Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3’)-IIIa Nucleotide-Binding Site of Enterococcus faecalis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Virtual Screening Analysis of Flavones in the Nucleotide-Binding Site of EfAPH3’-IIIa
2.2. Molecular Docking Analysis of 3Q2J Complexed with CKI-7 and ANF
2.3. Pharmacokinetic and Toxicological Analyses of ANF
2.4. Design and Molecular Docking Analyses of ANF Derivatives
2.5. Blind Docking Analysis
2.6. Molecular Docking Analysis of 3Q2J Complexed with ANF2OHC and ANF2OHCC
2.7. Physicochemical, Pharmacokinetic, and Toxicological Predictions of ANF2OHC and ANF2OHCC
2.8. Target Fishing and Synthetic Accessibility Analyses
2.9. Molecular Dynamic Simulation Analyses
2.10. Binding Free Energy Calculation
3. Methods
3.1. Target and Ligands Preparation
3.2. Molecular Docking-Based Virtual Screening
3.3. Physicochemical, Pharmacokinetic, Toxicological and Target Fishing Analyses
3.4. Molecular Dynamic Simulations
3.5. Binding Free Energy Calculation
3.6. Visualizations of Molecular Docking and Molecular Dynamics Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Johnson, A.P. The pathogenicity of enterococci. J. Antimicrob. Chemother. 1994, 33, 1083–1089. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; De Lurdes, M.; Dapkevicius, E.; Igrejas, G. Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms 2020, 8, 1118. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; van Tyne, D.; Gilmore, M.S. Pathogenicity of enterococci. Microbiol Spectr. 2019, 7, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V. The multifaceted lifestyle of enterococci: Genetic diversity, ecology and risks for public health. Curr. Opin. Microbiol. 2022, 65, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef]
- Manoharan, H.; Lalitha, A.K.V.; Mariappan, S.; Sekar, U.; Venkataramana, G.P. Molecular Characterization of High-Level Aminoglycoside Resistance among Enterococcus Species. J. Lab. Physicians 2022, 14, 209–294. [Google Scholar] [CrossRef]
- Zárate, S.G.; De La Cruz Claure, M.L.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming aminoglycoside enzymatic resistance: Design of novel antibiotics and inhibitors. Molecules 2018, 23, 284. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, 1–18. [Google Scholar] [CrossRef]
- Bacot-Davis, V.R.; Bassenden, A.V.; Berghuis, A.M. Drug-target networks in aminoglycoside resistance: Hierarchy of priority in structural drug design. Medchemcomm 2016, 7, 103–113. [Google Scholar] [CrossRef]
- Fong, D.H.; Xiong, B.; Hwang, J.; Berghuis, A.M. Crystal structures of two aminoglycoside kinases bound with a Eukaryotic protein kinase inhibitor. PLoS ONE 2011, 6, e19589. [Google Scholar] [CrossRef]
- Hassan, H.H.A.; Ismail, M.I.; Abourehab, M.A.S.; Boeckler, F.M.; Ibrahim, T.M.; Arafa, R.K. In Silico Targeting of Fascin Protein for Cancer Therapy: Dynamics Benchmarking, Virtual Screening and Molecular Dynamics Approaches. Molecules 2023, 1, 1296. [Google Scholar] [CrossRef]
- Adriazola, I.O.; Amaral, A.E.D.; Amorim, J.C.; Correia, B.L.; Petkowicz, C.L.O.; Mercê, A.L.R.; Noleto, G.R. Macrophage activation and leishmanicidal activity by galactomannan and its oxovanadium (IV/V) complex in vitro. J. Inorg. Biochem. 2014, 132, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.C.; Vriesmann, L.C.; Petkowicz, C.L.O.; Martinez, G.R.; Noleto, G.R. Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage. Inter. J. Biol. Macromol. 2016, 96, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Feuser, P.E.; Jacques, A.V.; Arévalo, J.M.C.; Rocha, M.E.M.; dos Santos-Silva, M.C.; Sayer, C.; de Araújo, P.H.H. Superparamagnetic poly (methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis. J. Nanoparticle Res. 2016, 18, 104. [Google Scholar] [CrossRef]
