Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator
Abstract
:1. Introduction
2. Materials and Methods
2.1. The ISS Smart Sample Concentrator (iSSC) Technology
2.2. Bacterial Cultures and Growth Conditions
2.3. Sample Concentration
2.4. Culture-Based Assessment after Concentration
2.5. qPCR Assessment after Concentration
2.6. Statistical Analyses
3. Results and Discussion
3.1. The ISS Smart Sample Concentrator (iSSC) Optimization for Microgravity
3.2. Recovery Volume
3.3. Percent Recovery Based on CFU Counts
3.4. Percent Recovery Based on qPCR Data
3.5. Phase II vs. Phase III Culture-Based Results Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Houdt, R.; De Boever, P.; Coninx, I.; Le Calvez, C.; Dicasillati, R.; Mahillon, J.; Mergeay, M.; Leys, N. Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb. Ecol. 2009, 57, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Barrila, J.; Mark Ott, C.; King, O.; Bruce, R.; McLean, R.J.; Nickerson, C.A. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. NPJ Biofilms Microbiomes 2021, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Castro, V.A.; Thrasher, A.N.; Healy, M.; Ott, C.M.; Pierson, D.L. Microbial Characterization during the Early Habitation of the International Space Station. Microb. Ecol. 2004, 47, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Nishiyama, Y.; Yamazaki, T.; Sugita, T.; Tsukii, Y.; Takatori, K.; Benno, Y.; Makimura, K. Microbe-I: Fungal biota analyses of the Japanese experimental module KIBO of the International Space Station before launch and after being in orbit for about 460 days. Microbiol. Immunol. 2011, 55, 823–829. [Google Scholar] [CrossRef] [PubMed]
- NASA. International Space Station Medical Operations Requirements Documents (ISS MORD); NASA: Houston, TX, USA, 2003.
- Oubre, C.M.; Pierson, D.; Botkin, D.J. Microbial Monitoring of the International Space Station. In Proceedings of the 8th International Workshop on Space Microbiology, Osaka, Japan, 20 May 2023; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2013; Volume 24. [Google Scholar]
- Microbial Analysis of ISS Water Using the Water Microbiology Kit (WMK) and the Microbiology Water Analysis Kit; NASA: Washington, DC, USA, 2005.
- Mora, M.; Perras, A.; Alekhova, T.A.; Wink, L.; Krause, R.; Aleksandrova, A.; Novozhilova, T.; Moissl-Eichinger, C. Resilient microorganisms in dust samples of the International Space Station—Survival of the adaptation specialists. Microbiome 2016, 4, 65. [Google Scholar] [CrossRef] [PubMed]
- Kwan, K.; Cooper, M.; La Duc, M.T.; Vaishampayan, P.; Stam, C.; Benardini, J.N.; Scalzi, G.; Moissl-Eichinger, C.; Venkateswaran, K. Evaluation of procedures for the collection, processing, and analysis of biomolecules from low-biomass surfaces. Appl. Environ. Microbiol. 2011, 77, 2943–2953. [Google Scholar] [CrossRef] [PubMed]
- Leys, N.; Baatout, S.; Rosier, C.; Dams, A.; s’Heeren, C.; Wattiez, R.; Mergeay, M. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek 2009, 96, 227. [Google Scholar] [CrossRef] [PubMed]
- Byloos, B.; Coninx, I.; Van Hoey, O.; Cockell, C.; Nicholson, N.; Ilyin, V.; Van Houdt, R.; Boon, N.; Leys, N. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Front. Microbiol. 2017, 8, 671. [Google Scholar] [CrossRef] [PubMed]
- Vera, D.L.; Seuylemezian, A.; Landry, K.S.; Hendrickson, R. Draft Genome Sequences of Six Strains Isolated from the InSight Spacecraft and Associated Surfaces Using Oxford Nanopore- and Illumina-Based Sequencing. Microbiol. Resour. Announc. 2020, 9, e01161-19. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, C.; Mhatre, S.; Grams, T.; Parker, C.; Venkateswaran, K. Validation of the International Space Station Smart Sample Concentrator for Microbial Monitoring of Low Biomass Water Samples. J. Biomol. Tech. JBT 2020. [Google Scholar] [CrossRef] [PubMed]
- Concentrating Pipette|InnovaPrep LLC. Available online: https://www.innovaprep.com/products/concentrating-pipette (accessed on 28 January 2023).
- Kovo, Y. Wet Lab-2 Parra (SpaceX-15). NASA. 2018. Available online: http://www.nasa.gov/ames/research/space-biosciences/wet-lab-2-parra (accessed on 9 February 2022).
