Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Endophytic Seed-Associated Bacteria
2.2. Screening of Plant Growth-Promoting Traits
2.2.1. Indolic Compound Production
2.2.2. Phosphate and Potassium Solubilizing Capabilities
2.2.3. Siderophore Production
2.2.4. Production of Hydrolytic Enzymes
2.2.5. Biofilm Formation
2.3. Biocontrol Activity against Pyricularia oryzae
2.4. Effect of Bacterial Inoculation in Rice Growth in Hydroponic System
2.5. Statistical Analysis
3. Results
3.1. Identification of Seed Endophytic Bacteria from Rice Cv. INCA LP-5 and INCA LP-7
3.2. Screening of Plant Growth-Promoting Traits
3.3. Selected Seed Endophytes Promote the Rice Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Food Outlook Biannual Report on Global Food Markets. 2023. Available online: http://www.fao.org/economic/est/est-commodities/oilcrops/oilcrop-policies/en/ (accessed on 27 July 2023).
- García, R.R.M.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.; Sevegnani, F.; Pérez, K.M.P.; Velásquez, L. Assessing the sustainability of rice production in Brazil and Cuba. J. Agric. Food Res. 2021, 4, 100152. [Google Scholar]
- ONEI. Sector Agropecuario. Indicadores Seleccionados. 2022. Cuba. pp. 1–13. Available online: http://www.onei.gob.cu/otros-temas-publicaciones/ (accessed on 23 July 2023).
- MINAG. Modificaciones al Instructivo Técnico Para el Cultivo del Arroz; Instituto de Investigaciones de Granos La Habana: La Habana, Cuba, 2022; 30p. [Google Scholar]
- Forte, I.H.; García, M.C.N.; López, L.A.M.; Urrutia, F.B. Contribución al conocimiento de la interacción Rhizobium-arroz (Oryza sativa L.). Oportunidades para la biofertilización del cultivo. An. Acad. Cienc. Cuba 2023, 13, 1329. [Google Scholar]
- Pérez, N.D.G.; Rodríguez, L.M.; Hernández, T. Evaluation of rice cultivars (Oryza sativa L.) from Vietnam, for their introduction in Cuba. Rev. Colomb. Biotecnol. 2023, 25, 15–25. [Google Scholar]
- Pérez-Montaño, F.; Alías-Villegas, C.; Bellogín, R.; Del Cerro, P.; Espuny, M.; Jiménez-Guerrero, I.; López-Baena, F.J.; Ollero, F.; Cubo, T. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiol. Res. 2014, 169, 325–336. [Google Scholar] [CrossRef]
- Herrera, H.; Novotná, A.; Ortiz, J.; Soto, J.; Arriagada, C. Isolation and identification of plant growth-promoting bacteria from rhizomes of Arachnitis uniflora, a fully mycoheterotrophic plant in southern Chile. Appl. Soil Ecol. 2020, 149, 103512. [Google Scholar] [CrossRef]
- Ortiz, J.; Soto, J.; Fuentes, A.; Herrera, H.; Meneses, C.; Arriagada, C. The endophytic fungus Chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in Eucalyptus globulus roots. Microorganisms 2019, 7, 490. [Google Scholar] [CrossRef]
- Soto, J.; Ortiz, J.; Herrera, H.; Fuentes, A.; Almonacid, L.; Charles, T.C.; Arriagada, C. Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil. Microorganisms 2019, 7, 348. [Google Scholar] [CrossRef]
- Costa, P.H.d.O.; Nascimento, S.V.d.; Herrera, H.; Gastauer, M.; Ramos, S.J.; Caldeira, C.F.; Oliveira, G.; Valadares, R.B.d.S. Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland. Processes 2021, 9, 2079. [Google Scholar]
- Singh, N.; Singh, R.; Meena, V.; Meena, R. Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos 2015, 28, 86–99. [Google Scholar] [CrossRef]
- Frank, A.C.; Saldierna Guzmán, J.P.; Shay, J.E. Transmission of bacterial endophytes. Microorganisms 2017, 5, 70. [Google Scholar] [CrossRef]
