Antibiotic Resistance Rates for Helicobacter pylori in Rural Arizona: A Molecular-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Sample Collection
2.3. PCR Amplification
2.4. Primers
2.5. Analysis
2.6. Statistical Analysis
3. Results
3.1. Recruitment and Inclusion
3.2. Antibiotic Clarithromycin
3.3. Antibiotic Metronidazole
3.4. Antibiotic Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am. J. Gastroenterol. 2017, 112, 212–238. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Iyer, P.G.; Moss, S.F. AGA Clinical Practice Update on the Management of Refractory Helicobacter pylori Infection: Expert Review. Gastroenterology 2021, 160, 1831–1841. [Google Scholar] [CrossRef]
- Bailey, K.S.; Brown, H.E.; Lekic, V.; Pradeep, K.; Merchant, J.L.; Harris, R.B. Helicobacter pylori treatment knowledge, access and barriers: A cross-sectional study. Helicobacter 2023, 28, e12954. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—The Maastricht IV/Florence Consensus Report. Gut 2012, 61, 646–664. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; O’Moráin, C. Helicobacter pylori infection in Europe: Current perspectives. Expert Rev. Gastroenterol. Hepatol. 2013, 7, 541–548. [Google Scholar] [CrossRef]
- Venerito, M.; Krieger, T.; Ecker, T.; Leandro, G.; Malfertheiner, P. Meta-Analysis of Bismuth Quadruple Therapy versus Clarithromycin Triple Therapy for Empiric Primary Treatment of Helicobacter pylori Infection. Digestion 2013, 88, 33–45. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.; Gisbert, J.; Kuipers, E.; Axon, A.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef]
- Kuo, Y.T.; Liou, J.M.; El-Omar, E.M.; Wu, J.Y.; Leow, A.H.R.; Goh, K.L.; Das, R.; Lu, H.; Lin, J.T.; Tu, Y.K.; et al. Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: A systematic review and meta-analysis. Lancet. Gastroenterol. Hepatol. 2017, 2, 707–715. [Google Scholar] [CrossRef]
- Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of Antibiotic Resistance in Helicobacter pylori: A Systematic Review and Meta-analysis in World Health Organization Regions. Gastroenterology 2018, 155, 1372–1382.e17. [Google Scholar] [CrossRef]
- Almeida, N.; Romãozinho, J.M.; Donato, M.M.; Luxo, C.; Cardoso, O.; Cipriano, M.A.; Marinho, C.; Fernandes, A.; Calhau, C.; Sofia, C. Helicobacter pylori antimicrobial resistance rates in the central region of Portugal. Clin. Microbiol. Infect. 2014, 20, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.J.C.; Navarro, M.; Sawyer, K.; Elfanagely, Y.; Moss, S.F. Helicobacter pylori Antibiotic Resistance in the United States between 2011 and 2021: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2022, 117, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Mosites, E.; Bruden, D.; Morris, J.; Reasonover, A.; Rudolph, K.; Hurlburt, D.; Hennessy, T.; McMahon, B.; Bruce, M. Antimicrobial resistance among Helicobacter pylori isolates in Alaska, 2000–2016. J. Glob. Antimicrob. Resist. 2018, 15, 148–153. [Google Scholar] [CrossRef]
- Harris, R.B.; Brown, H.E.; Begay, R.L.; Sanderson, P.R.; Chief, C.; Monroy, F.P.; Oren, E. Helicobacter pylori Prevalence and Risk Factors in Three Rural Indigenous Communities of Northern Arizona. Int. J. Environ. Res. Public Health 2022, 19, 797. [Google Scholar] [CrossRef] [PubMed]
