96) b | 0.382 |
B lymphocyte subpopulation CD19 | 164.90 (200.26) b | 149.96 (115.53) b | 0.551 |
Subpopulation of NK cells (CD16 and CD56) | 224.79 (186.17) b | 156.64 (129.72) b | 0.027 |
Subpopulations CD4/CD8 ratio | 2.34 (1.89) b | 1.81 (1.18) b | 0.937 |
Variable | β | Std Error | OR | p-Value | 95%Cl |
---|---|---|---|---|---|
Constant | −0.243 | 1.090 | 0.784 | 0.823 | |
Age | −0.016 | 0.021 | 0.984 | 0.450 | 0.945–0.025 |
Gender | −0.788 | 0.601 | 0.455 | 0.190 | 0.140–1.477 |
Subpopulation of NK cells (CD16 and CD56) | 0.006 | 0.002 | 1.006 | 0.009 | 1.002–1.011 |
ICU | 2.035 | 1.015 | 7.649 | 0.045 | 1.045–55.972 |
Systematic arterial hypertension | −1.075 | 0.753 | 2.042 | 0.153 | 0.078–1.491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Cavazos, A.; Luviano-García, J.A.; Garza-Silva, A.; Morales-Rodríguez, D.P.; Kuri-Ayache, M.; Sanz-Sánchez, M.Á.; Santos-Macías, J.E.; Romero-Ibarguengoitia, M.E.; González-Cantú, A. Analyzing the Interplay between COVID-19 Viral Load, Inflammatory Markers, and Lymphocyte Subpopulations on the Development of Long COVID. Microorganisms 2023, 11, 2241. https://doi.org/10.3390/microorganisms11092241
Rivera-Cavazos A, Luviano-García JA, Garza-Silva A, Morales-Rodríguez DP, Kuri-Ayache M, Sanz-Sánchez MÁ, Santos-Macías JE, Romero-Ibarguengoitia ME, González-Cantú A. Analyzing the Interplay between COVID-19 Viral Load, Inflammatory Markers, and Lymphocyte Subpopulations on the Development of Long COVID. Microorganisms. 2023; 11(9):2241. https://doi.org/10.3390/microorganisms11092241
Chicago/Turabian StyleRivera-Cavazos, Andrea, José Antonio Luviano-García, Arnulfo Garza-Silva, Devany Paola Morales-Rodríguez, Mauricio Kuri-Ayache, Miguel Ángel Sanz-Sánchez, Juan Enrique Santos-Macías, Maria Elena Romero-Ibarguengoitia, and Arnulfo González-Cantú. 2023. "Analyzing the Interplay between COVID-19 Viral Load, Inflammatory Markers, and Lymphocyte Subpopulations on the Development of Long COVID" Microorganisms 11, no. 9: 2241. https://doi.org/10.3390/microorganisms11092241
APA StyleRivera-Cavazos, A., Luviano-García, J. A., Garza-Silva, A., Morales-Rodríguez, D. P., Kuri-Ayache, M., Sanz-Sánchez, M. Á., Santos-Macías, J. E., Romero-Ibarguengoitia, M. E., & González-Cantú, A. (2023). Analyzing the Interplay between COVID-19 Viral Load, Inflammatory Markers, and Lymphocyte Subpopulations on the Development of Long COVID. Microorganisms, 11(9), 2241. https://doi.org/10.3390/microorganisms11092241