- Hodgson, S.; de Cates, C.; Hodgson, J.; Morley, N.J.; Sutton, B.C.; Gange, A.C. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 2014, 4, 1199–1208. [Google Scholar] [CrossRef]
- Herrera, H.; Sanhueza, T.; Novotná, A.; Charles, T.C.; Arriagada, C. Isolation and identification of endophytic bacteria from mycorrhizal tissues of terrestrial orchids from southern Chile. Diversity 2020, 12, 55. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, K.; Verma, A.; White, J.F.; Verma, S.K. Functional roles of seed-inhabiting endophytes of rice. In Seed Endophytes: Biology and Biotechnology; Springer: Cham, Switzerland, 2019; pp. 213–236. [Google Scholar]
- Taulé, C.; Vaz-Jauri, P.; Battistoni, F. Insights into the early stages of plant–endophytic bacteria interaction. World J. Microbiol. Biotechnol. 2021, 37, 13. [Google Scholar] [CrossRef]
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 2015, 7, 40–50. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Hardoim, C.C.; van Overbeek, L.S.; van Elsas, J.D. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 2012, 7, e30438. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fan, X.; Wang, Y.; Kusstatscher, P.; Duan, J.; Wu, S.; Chen, S.; Qiao, K.; Wang, Y.; Ma, B. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 2021, 7, 60–72. [Google Scholar] [CrossRef]
- Walitang, D.I.; Kim, K.; Madhaiyan, M.; Kim, Y.K.; Kang, Y.; Sa, T. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol. 2017, 17, 209. [Google Scholar] [CrossRef]
- Rives, N.; Hernández, A.; Acebo, Y.; Heydrich, M. Caracterización de algunos géneros bacterianos asociados al cultivo del arroz variedad J-104. Rev. Cuba. Arroz 2006, 2, 7–13. [Google Scholar]
- Rives, N.; Vega, M.; Díaz, A.; Acebo, Y.; Muñiz, O.; Hernández, A. Aislamiento y caracterización molecular de bacterias endófitas fijadoras de nitrógeno asociadas a 4 variedades comerciales de arroz. Rev. Cuba. Arroz 2010, 12, 68–82. [Google Scholar]
- Tejera-Hernández, B.; Heydrich-Pérez, M.; Rojas-Badía, M.M. Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agron. Mesoam. 2013, 24, 357–364. [Google Scholar] [CrossRef]
- Hernández, I.; Taulé, C.; Pérez-Pérez, R.; Battistoni, F.; Fabiano, E.; Rivero, D.; Nápoles, M.C. Endophytic rhizobia promote the growth of Cuban rice cultivar. Symbiosis 2021, 85, 175–190. [Google Scholar] [CrossRef]
- Hernández-Forte, I.; Pérez-Pérez, R.; Taulé-Gregorio, C.B.; Fabiano-González, E.; Battistoni-Urrutia, F.; Nápoles-García, M.C. New bacteria genera associated with rice (Oryza sativa L.) in Cuba promote the crop growth 1 Nuevos géneros bacterianos asociados al arroz (Oryza sativa L.) en Cuba promueven el crecimiento del cultivo. Agron. Mesoam. 2022, 33, 6. [Google Scholar]
- García, J.; Hernández, A.; Acebo, Y.; Rives, N. Obtención de un nuevo método de desinfección de semillas de arroz. Cultiv. Trop. 2008, 29, 55–59. [Google Scholar]
- Mareque, C.; Taulé, C.; Beracochea, M.; Battistoni, F. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann. Microbiol. 2015, 65, 1057–1067. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Padilla, E.; Ruiz-Díez, B.; Fajardo, S.; Eichler-Loebermann, B.; Samson, R.; Van-Damme, P.; López-Sánchez, R.; Fernández-Pascual, M. Caracterización de rizobios aislados de nódulos de frijol Caupí, en suelos salinos de Cuba. Cultiv. Trop. 2017, 38, 39–49. [Google Scholar]
- Taulé, C.; Mareque, C.; Barlocco, C.; Hackembruch, F.; Reis, V.M.; Sicardi, M.; Battistoni, F. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 2012, 356, 35–49. [Google Scholar] [CrossRef]