- Monroy, F.P.; Brown, H.E.; Sanderson, P.R.; Jarrin, G.; Mbegbu, M.; Kyman, S.; Harris, R.B. Helicobacter pylori in Native Americans in Northern Arizona. Diseases 2022, 10, 19. [Google Scholar] [CrossRef]
- Abadi, A.T.B.; Mobarez, A.M.; Bonten, M.J.M.; Wagenaar, J.A.; Kusters, J.G. Clinical relevance of the cagA, tnpA and tnpB genes in Helicobacter pylori. BMC Gastroenterol. 2014, 14, 33. [Google Scholar] [CrossRef]
- Sun, L.; Talarico, S.; Yao, L.; He, L.; Self, S.; You, Y.; Zhang, H.; Zhang, Y.; Guo, Y.; Liu, G.; et al. Droplet Digital PCR-Based Detection of Clarithromycin Resistance in Helicobacter pylori Isolates Reveals Frequent Heteroresistance. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Mukhopadhyay, A.K.; Dailidiene, D.; Wang, Y.; Velapatino, B.; Gilman, R.H.; Parkinson, A.J.; Nair, G.B.; Wong, B.C.Y.; Lam, S.K.; et al. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J. Bacteriol. 2000, 182, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kang, J.O.; Eun, C.S.; Han, D.S.; Choi, T.Y. Mutations in the 23S rRNA gene of Helicobacter pylori associated with clarithromycin resistance. J. Korean Med. Sci. 2002, 17, 599. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, J.S.; Kim, N.; Kim, Y.-J.; Kim, I.Y.; Chee, Y.J.; Lee, C.-H.; Jung, H.C. Gene mutations of 23S rRNA associated with clarithromycin resistance in Helicobacter pylori strains isolated from Korean patients. J. Microbiol. Biotechnol. 2008, 18, 1584–1589. [Google Scholar]
- Khan, R.; Nahar, S.; Sultana, J.; Ahmad, M.M.; Rahman, M. T2182C mutation in 23S rRNA is associated with clarithromycin resistance in Helicobacter pylori isolates obtained in Bangladesh. Antimicrob. Agents Chemother. 2004, 48, 3567–3569. [Google Scholar] [CrossRef] [PubMed]
- Park, C.G.; Kim, S.; Lee, E.J.; Jeon, H.S.; Han, S. Clinical relevance of point mutations in the 23S rRNA gene in Helicobacter pylori eradication: A prospective, observational study. Medicine 2018, 97, e11835. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.; Dzink-Fox, J.A.; Shen, Z.; Piazuelo, M.B.; Wilson, K.T.; Correa, P.; Peek, R.M.; Camargo, M.C.; Fox, J.G. Helicobacter pylori Antimicrobial Resistance and Gene Variants in High- and Low-Gastric-Cancer-Risk Populations. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef] [PubMed]
- Agudo, S.; Pérez-Pérez, G.; Alarcón, T.; López-Brea, M. High prevalence of clarithromycin-resistant Helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J. Clin. Microbiol. 2010, 48, 3703–3707. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, J.H.; Jeong, S.J.; Park, S.Y.; Kang, I.M.; Lee, K.H.; Song, Y.G. Peptide Nucleic Acid Probe-Based Analysis as a New Detection Method for Clarithromycin Resistance in Helicobacter pylori. Gut Liver. 2018, 12, 641. [Google Scholar] [CrossRef]
- Fernández-Caso, B.; Miqueleiz, A.; Alarcón, T. Whole Genome Sequencing for Studying Helicobacter pylori Antimicrobial Resistance. Antibiotics 2023, 12, 1135. [Google Scholar] [CrossRef]
- Hashemi, S.J.; Sheikh, A.F.; Goodarzi, H.; Yadyad, M.J.; Seyedian, S.S.; Aslani, S.; Assarzadegan, M.A. Genetic basis for metronidazole and clarithromycin resistance in Helicobacter pylori strains isolated from patients with gastroduodenal disorders. Infect. Drug Resist. 2019, 12, 535–543. [Google Scholar] [CrossRef]
