Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Whole Genome Sequencing, De Novo Assembly, and Annotation
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Locus_Tag in NCBI | Gene | Protein ID | Length of Amino Acid | Function | |
---|---|---|---|---|---|
Start | Stop | ||||
Q7259_00400 | 85998 | 85510 | WLF63783 | 162 | Phage virion morphogenesis protein |
Q7259_00405 | 88215 | 86002 | WLF63784 | 737 | Phage tail tape measure protein |
Q7259_00415 | 88913 | 88674 | WLF63786 | 79 | Phage tail assembly protein |
Q7259_00420 | 89575 | 89066 | WLF63787 | 169 | Phage major tail tube protein |
Q7259_00425 | 90795 | 89602 | WLF63788 | 397 | Phage tail sheath family protein |
Q7259_00445 | 93884 | 92805 | WLF63792 | 359 | Phage tail protein |
Q7259_00450 | 94504 | 93884 | WLF63793 | 206 | Phage tail protein I |
Q7259_00455 | 95667 | 94501 | WLF63794 | 388 | Phage baseplate J/gp47 family protein |
Q7259_00460 | 95954 | 95664 | WLF63795 | 96 | Phage baseplate wedge protein/gp25 family protein |
Q7259_00470 | 96783 | 96151 | WLF63797 | 210 | Phage baseplate assembly protein V |
Q7259_00475 | 97097 | 96783 | WLF63798 | 104 | Phage holin family protein |
Q7259_00505 | 98779 | 99594 | WLF63804 | 271 | Phage protease |
Q7259_00515 | 100127 | 101104 | WLF63806 | 325 | Phage major capsid protein |
Q7259_00530 | 102269 | 103939 | WLF63809 | 556 | Phage terminase large subunit |
Q7259_00535 | 103949 | 105319 | WLF63810 | 456 | DUF935 family protein (Mu phage gp29) |
Q7259_00540 | 105321 | 106559 | WLF63811 | 412 | Phage minor head protein |
Q7259_00545 | 106685 | 107059 | WLF63812 | 124 | Phage tail protein |
Q7259_00550 | 107052 | 107243 | WLF63813 | 63 | Phage tail protein X |
Q7259_00555 | 107237 | 108214 | WLF63814 | 325 | Phage tail protein |
Q7259_00570 | 109560 | 109276 | WLF63817 | 94 | Mor transcription activator family protein, phage Mu |
Q7259_00585 | 111088 | 110639 | WLF63819 | 149 | Regulatory protein GemA, phage Mu |
Q7259_00620 | 114570 | 114085 | WLF63826 | 161 | Host-nuclease inhibitor Gam family protein, phage |
Q7259_00640 | 116413 | 115490 | WLF63830 | 307 | ATPase/bacteriophage DNA transposition B protein |
Q7259_00645 | 118659 | 116584 | WLF63831 | 691 | Transposase family protein, phage Mu |
Locus_Tag in NCBI | Gene | Protein ID | Length of Amino Acid | Function | |
---|---|---|---|---|---|
Start | Stop | ||||
Q7260_00275 | 59549 | 58572 | WLF67118 | 325 | Phage tail formation protein GpD |
Q7260_00285 | 60101 | 59727 | WLF67120 | 124 | Phage tail protein GpU |
Q7260_00290 | 61465 | 60227 | WLF67121 | 412 | Phage minor head protein (Mu phage gp30) |
Q7260_00295 | 62837 | 61467 | WLF67122 | 456 | DUF935 family protein (Mu phage gp29) |
Q7260_00300 | 64517 | 62847 | WLF67916 | 556 | Phage terminase large subunit |
Q7260_00305 | 65116 | 64517 | WLF67123 | 199 | DUF1804 family protein (Mu phage gp31) |
Q7260_00310 | 65567 | 65109 | WLF67124 | 152 | DUF1320 family protein (Mu phage gp36) |
Q7260_00315 | 66660 | 65683 | WLF67125 | 325 | Major capsid protein E, phage head |
Q7260_00325 | 68008 | 67193 | WLF67127 | 271 | Phage protease (Mu phage gp32) |
Q7260_00355 | 69691 | 70005 | WLF67133 | 104 | Phage holin family protein |
Q7260_00360 | 70005 | 70637 | WLF67917 | 210 | Phage baseplate assembly protein GpV |
Q7260_00370 | 70834 | 71124 | WLF67135 | 96 | Phage baseplate assembly protein GpW (gp25 family) |
Q7260_00375 | 71121 | 72287 | WLF67136 | 388 | Phage baseplate assembly protein GpJ (gp47 family) |
Q7260_00380 | 72284 | 72904 | WLF67137 | 206 | Phage tail formation protein GpI |
Q7260_00405 | 75918 | 77111 | WLF67141 | 397 | Phage tail sheath family protein |
Q7260_00410 | 77138 | 77647 | WLF67142 | 169 | Phage major tail tube protein |
Q7260_00415 | 77800 | 78039 | WLF67143 | 79 | Phage tail assembly protein |
Q7260_00425 | 78498 | 80720 | WLF67145 | 740 | Phage tail tape measure protein |
Q7260_00430 | 80724 | 81212 | WLF67146 | 162 | Phage virion morphogenesis protein |