- Bertalan, M.; Albano, R.; de Pádua, V.; Rouws, L.; Rojas, C.; Hemerly, A.; Teixeira, K.; Schwab, S.; Araujo, J.; Oliveira, A. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom. 2009, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, J.; Guo, J. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 2006, 22, 983–990. [Google Scholar] [CrossRef]
- Kumar, V.; Narula, N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol. Fertil. Soils 1999, 28, 301–305. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [PubMed]
- Rosconi, F.; Trovero, M.F.; de Souza, E.M.; Fabiano, E. Serobactins.; Trover iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants. Environ. Microbiol. 2016, 18, 2523–2533. [Google Scholar] [CrossRef]
- de los Santos, M.C.; Taulé, C.; Mareque, C.; Beracochea, M.; Battistoni, F. Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Ann. Microbiol. 2016, 66, 329–342. [Google Scholar] [CrossRef]
- Cruz-Triana, A.; Rivero-González, D.; Martínez-Coca, B.; Echevarría-Hernández, A.; Tania-Rodríguez, A. Evaluación de la actividad antifúngica de Trichoderma asperellum Samuels ante patógenos fúngicos que afectan al cultivo de la soya (Glycine max L.). Cultiv. Trop. 2017, 38, 15–21. [Google Scholar]
- Ali, M.; Ali, Q.; Sohail, M.A.; Ashraf, M.F.; Saleem, M.H.; Hussain, S.; Zhou, L. Diversity and taxonomic distribution of endophytic bacterial community in the rice plant and its prospective. Int. J. Mol. Sci. 2021, 22, 10165. [Google Scholar] [PubMed]
- Rodríguez, C.E.; Antonielli, L.; Mitter, B.; Trognitz, F.; Sessitsch, A. Heritability and functional importance of the Setaria viridis bacterial seed microbiome. Phytobiomes J. 2020, 4, 40–52. [Google Scholar]
- Finkel, O.M.; Castrillo, G.; Paredes, S.H.; González, I.S.; Dangl, J.L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 2017, 38, 155–163. [Google Scholar] [CrossRef]
- Eyre, A.W.; Wang, M.; Oh, Y.; Dean, R.A. Identification and characterization of the core rice seed microbiome. Phytobiomes J. 2019, 3, 148–157. [Google Scholar] [CrossRef]
- Mano, H.; Morisaki, H. Endophytic bacteria in the rice plant. Microbes Environ. 2008, 23, 109–117. [Google Scholar]
- Verma, S.K.; Kingsley, K.; Irizarry, I.; Bergen, M.; Kharwar, R.; White, J., Jr. Seed-vectored endophytic bacteria modulate development of rice seedlings. J. Appl. Microbiol. 2017, 122, 1680–1691. [Google Scholar] [CrossRef]
- Wang, M.; Eyre, A.W.; Thon, M.R.; Oh, Y.; Dean, R.A. Dynamic changes in the microbiome of rice during shoot and root growth derived from seeds. Front. Microbiol. 2020, 2183. [Google Scholar] [CrossRef]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I.-J. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front. Plant Sci. 2018, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Borah, M.; Das, S.; Bora, S.S.; Boro, R.C.; Barooah, M. Comparative assessment of multi-trait plant growth-promoting endophytes associated with cultivated and wild Oryza germplasm of Assam, India. Arch. Microbiol. 2021, 203, 2007–2028. [Google Scholar] [CrossRef]
- Herrera, H.; Fuentes, A.; Ortiz, J.; Soto, J.; da Silva Valadares, R.B.; Salas-Eljatib, C.; Arriagada, C. Root-associated endophytes isolated from juvenile Ulex europaeus L. (Fabaceae) plants colonizing rural areas in South-Central Chile. Plant Soil 2022, 474, 181–193. [Google Scholar] [CrossRef]
