Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
Salmonella Strains -:r:1,5
2.2. Antimicrobial Susceptibility Testing
2.3. In Silico Sequencing and Analysis
3. Results
3.1. Bacterial Strains
3.2. Antimicrobial Susceptibility Testing
3.3. In Silico Sequencing and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.M.; Barzanti, P.; Adriano, D.; Martucci, F.; Pitti, M.; Ferraris, C.; Floris, I.; La Brasca, R.; Ligotti, C.; Morello, S.; et al. Food Safety Monitoring of Salmonella spp. in Northern Italy 2019–2021. Pathogens 2023, 12, 963. [Google Scholar] [CrossRef]
- Di Marcantonio, L.; Romantini, R.; Marotta, F.; Chiaverini, A.; Zilli, K.; Abass, A.; Di Giannatale, E.; Garofolo, G.; Janowicz, A. The Current Landscape of Antibiotic Resistance of Salmonella Infantis in Italy: The Expansion of Extended-Spectrum Beta-Lactamase Producers on a Local Scale. Front. Microbiol. 2022, 13, 812481. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Chattaway, M.A.; Painset, A.; Godbole, G.; Gharbia, S.; Jenkins, C. Evaluation of Genomic Typing Methods in the Salmonella Reference Laboratory in Public Health, England, 2012–2020. Pathogens 2023, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 2019, 17, e05898. [Google Scholar] [CrossRef]
- García-Soto, S.; Abdel-Glil, M.Y.; Tomaso, H.; Linde, J.; Methner, U. Emergence of Multidrug-Resistant Salmonella enterica Subspecies enterica Serovar Infantis of Multilocus Sequence Type 2283 in German Broiler Farms. Front. Microbiol. 2020, 11, 1741. [Google Scholar] [CrossRef]
- Toppi, V.; Scattini, G.; Musa, L.; Stefanetti, V.; Pascucci, L.; Chiaradia, E.; Tognoloni, A.; Giovagnoli, S.; Franciosini, M.P.; Branciari, R.; et al. Evaluation of β-Lactamase Enzyme Activity in Outer Membrane Vesicles (OMVs) Isolated from Extended Spectrum β-Lactamase (ESBL) Salmonella Infantis Strains. Antibiotics 2023, 12, 744. [Google Scholar] [CrossRef]
- Alzahrani, K.O.; AL-Reshoodi, F.M.; Alshdokhi, E.A.; Alhamed, A.S.; Al Hadlaq, M.A.; Mujallad, M.I.; Mukhtar, L.E.; Alsufyani, A.T.; Alajlan, A.A.; Al Rashidy, M.S.; et al. Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Front. Microbiol. 2023, 14, 1104164. [Google Scholar] [CrossRef]
- Mattock, J.; Chattaway, M.A.; Hartman, H.; Dallman, T.J.; Smith, A.M.; Keddy, K.; Petrovska, L.; Manners, E.J.; Duze, S.T.; Smouse, S.; et al. Salmonella Infantis, the emerging human multidrug resistant pathogen—A One Health perspective. bioRxiv 2023. preprint. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO/TS 6579-2:2012; Microbiology of Food and Animal Feed—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 2: Enumeration by a Miniaturized Most Probable Number Technique. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO/TR 6579-3:2014; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 3: Guidelines for serotyping of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2014.