Q7260_00435 | 81317 | 82132 | WLF67147 | 271 | Phage DNA adenine methylase |
Q7260_00455 | 83761 | 83132 | WLF67151 | 209 | S24 family peptidase (putative phage repressor protein) |
Q7260_06585 | 1250342 | 1251517 | WLF66625 | 391 | Tyrosine-type recombinase/integrase (Phage integrase) |
Q7260_06660 | 1258222 | 1257491 | WLF66640 | 243 | phage regulatory protein/anti-repressor Ant |
Q7260_06750 | 1270310 | 1269993 | WLF66658 | 105 | head-tail adaptor protein |
Q7260_06755 | 1270760 | 1270323 | WLF66659 | 145 | Phage gp6-like head-tail connector protein |
Q7260_06765 | 1272185 | 1271019 | WLF66661 | 388 | Phage major capsid protein, HK97 family |
Q7260_06770 | 1272759 | 1272202 | WLF66662 | 185 | HK97 family phage prohead protease |
Q7260_06810 | 1282537 | 1281995 | WLF66670 | 180 | HK97 gp10 family phage protein |
Q7260_06815 | 1283706 | 1282534 | WLF66671 | 390 | Phage portal protein |
Q7260_06825 | 1285980 | 1284355 | WLF66673 | 541 | Phage terminase large subunit |
Q7260_06830 | 1286619 | 1285984 | WLF66674 | 211 | P27 family phage terminase small subunit |
References
- Galanis, E. Campylobacter and bacterial gastroenteritis. Cmaj 2007, 177, 570–571. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef] [PubMed]
- Rushton, S.P.; Sanderson, R.A.; Diggle, P.J.; Shirley, M.D.F.; Blain, A.P.; Lake, I.; Maas, J.A.; Reid, W.D.K.; Hardstaff, J.; Williams, N.; et al. Climate, human behaviour or environment: Individual-based modelling of Campylobacter seasonality and strategies to reduce disease burden. J. Transl. Med. 2019, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, S.A.; Xue, J.; Riordan, S.M.; Zhang, L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in Poultry in Three Spanish Farms, A Slaughterhouse and A Further Processing Plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a foodborne pathogen: A review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef]
- Poudel, S.; Li, T.; Chen, S.; Zhang, X.; Cheng, W.-H.; Sukumaran, A.T.; Kiess, A.S.; Zhang, L. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Campylobacter Isolated from Broilers and Broiler Meat Raised without Antibiotics. Microbiol. Spectr. 2022, 10, e00251-22. [Google Scholar] [CrossRef]
- Guyard-Nicodème, M.; Anis, N.; Naguib, D.; Viscogliosi, E.; Chemaly, M. Prevalence and Association of Campylobacter spp., Salmonella spp., and Blastocystis sp. in Poultry. Microorganisms 2023, 11, 1983. [Google Scholar] [CrossRef]
- Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. Campylobacter: From microbiology to prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar]
- Stahl, M.; Vallance, B.A. Insights into Campylobacter jejuni colonization of the mammalian intestinal tract using a novel mouse model of infection. Gut Microbes 2015, 6, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Callahan, S.M.; Dolislager, C.G.; Johnson, J.G. The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect. Immun. 2021, 89, e0011621. [Google Scholar] [CrossRef]
- Llarena, A.K.; Taboada, E.; Rossi, M. Whole-Genome Sequencing in Epidemiology of Campylobacter jejuni Infections. J. Clin. Microbiol. 2017, 55, 1269–1275. [Google Scholar] [CrossRef]
- Quino, W.; Caro-Castro, J.; Hurtado, V.; Flores-León, D.; Gonzalez-Escalona, N.; Gavilan, R.G. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front. Microbiol. 2021, 12, 802404. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Schjørring, S.; Gantzhorn, M.R.; Vester, C.T.; Nielsen, H.L.; Engberg, J.H.; Holt, H.M.; Ethelberg, S.; Müller, L.; Sandø, G.; et al. Whole genome sequencing data used for surveillance of Campylobacter infections: Detection of a large continuous outbreak, Denmark, 2019. Eurosurveillance 2021, 26, 2001396. [Google Scholar] [CrossRef] [PubMed]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef]
- He, Y.; Reed, S.; Bhunia, A.K.; Gehring, A.; Nguyen, L.H.; Irwin, P.L. Rapid identification and classification of Campylobacter spp. using laser optical scattering technology. Food Microbiol. 2015, 47, 28–35. [Google Scholar] [CrossRef]