- Lin, L.; Xu, X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr. Microbiol. 2013, 67, 209–217. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Elsaied, A.; El-Belely, E.F.; Barghoth, M.G.; Azab, E.; Gobouri, A.A.; Hassan, S.E.-D. Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants 2021, 10, 76. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.; Ghajar Sepanlou, M. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2018, 76, 13–23. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bachani, P.; Jain, D.; Patidar, S.K.; Mishra, S. Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm. Int. J. Miner. Process. 2016, 152, 53–57. [Google Scholar] [CrossRef]
- Maheshwari, R.; Bhutani, N.; Suneja, P. Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants. J. Appl. Biol. Biotechnol. 2019, 7, 7–14. [Google Scholar]
- Abdel-Hamid, M.S.; Fouda, A.; El-Ela, H.K.A.; El-Ghamry, A.A.; Hassan, S.E.-D. Plant growth-promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomol. Concepts 2021, 12, 175–196. [Google Scholar] [CrossRef]
- Banik, A.; Dash, G.K.; Swain, P.; Kumar, U.; Mukhopadhyay, S.K.; Dangar, T.K. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol. Res. 2019, 219, 56–65. [Google Scholar] [CrossRef]
- Coutinho, B.G.; Licastro, D.; Mendonça-Previato, L.; Cámara, M.; Venturi, V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol. Plant-Microbe Interact. 2015, 28, 10–21. [Google Scholar] [CrossRef]
- Meneses, C.; Gonçalves, T.; Alquéres, S.; Rouws, L.; Serrato, R.; Vidal, M.; Baldani, J. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 2017, 416, 133–147. [Google Scholar] [CrossRef]
- Cottyn, B.; Regalado, E.; Lanoot, B.; De Cleene, M.; Mew, T.; Swings, J. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 2001, 91, 282–292. [Google Scholar] [CrossRef]
- Ruiza, D.; Agaras, B.; de Werrab, P.; Wall, L.G.; Valverde, C. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J. Microbiol. 2011, 49, 902–912. [Google Scholar] [CrossRef]
- Reshma, P.; Naik, M.; Aiyaz, M.; Niranjana, S.; Chennappa, G.; Shaikh, S.; Sayyed, R. Induced Systemic Resistance by 2,4-Diacetylphloroglucinol Positive Fluorescent Pseudomonas Strains against Rice Sheath Blight; NISCAIR-CSIR: New Delhi, India, 2018. [Google Scholar]
- Badreddine, I.; Lafitte, C.; Heux, L.; Skandalis, N.; Spanou, Z.; Martinez, Y.; Esquerré-Tugayé, M.-T.; Bulone, V.; Dumas, B.; Bottin, A. Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches. Eukaryot. Cell 2008, 7, 1980–1993. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Al-Hosni, K.; Kang, S.-M.; Seo, C.-W.; Lee, I.-J. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol. Hung. 2017, 68, 175–186. [Google Scholar] [CrossRef]
- Sun, L.; Lei, P.; Wang, Q.; Ma, J.; Zhan, Y.; Jiang, K.; Xu, Z.; Xu, H. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Front. Microbiol. 2020, 10, 3112. [Google Scholar] [CrossRef]
- Shahdi Kumleh, A. Effect of Rhizobium trifolii, Pseudomonas fluorescens and Azotobacter chroococcum on Growth and Yield of Crismon Clover and Rice in a Rice-Clover Rotation. Isfahan Univ. Technol.-J. Crop Prod. Process. 2021, 10, 17–31. [Google Scholar]
- Chu, T.N.; Bui, L.V.; Hoang, M.T.T. Pseudomonas PS01 isolated from maize rhizosphere alters root system architecture and promotes plant growth. Microorganisms 2020, 8, 471. [Google Scholar] [CrossRef]
Rice Cultivar | Isolate | Accession Number | Best Hit (Accession Number) a | Maximum Identity (%) |
---|---|---|---|---|
INCA LP-5 | S5-1 | MT808964 | Pantoea agglomerans (KY013009.1) | 97.50 |
S5-2 | MT808965 | Bacillus safensis (NR_041794.1) | 99.93 | |
S5-3 | MT808966 | Bacillus australimaris (MN077148.1) | 99.86 | |