- White, P.G.; Wilson, J.B. Differentiation of smooth and nonsmooth colonies of brucellae. J. Bacteriol. 1951, 61, 239–240. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Implementing Decision (EU) 2020/1729 of 17 November 2020 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria and Repealing Implementing Decision 2013/652/EU; European Union: Brussels, Belgium, 2020. [Google Scholar]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yuan, J.; Kolmogorov, M.; Shen, M.W.; Chaisson, M.; Pevzner, P.A. Assembly of long error-prone reads using de Bruijn graphs. Proc. Natl. Acad. Sci. USA 2016, 113, E8396–E8405. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, Y.; Jones, M.B.; Zhang, Z.; Kaiser, B.L.D.; Dinsmore, B.A.; Fitzgerald, C.; Fields, P.I.; Deng, X. Salmonella Serotype Determination Utilizing High-Throughput Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 1685–1692. [Google Scholar] [CrossRef]
- Larsen, M.; Cosentino, S.; Rasmussen, S.; Rundsten, C.; Hasman, H.; Marvig, R.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.; Aarestrup, F.; et al. Multilocus Sequence Typing of Total Genome Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.F.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.R.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Salmonella control in poultry flocks and its public health impact. EFSA J. 2019, 17, e05596. [Google Scholar] [CrossRef]
- Alessiani, A.; Goffredo, E.; Mancini, M.; Occhiochiuso, G.; Faleo, S.; Didonna, A.; Fischetto, R.; Suglia, F.; De Vito, D.; Stallone, A.; et al. Evaluation of Antimicrobial Resistance in Salmonella Strains Isolated from Food, Animal and Human Samples between 2017 and 2021 in Southern Italy. Microorganisms 2022, 10, 812. [Google Scholar] [CrossRef]
- Aviv, G.; Rahav, G.; Gal-Mor, O. Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts. mBio 2016, 7, e01395. [Google Scholar] [CrossRef]
- Carfora, V.; Alba, P.; Leekitcharoenphon, P.; Ballarò, D.; Cordaro, G.; Di Matteo, P.; Donati, V.; Ianzano, A.; Iurescia, M.; Stravino, F.; et al. Colistin Resistance Mediated by mcr-1 in ESBL-Producing, Multidrug Resistant Salmonella Infantis in Broiler Chicken Industry, Italy (2016–2017). Front. Microbiol. 2018, 9, 1880. [Google Scholar] [CrossRef] [PubMed]
- Alba, P.; Leekitcharoenphon, P.; Carfora, V.; Amoruso, R.; Cordaro, G.; Di Matteo, P.; Ianzano, A.; Iurescia, M.; Diaconu, E.L.; ENGAGE-EURL-AR Network Study Group; et al. Molecular epidemiology of Salmonella Infantis in Europe: Insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microb. Genom. 2020, 6, e000365. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, H.P.; Devulder, G.; Juneja, V.K. Salmonella|Detection by Immunoassays. In Encyclopedia of Food Microbiology; Robinson, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 339–342. [Google Scholar]
- Lamas, A.; Fernandez-No, I.C.; Miranda, J.M.; Vázquez, B.; Cepeda, A.; Franco, C.M. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses. J. Food Prot. 2016, 79, 1127–1134. [Google Scholar] [CrossRef]
- Bansal, M.; Nannapaneni, R.; Kode, D.; Chang, S.; Sharma, C.S.; McDaniel, C.; Kiess, A. Rugose Morphotype in Salmonella Typhimurium and Salmonella Heidelberg Induced by Sequential Exposure to Subinhibitory Sodium Hypochlorite Aids in Biofilm Tolerance to Lethal Sodium Hypochlorite on Polystyrene and Stainless Steel Surfaces. Front. Microbiol. 2019, 10, 2704. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; van Hoek, A.H.A.M.; Cuperus, T.; Dam-Deisz, C.; van Overbeek, W.; van den Beld, M.; Wit, B.; Rapallini, M.; Wullings, B.; Franz, E.; et al. Prevalence, risk factors and genetic traits of Salmonella Infantis in Dutch broiler flocks. Vet. Microbiol. 2021, 258, 109120. [Google Scholar] [CrossRef]