- He, Y.; Yao, X.; Gunther, N.W.; Xie, Y.; Tu, S.-I.; Shi, X. Simultaneous Detection and Differentiation of Campylobacter jejuni, C. coli, and C. lari in Chickens Using a Multiplex Real-Time PCR Assay. Food Anal. Methods 2010, 3, 321–329. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Hunt, M.; Silva, N.D.; Otto, T.D.; Parkhill, J.; Keane, J.A.; Harris, S.R. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biol. 2015, 16, 1–10. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Lertpiriyapong, K.; Gamazon, E.R.; Feng, Y.; Park, D.S.; Pang, J.; Botka, G.; Graffam, M.E.; Ge, Z.; Fox, J.G. Campylobacter jejuni type VI secretion system: Roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS ONE 2012, 7, e42842. [Google Scholar] [CrossRef] [PubMed]
- Bleumink-Pluym, N.M.; van Alphen, L.B.; Bouwman, L.I.; Wösten, M.M.; van Putten, J.P. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity. PLoS Pathog. 2013, 9, e1003393. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Tegtmeyer, N.; Sharafutdinov, I.; Harrer, A.; Soltan Esmaeili, D.; Linz, B.; Backert, S. Campylobacter Virulence Factors and Molecular Host–Pathogen Interactions. In Fighting Campylobacter Infections: Towards a One Health Approach; Backert, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 169–202. [Google Scholar] [CrossRef]
- Gabbert, A.D.; Mydosh, J.L.; Talukdar, P.K.; Gloss, L.M.; McDermott, J.E.; Cooper, K.K.; Clair, G.C.; Konkel, M.E. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023, 13, 135. [Google Scholar] [CrossRef]
- Liaw, J.; Hong, G.; Davies, C.; Elmi, A.; Sima, F.; Stratakos, A.; Stef, L.; Pet, I.; Hachani, A.; Corcionivoschi, N.; et al. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front. Microbiol. 2019, 10, 2864. [Google Scholar] [CrossRef]
- Agnetti, J.; Seth-Smith, H.M.B.; Ursich, S.; Reist, J.; Basler, M.; Nickel, C.; Bassetti, S.; Ritz, N.; Tschudin-Sutter, S.; Egli, A. Clinical impact of the type VI secretion system on virulence of Campylobacter species during infection. BMC Infect. Dis. 2019, 19, 237. [Google Scholar] [CrossRef]
C. jejuni Strain | SRA Accession No. | Accession No. Chromosome/ Plasmid | No. of Reads/ Av. Length | Quality | Reads N50/ N90 | Average Read Depth | Size of Chromosome/Plasmid (bp) | GC Content of Chromosome/Plasmid (%) |
---|---|---|---|---|---|---|---|---|
S27 | SRX21182642 | CP131444/N/A | 432,285/ 12,361 | Q36 | 12,878/ 9041 | 3176 | 1,663,226/ N/A | 30.5/ N/A |
S33 | SRX21182643 | CP131442/CP131443 | 438,906/ 13,482 | Q35 | 14,143/ 9886 | 699 | 1,748,761/ 40,686 | 30.4/ 28.4 |
S36 | SRX21182644 | CP131440/CP131441 | 420,379/ 12,137 | Q36 | 12,672/8767 | 2768 | 1,715,845/ 86,827 | 30.4/ 26.0 |
C. jejuni Strain | No. of Coding Sequences | No. of RNAs | No. of Functional Subsystems | No. of Virulence, Disease & Defense Genes | No. of Motility & Chemotaxis Genes |
---|---|---|---|---|---|
S27 | 1667 | 53 | 189 | 17 | 30 |
S33 | 1850 | 53 | 188 | 17 | 32 |
S36 | 1825 | 50 | 188 | 17 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Kanrar, S.; Reed, S.; Lee, J.; Capobianco, J. Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat. Microorganisms 2024, 12, 159. https://doi.org/10.3390/microorganisms12010159
He Y, Kanrar S, Reed S, Lee J, Capobianco J. Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat. Microorganisms. 2024; 12(1):159. https://doi.org/10.3390/microorganisms12010159
Chicago/Turabian StyleHe, Yiping, Siddhartha Kanrar, Sue Reed, Joe Lee, and Joseph Capobianco. 2024. "Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat" Microorganisms 12, no. 1: 159. https://doi.org/10.3390/microorganisms12010159
APA StyleHe, Y., Kanrar, S., Reed, S., Lee, J., & Capobianco, J. (2024). Whole Genome Sequences, De Novo Assembly, and Annotation of Antibiotic Resistant Campylobacter jejuni Strains S27, S33, and S36 Newly Isolated from Chicken Meat. Microorganisms, 12(1), 159. https://doi.org/10.3390/microorganisms12010159