S5-4 | MT808967 | B. safensis (NR_041794.1) | 100 | |
S5-30 | MT808968 | B. australimaris (MN077148.1) | 99.86 | |
S5-31 | MT808969 | Paenibacillus hunanensis (NR_116440.1) | 99.72 | |
S5-32 | MT808970 | B. australimaris (MN077148.1) | 100 | |
S5-38 | MT808971 | Pseudomonas oryzihabitans (NR_115005.1) | 99.85 | |
S5-40 | MT808972 | B. australimaris (MN077148.1) | 99.86 | |
INCA LP-7 | S7-1 | MT808973 | P. oryzihabitans (NR_114041.1) | 98.78 |
S7-2 | MT808974 | Pantoea ananatis (LC462185.1) | 98.36 | |
S7-3 | MT808975 | P. agglomerans (KY013009.1) | 97.70 | |
S7-4 | MT808976 | P. oryzihabitans (NR_114041.1) | 99.93 | |
S7-5 | MT808977 | P. oryzihabitans (NR_115005.1) | 100 | |
S7-6 | MT808978 | Pantoea deleyi (NR_116114.1) | 99.85 | |
S7-7 | MT808979 | B. australimaris (MN077148.1) | 99.86 | |
S7-8 | MT808980 | B. australimaris (MN077148.1) | 99.77 | |
S7-22 | MT808981 | P. hunanensis (NR_116440.1) | 97.79 | |
S7-23 | MT808982 | Pseudomonas psychrotolerans (NR_042191.1) | 100 |
Isolate | Phytostimulation and Biofertilization a | Infection b | Antagonism against P. oryzae c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ind. Com. | Ca3PO4 Solubilization | K | SID | Lithic Enzymes | Biofilm | 13 dpi | 16 dpi | ||||
EC | HC | PROT | |||||||||
NBRIP | GL | ||||||||||
S5-1 | + | 1.3 cd | − | − | + | − | − | − | + | ND | ND |
S5-2 | + | − | − | − | − | − | − | + | − | ND | ND |
S5-3 | − | − | − | − | − | − | − | + | − | ND | ND |
S5-4 | − | − | − | − | − | − | − | + | + | ND | ND |
S5-30 | + | 1.7 b | − | − | − | − | − | + | − | ND | ND |
S5-31 | + | 1.6 bc | − | − | − | + | − | + | − | ND | ND |
S5-32 | − | − | − | − | − | − | − | + | − | ND | ND |
S5-38 | + | 2.1 a | + | + | + | + | − | − | + | 14.7 b | 27.5 b |
S5-40 | − | − | − | − | − | − | − | + | − | ND | ND |
S7-1 | + | 1.5 bc | − | − | + | − | − | − | + | ND | ND |
S7-2 | + | − | − | − | + | − | + | − | − | ND | ND |
S7-3 | + | 1.3 cd | − | + | + | + | − | − | − | 46.1 a | 54.1 a |
S7-4 | + | 1.1 d | + | − | + | − | − | − | − | ND | ND |
S7-5 | + | − | + | − | − | − | − | − | − | ND | ND |
S7-6 | + | 1.4 bcd | − | + | − | − | + | − | − | ND | ND |
S7-7 | − | − | − | − | − | − | − | + | + | ND | ND |
S7-8 | − | − | − | − | − | − | − | + | − | ND | ND |
S7-22 | − | − | − | − | − | + | + | + | − | ND | ND |
S7-23 | − | − | + | + | + | − | − | − | − | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, I.; Taulé, C.; Pérez-Pérez, R.; Battistoni, F.; Fabiano, E.; Villanueva-Guerrero, A.; Nápoles, M.C.; Herrera, H. Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.). Microorganisms 2023, 11, 2317. https://doi.org/10.3390/microorganisms11092317
Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Villanueva-Guerrero A, Nápoles MC, Herrera H. Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.). Microorganisms. 2023; 11(9):2317. https://doi.org/10.3390/microorganisms11092317
Chicago/Turabian StyleHernández, Ionel, Cecilia Taulé, Reneé Pérez-Pérez, Federico Battistoni, Elena Fabiano, Angela Villanueva-Guerrero, María Caridad Nápoles, and Héctor Herrera. 2023. "Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.)" Microorganisms 11, no. 9: 2317. https://doi.org/10.3390/microorganisms11092317
APA StyleHernández, I., Taulé, C., Pérez-Pérez, R., Battistoni, F., Fabiano, E., Villanueva-Guerrero, A., Nápoles, M. C., & Herrera, H. (2023). Endophytic Seed-Associated Bacteria as Plant Growth Promoters of Cuban Rice (Oryza sativa L.). Microorganisms, 11(9), 2317. https://doi.org/10.3390/microorganisms11092317