- Carpio Arévalo, J.M.; Feuser, P.E.; Rossi, G.R.; Trindade, E.S.; da Silva Córneo, E.; Machado-de-Ávila, R.A.; Sayer, C.; Cadena, S.M.S.C.; Noleto, G.R.; Martinez, G.R.; et al. Preparation and characterization of 4-nitrochalcone-folic acid-poly(methyl methacrylate) nanocapsules and cytotoxic activity on HeLa and NIH3T3 cells. J. Drug Deliv. Sci. Technol. 2019, 54, 101300. [Google Scholar] [CrossRef]
- Carpio Arévalo, J.M.; Amorim, J.C. An in-silico analysis reveals 7,7′-bializarin as a promising DNA gyrase B inhibitor on Gram-positive and Gram-negative bacteria. Comput. Biol. Med. 2021, 135, 104626. [Google Scholar] [CrossRef]
- Arévalo, J.M.C.; Amorim, J.C. Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a]quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci. Rep. 2022, 12, 4742. [Google Scholar] [CrossRef]
- Amorim, J.C.; Cabrera Bermeo, A.E.; Vásquez, V.E.; Urgilés, M.R.M.; León, J.M.; Carpio, A. An in silico evaluation of anthraquinone derivatives as potential inhibitors of DNA gyrase B of Mycobacterium tuberculosis. Microorganisms 2022, 10, 2434. [Google Scholar] [CrossRef]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.S.; Liu, Z.; Kumar, V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front. Pharmacol. 2021, 12, 720726. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Pratap, R. The biological potential of flavones. Nat. Prod. Rep. 2010, 27, 1571–1593. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, E47. [Google Scholar] [CrossRef]
- Weston, L.A.; Mathesius, U. Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy. J. Chem. Ecol. 2013, 39, 283–297. [Google Scholar] [CrossRef]
- Hou, D.X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxidants Redox Signal. 2010, 13, 691–719. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, Y.; Jiang, S.; Shao, Y. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex. PLoS ONE 2018, 13, e0196651. [Google Scholar] [CrossRef]
- Hariri, B.M.; McMahon, D.B.; Chen, B.; Adappa, N.D.; Palmer, J.N.; Kennedy, D.W.; Lee, R.J. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLoS ONE 2017, 12, 4–8. [Google Scholar] [CrossRef]
- Wright, G.D. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. Trends Microbiol. 2016, 24, 862–871. [Google Scholar] [CrossRef]
- Burk, D.L.; Hon, W.C.; Leung, A.K.W.; Berghuis, A.M. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 2001, 40, 8756–8764. [Google Scholar] [CrossRef]
- Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009, 9, 5–9. [Google Scholar] [CrossRef]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef] [PubMed]
- Santes-Palacios, R.; Marroquín-Pérez, A.L.; Hernández-Ojeda, S.L.; Camacho-Carranza, R.; Govezensky, T.; Espinosa-Aguirre, J.J. Human CYP1A1 inhibition by flavonoids. Toxicol. Vitr. 2020, 62, 104681. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, W.; Cao, C.; Shi, Y.; Ye, W.; Hu, J.; Wang, L.L.; Zhou, W. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur. J. Med. Chem. 2020, 189, 112028. [Google Scholar] [CrossRef] [PubMed]
- Rankovic, Z. CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef]