- Burucoa, C.; Landron, C.; Garnier, M.; Fauchère, J.L.; Khan, R.; Rahman, M. T2182C mutation is not associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 2005, 49, 868–870. [Google Scholar] [CrossRef]
- Hulten, K.G.; Genta, R.M.; Kalfus, I.N.; Zhou, Y.; Zhang, H.; Graham, D.Y. Comparison of Culture with Antibiogram to Next-Generation Sequencing Using Bacterial Isolates and Formalin-Fixed, Paraffin-Embedded Gastric Biopsies. Gastroenterology 2021, 161, 1433–1442.e2. [Google Scholar] [CrossRef]
- Gonzalez-Hormazabal, P.; Musleh, M.; Escandar, S.; Valladares, H.; Lanzarini, E.; Castro, V.G.; Jara, L.; Berger, Z. Prevalence of clarithromycin resistance in Helicobacter pylori in Santiago, Chile, estimated by real-time PCR directly from gastric mucosa. BMC Gastroenterol. 2018, 18, 91. [Google Scholar] [CrossRef]
Target | Gene | Nucleotide Sequence | Product Size·(bp) | Ref. |
---|---|---|---|---|
H. pylori | glmM | F–5′-AAGCTTTTAGGGGTGTTAGGGGTTT-3′ R–5′-AAGCTTACTTTCTAACACTAACGC-3′ | 300 bp | [16] |
Clarithromycin | 23S | F–5′-CCACAGCGATGTGGTCTCAG-3′ R–5′·CTCCATAAGAGCCAAAGCCC-3′ | 425 bp | [17] |
Metronidazoler | rdxA | F–5′-GCAGGAGCATCAGATAGTTCT-3′ R–5′-GGGATTTTATTGTATGCTACAA-3′ | 886 bp | [18] |
Clarithromycin (23S) | All (n = 48) | Mutation (n = 19) | No Mutation (n = 29) | |
Age, mean (sd) | 54.2 (14.6 sd) | 50.8 (15.7 sd) | 56.6 (13.6 sd) | t = 1.4 p = 0.178 |
Sex | ||||
F | 23 (47.9%) | 11 (57.9%) | 15 (51.7%) | X2 = 0.00 |
M | 25 (52.1%) | 8 (42.1%) | 14 (48.3%) | p = 0.51 |
Metronidazole (rdxA) | All (n = 33) | Mutation (n = 31) | No Mutation (n = 2) | |
Age mean (sd) | 53.3 (15.6 sd) | 53.0 (16.0sd) | 57.5 (2.1 sd) | t = 0.4 p = 0.70 |
Sex | ||||
F | 16 (48.5%) | 15 (48.4%) | 1 (50%) | X2 = 0.00 |
M | 17 (51.5%) | 16 (51.6%) | 1 (50%) | p = 0.965 |
Viasure Real Time PCR Kit | |||
---|---|---|---|
Mutations | n | Positive | Negative |
T2182C | 28 | 0 | 100% |
A2142G | 5 | 100% | 0% |
A2143G | 4 | 100% | 0% |
A2142G + T2182C | 1 | 100% | 0% |
A2143G + T2182C | 4 | 100% | 0% |
10 Hp (+) samples | 10 | 100% (6/10) | (4/10) |
(Confirmed by sequencing) | |||
Hp (−) | 40 | 0% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monroy, F.P.; Brown, H.E.; Acevedo-Solis, C.M.; Rodriguez-Galaviz, A.; Dholakia, R.; Pauli, L.; Harris, R.B. Antibiotic Resistance Rates for Helicobacter pylori in Rural Arizona: A Molecular-Based Study. Microorganisms 2023, 11, 2290. https://doi.org/10.3390/microorganisms11092290
Monroy FP, Brown HE, Acevedo-Solis CM, Rodriguez-Galaviz A, Dholakia R, Pauli L, Harris RB. Antibiotic Resistance Rates for Helicobacter pylori in Rural Arizona: A Molecular-Based Study. Microorganisms. 2023; 11(9):2290. https://doi.org/10.3390/microorganisms11092290
Chicago/Turabian StyleMonroy, Fernando P., Heidi E. Brown, Claudia M. Acevedo-Solis, Andres Rodriguez-Galaviz, Rishi Dholakia, Laura Pauli, and Robin B. Harris. 2023. "Antibiotic Resistance Rates for Helicobacter pylori in Rural Arizona: A Molecular-Based Study" Microorganisms 11, no. 9: 2290. https://doi.org/10.3390/microorganisms11092290
APA StyleMonroy, F. P., Brown, H. E., Acevedo-Solis, C. M., Rodriguez-Galaviz, A., Dholakia, R., Pauli, L., & Harris, R. B. (2023). Antibiotic Resistance Rates for Helicobacter pylori in Rural Arizona: A Molecular-Based Study. Microorganisms, 11(9), 2290. https://doi.org/10.3390/microorganisms11092290