- Page, A.; Adolphson, A.; Hornback, M.; Zimmer-Faust, A.; Griffith, J. International Space Station Smart Sample Concentrator for Microbial Monitoring of Potable Water. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Weislogel, M.M.; Jenson, R.M. Passive no moving parts capillary solutions for spacecraft life support systems. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- WetLab-2 Parra (n.d.). Available online: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7688 (accessed on 30 January 2023).
- Yamamoto, S.; Harayama, S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 1995, 61, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
Primer | Organism | Sequence |
---|---|---|
SP_F | Sphingomonas paucimobilis | 5′ CTG GAG TGG AAT GAC AGC TAT T 3′ |
SP_R | 5′ GAC TTG TCG GCA TAA TTG TTG AG 3′ | |
SP_probe | 5′ CGT TCA CCA ACA ACA TCC CGC AG 3′ | |
SP_std | 5′ ATG GAT GTC GCG CTG GAG TGG AAT GAC AGC TAT TAT GAG AAC GTC CTG GCG TTC ACC AAC AAC ATC CCG CAG CGC GAC GGC GGC ACG CAT ATC GCG GCC TTC CGC GCG GCG TTG ACC CGC ACG CTC AAC AAT TAT GCC GAC AAG TCG GGC CTT CTG AA 3′ | |
CM_F | Cupriavidus basilensis | 5′ TGC TGC TGA CGT TCT TCT ATC 3′ |
CM_R | 5′ CTC GTT GTC GTC CTT GAT GT 3′ | |
CM_probe | 5′ CGC TCT ACA AGA TCA AGC ACG GCA 3′ | |
CM_std | 5′ ATC CGC ACA CTG CTG CTG ACG TTC TTC TAT CGC CAG ATGC CGG ACA TCA TCG AGC GCG GCT ACG TGT ACA TCG CCC AGC CGC CGC TCT ACA AGA TCA AGC ACG GCA AGG AAG AGC GCT ACA TCA AGG ACG ACA ACG AGC TGA ACG CCT A 3′ | |
RP_F | Ralstonia picketii | 5′ TGC TGC TCA CGT TCT TCT AC 3′ |
RP_R | 5′ GCC ATC TCG ACA TCG TCT TT 3′ | |
RP_probe | 5′ CGC TCT ACA AGA TCA AGC ACG GCA 3′ | |
RP_std | 5′ ACA TCC GCA CGC TGC TGC TCA CGT TCT TCT ACC GCC AGA TGC CCG AGA TCA TCG AGC GCG GCC ACG TGT ACA TCG CCC AGC CGC CGC TCT ACA AGA TCA AGC ACG GCA AGG AAG AGC GCT ACA TCA AAG ACG ATG TCG AGA TGG CCG CCT ACC TCG T 3′ |
Concentration CFU/L | Sphingomonas paucimobilis CFAC Volume [µL] | Cupriavidus basilensis CFAC Volume [µL] | Ralstonia pickettii CFAC Volume [µL] | |
---|---|---|---|---|
Biologic replicate 1 | 102 | 450 | 870 | 350 |
103 | 430 | 400 | 550 | |
104 | 370 | 530 | 450 | |
105 | 400 | 490 | 400 | |
Biologic replicate 2 | 102 | 680 | 890 | 400 |
103 | 370 | 350 | 400 | |
104 | 390 | 330 | 220 | |
105 | 430 | 510 | 350 | |
Biologic replicate 3 | 102 | 430 | 510 | 510 |
103 | 290 | 260 | 480 | |
104 | 580 | 450 | 330 | |
105 | 570 | 300 | 700 | |
Average volume [µL] | 449 | 491 | 428 |
Millipore | Phase II iSSC | Phase III iSSC | |
---|---|---|---|
Mean Volume (µL) for 104 CFU/L | 928 | 304 | 405 |
Concentration Factor | 1077 | 3289 | 2469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowicz, A.; Urbaniak, C.; Adolphson, A.; Isenhouer, G.; Page, A.; Venkateswaran, K. Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator. Microorganisms 2023, 11, 2310. https://doi.org/10.3390/microorganisms11092310
Blachowicz A, Urbaniak C, Adolphson A, Isenhouer G, Page A, Venkateswaran K. Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator. Microorganisms. 2023; 11(9):2310. https://doi.org/10.3390/microorganisms11092310
Chicago/Turabian StyleBlachowicz, Adriana, Camilla Urbaniak, Alec Adolphson, Gwyn Isenhouer, Andy Page, and Kasthuri Venkateswaran. 2023. "Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator" Microorganisms 11, no. 9: 2310. https://doi.org/10.3390/microorganisms11092310
APA StyleBlachowicz, A., Urbaniak, C., Adolphson, A., Isenhouer, G., Page, A., & Venkateswaran, K. (2023). Microbial Detection and Quantification of Low-Biomass Water Samples Using an International Space Station Smart Sample Concentrator. Microorganisms, 11(9), 2310. https://doi.org/10.3390/microorganisms11092310