- Egorova, A.; Mikhaylova, Y.; Saenko, S.; Tyumentseva, M.; Tyumentsev, A.; Karbyshev, K.; Chernyshkov, A.; Manzeniuk, I.; Akimkin, V.; Shelenkov, A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella Infantis Isolates. Microorganisms 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Hendriksen, R.S.; Lorenzetti, S.; Onorati, R.; Gentile, G.; Dell’Omo, G.; Aarestrup, F.M.; Battisti, A. Characterization of Salmonella occurring at high prevalence in a population of the land iguana Conolophus subcristatus in Galápagos Islands, Ecuador. PLoS ONE 2011, 6, e23147. [Google Scholar] [CrossRef]
Strain ID | Year | Source | Phenotypic Resistance Profile |
---|---|---|---|
74 | 2022 | Carcass/Broiler/Market | AMK-TET-TMP-SUL-NAL-CIP |
79 | 2019 | Litter/Broiler/Farm D | AMK-TET-TMP-SUL-NAL-AMP-CIP-CAZ-CTX |
86 | 2018 | Litter/Broiler/Farm A | AMK-TET-TMP-SUL-NAL-CHL |
147 | 2018 | Litter/Broiler/Farm C | AMK-TET-TMP-SUL-NAL-AMP-CIP-CAZ-CTX |
152 | 2019 | Litter/Broiler/Farm E | AMK-TET-TMP-SUL-NAL-AMP-CIP-CTX |
203 | 2018 | Litter/Broiler/Farm B | AMK-TET-TMP-SUL-NAL-CIP |
Strain ID | ST | Acquired Resistance Genes | Chromosomal Point Mutation | Plasmid |
---|---|---|---|---|
74 | 32 | aph(3′)-Ia, tet(A), sul1, dfrA1, dfrA14 qacE | gyrA (D87G), parC(T57S, E84K) | IncFIB |
79 | 32 | aph(3′)-Ia, tet(A), dfrA1, dfrA14, blaCTX-M-1, sul1, qacE | gyrA(D87G), parC(T57S, E84K) | IncFIB |
86 | 32 | aph(3′)-Ia, tet(A), sul1, dfrA1, dfrA14, qacE | gyrA(D87G), parC(T57S) | IncFIB |
147 | 32 | aph(3′)-Ia, tet(A), dfrA1, dfrA14, blaCTX-M-1, sul1, qacE | gyrA(D87G), parC(T57S, E84K) | IncFIB, IncX1 |
152 | 32 | tet(A), dfrA1, dfrA14, blaCTX-M-1, sul1, qacE | gyrA(D87G), parC(T57S, E84K) | IncFIB |
203 | 32 | tet(A), sul1, dfrA1, dfrA14, qacE | gyrA(D87G), parC(T57S, E84K) | IncFIB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessiani, A.; La Bella, G.; Donatiello, A.; Occhiochiuso, G.; Faleo, S.; Didonna, A.; D’Attoli, L.; Selicato, P.; Pedarra, C.; La Salandra, G.; et al. Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen. Microorganisms 2023, 11, 2274. https://doi.org/10.3390/microorganisms11092274
Alessiani A, La Bella G, Donatiello A, Occhiochiuso G, Faleo S, Didonna A, D’Attoli L, Selicato P, Pedarra C, La Salandra G, et al. Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen. Microorganisms. 2023; 11(9):2274. https://doi.org/10.3390/microorganisms11092274
Chicago/Turabian StyleAlessiani, Alessandra, Gianfranco La Bella, Adelia Donatiello, Gilda Occhiochiuso, Simona Faleo, Antonella Didonna, Luigi D’Attoli, Patrizia Selicato, Carmine Pedarra, Giovanna La Salandra, and et al. 2023. "Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen" Microorganisms 11, no. 9: 2274. https://doi.org/10.3390/microorganisms11092274
APA StyleAlessiani, A., La Bella, G., Donatiello, A., Occhiochiuso, G., Faleo, S., Didonna, A., D’Attoli, L., Selicato, P., Pedarra, C., La Salandra, G., Mancini, M. E., Di Taranto, P., & Goffredo, E. (2023). Occurrence of a New Variant of Salmonella Infantis Lacking Somatic Antigen. Microorganisms, 11(9), 2274. https://doi.org/10.3390/microorganisms11092274