- Kasinathan, N.; Jagani, H.V.; Alex, A.T.; Volety, S.M.; Venkata Rao, J. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015, 22, 243–257. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Scott Daniels, J. Carboxylic acids and their bioisosteres. In RSC Drug Discovery Series; Royal Society of Chemistry: London, UK, 2010; Volume 1, pp. 99–167. [Google Scholar] [CrossRef]
- Sahasrabudhe, V.; Zhu, T.; Vaz, A.; Tse, S. Drug Metabolism and Drug Interactions: Potential Application to Antituberculosis Drugs. J. Infect. Dis. 2015, 211, S107–S114. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, Y.; Yoda, N.; Kondo, S.; Yamamura, Y.; Takiguchi, Y.; Umehara, K. Inhibitory potential of twenty-five anti-tuberculosis drugs on CYP activities in human liver microsomes. Biol. Pharm. Bull. 2015, 38, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Hon, W.C.; McKay, G.A.; Thompson, P.R.; Sweet, R.M.; Yang, D.S.C.; Wright, G.D.; Berghuis, A.M. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 1997, 89, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform. 2019, 11, 40. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W3664. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. Gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
Score | Structure | Binding Energy (kcal/mol) |
---|---|---|
BS-1 | −10.5 | |
BS-2 | −10.4 | |
BS-3 | −10.4 | |
BS-4 | −10.3 | |
BS-5 | −10.3 | |
CKI-7 | −8.2 |
Pharmacokinetic Analyses | |||
ANF | ANF2OHC | ANF2OHCC | |
GI absorption | High | High | High |
BBB permeant | Yes | No | No |
P-gp substrate | No | No | No |
CYP1A2 inhibitor | Yes | Yes | No |
CYP2C19 inhibitor | Yes | No | No |
CYP2C9 inhibitor | No | No | No |
CYP2D6 inhibitor | No | Yes | No |
CYP3A4 inhibitor | No | No | No |
Toxicological analyses | |||
ANF | ANF2OHC | ANF2OHCC | |
Hepatotoxicity | Inactive (0.70) | Inactive (0.72) | Inactive (0.70) |
Carcinogenicity | Active (0.69) | Inactive (0.58) | Inactive (0.63) |
Immunotoxicity | Inactive (0.85) | Inactive (0.81) | Inactive (0.75) |
Mutagenicity | Inactive (0.54) | Inactive (0.74) | Inactive (0.71) |
Cytotoxicity | Active (0.75) | Inactive (0.81) | Inactive (0.74) |
Energy Decomposition (Kcal/mol) ± SD | |||
---|---|---|---|
ANF | ANF2OHC | ANF2OHCC | |
ΔE (Vdw) | −29.7 ± 3.8 | −42.8 ± 3.1 | −35.0 ± 3.2 |
ΔE (Ele) | −1.0 ± 0.8 | −3.9 ± 1.0 | −5.7 ± 1.2 |
ΔE (PB) | 2.9 ± 0.7 | 6.6 ± 0.8 | 6.2 ± 0.8 |
ΔE (NPolar) | −3.0 ± 0.2 | −4.1 ± 0.1 | −4.0 ± 0.1 |
ΔG (Total) | −29.3 ± 3.9 | −44.2 ± 2.9 | −38.4 ± 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorim, J.C.; Carpio, J.M. Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3’)-IIIa Nucleotide-Binding Site of Enterococcus faecalis. Microorganisms 2023, 11, 2351. https://doi.org/10.3390/microorganisms11092351
Amorim JC, Carpio JM. Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3’)-IIIa Nucleotide-Binding Site of Enterococcus faecalis. Microorganisms. 2023; 11(9):2351. https://doi.org/10.3390/microorganisms11092351
Chicago/Turabian StyleAmorim, Juliana Carolina, and Juan Marcelo Carpio. 2023. "Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3’)-IIIa Nucleotide-Binding Site of Enterococcus faecalis" Microorganisms 11, no. 9: 2351. https://doi.org/10.3390/microorganisms11092351
APA StyleAmorim, J. C., & Carpio, J. M. (2023). Alpha-Naphthoflavone as a Novel Scaffold for the Design of Potential Inhibitors of the APH(3’)-IIIa Nucleotide-Binding Site of Enterococcus faecalis. Microorganisms, 11(9), 2351. https://doi.org/10.3390/microorganisms11092351