Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation
Abstract
:1. Introduction
2. Methods
3. The Genetic Basis of Microbial Arsenic Detoxification
3.1. The aio Gene Systems
3.2. The ars Gene Systems
3.3. The arr Gene Systems
4. Biomolecular Pathways Involved in the Microbial Detoxification of Arsenic Related to Bioremediation
4.1. Divergent Arsenic Detoxification Strategies Used by Microorganisms
4.2. Microbial As(III) Oxidation
4.3. Microbial As(V) Reduction
4.4. Microbial Arsenic Biomethylation
5. Recently Isolated Arsenic Tolerant Microorganisms and Approaches Used in the Microbial Bioremediation of Arsenic
5.1. Bacteria
5.2. Fungi
5.3. Microbial Consortium
6. Challenges and Future Perspectives in the Microbial Bioremediation of Arsenic
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780124199552. [Google Scholar]
- Reis, V.; Duarte, A.C. Occurrence, Distribution, and Significance of Arsenic Speciation, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 85, ISBN 9780444642646. [Google Scholar]
- Oremland, R.S.; Stolz, J.F. Arsenic, Microbes and Contaminated Aquifers. Trends Microbiol. 2005, 13, 40–49. [Google Scholar] [CrossRef] [PubMed]
- RoyChowdhury, A.; Datta, R.; Sarkar, D. Heavy Metal Pollution and Remediation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128095492. [Google Scholar]
- Oremland, R.S.; Stolz, J.F. The Ecology of Arsenic. Science 2003, 300, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Cordos, E.A.; Frentiu, T.; Ponta, M.; Marginean, I.; Abraham, B.; Roman, C. Distribution Study of Inorganic Arsenic (III) and (V) Species in Soil and Their Mobility in the Area of Baia-Mare, Romania. Chem. Speciat. Bioavailab. 2006, 18, 11–25. [Google Scholar] [CrossRef]
- World Health Organization Preventing Disease through Healthy Environment. Exposure to Arsenic: A Major Public Health Concern; World Health Organization Preventing Disease through Healthy Environment: Geneva, Switzerland, 2019; pp. 1–5. [Google Scholar]
- International Agency for Research on Cancer. Arsenic and Arsenic Compounds; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100C. [Google Scholar]
- United States Environmental Protection Agency ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html#2019spl (accessed on 8 April 2020).
- Polya, D.A. Arsenic in Groundwaters of South-East Asia: With Emphasis on Cambodia and Vietnam. Appl. Geochem. 2008, 23, 2968–2976. [Google Scholar] [CrossRef]
- Kim, K.W.; Chanpiwat, P.; Hanh, H.T.; Phan, K.; Sthiannopkao, S. Arsenic Geochemistry of Groundwater in Southeast Asia. Front. Med. China 2011, 5, 420–433. [Google Scholar] [CrossRef] [PubMed]
- McCarty, K.M.; Hanh, H.T.; Kim, K.W. Arsenic Geochemistry and Human Health in South East Asia. Rev. Environ. Health 2011, 26, 71–78. [Google Scholar] [CrossRef]
- Smith, A.H.; Lingas, E.O.; Rahman, M. Contamination of Drinking Water by Arsenic in Bangladesh: A Public Health Emergency. Bulletin of the World Health Organization 78: Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. World Health Organ. Bull. World Health Organ. 2000, 78, 1093–1103. [Google Scholar]
- Suda, A.; Baba, K.; Yamaguchi, N.; Akahane, I.; Suda, A.; Baba, K.; Yamaguchi, N.; Akahane, I. The Effects of Soil Amendments on Arsenic Concentrations in Soil Solutions after Long-Term Flooded Incubation. Soil Sci. Plant Nutr. 2015, 61, 592–602. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Mi, W.; Xie, S.; Ji, L. Land-Use Change Caused by Anthropogenic Activities Increase Fluoride and Arsenic Pollution in Groundwater and Human Health Risk. J. Hazard. Mater. 2021, 406, 124337. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Moussas, P.A.; Psaltou, S.G. Groundwater and Soil Pollution: Bioremediation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 3, ISBN 9780444639523. [Google Scholar]
- Vidali, M. Bioremediation: An Overview. Pure Appl. Chem. 2001, 73, 1163–1172. [Google Scholar] [CrossRef]
- Dua, M.; Singh, A.; Sethunathan, N.; Johri, A. Biotechnology and Bioremediation: Successes and Limitations. Appl. Microbiol. Biotechnol. 2002, 59, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, D.; Wang, Q. An Overview of Field-Scale Studies on Remediation of Soil Contaminated with Heavy Metals and Metalloids: Technical Progress over the Last Decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Rosen, B.P. New Mechanisms of Bacterial Arsenic Resistance. Biomed. J. 2016, 39, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Fekih, I.B.; Zhang, C.; Li, Y.P.; Zhao, Y.; Alwathnani, H.A.; Saquib, Q.; Rensing, C.; Cervantes, C. Distribution of Arsenic Resistance Genes in Prokaryotes. Front. Microbiol. 2018, 9, 2473. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic Binding to Proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef] [PubMed]
- Mateos, L.M.; Villadangos, A.F.; de la Rubia, A.G.; Mourenza, A.; Marcos-Pascual, L.; Letek, M.; Pedre, B.; Messens, J.; Gil, J.A. The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control. Adv. Appl. Microbiol. 2017, 99, 103–137. [Google Scholar] [CrossRef]
- Lièvremont, D.; Bertin, P.N.; Lett, M.C. Arsenic in Contaminated Waters: Biogeochemical Cycle, Microbial Metabolism and Biotreatment Processes. Biochimie 2009, 91, 1229–1237. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Rosen, B.P.; Phung, L.T.; Silver, S. Microbial Arsenic: From Geocycles to Genes and Enzymes. FEMS Microbiol. Rev. 2002, 26, 311–325. [Google Scholar] [CrossRef]
- Sforna, M.C.; Philippot, P.; Somogyi, A.; Van Zuilen, M.A.; Medjoubi, K.; Schoepp-Cothenet, B.; Nitschke, W.; Visscher, P.T. Evidence for Arsenic Metabolism and Cycling by Microorganisms 2.7 Billion Years Ago. Nat. Geosci. 2014, 7, 811–815. [Google Scholar] [CrossRef]
- Van Lis, R.; Nitschke, W.; Duval, S.; Schoepp-Cothenet, B. Arsenics as Bioenergetic Substrates. Biochim. Biophys. Acta-Bioenerg. 2013, 1827, 176–188. [Google Scholar] [CrossRef]
- Lebrun, E.; Brugna, M.; Baymann, F.; Muller, D.; Lièvremont, D.; Lett, M.C.; Nitschke, W. Arsenite Oxidase, an Ancient Bioenergetic Enzyme. Mol. Biol. Evol. 2003, 20, 686–693. [Google Scholar] [CrossRef]
- Lett, M.C.; Muller, D.; Lièvremont, D.; Silver, S.; Santini, J. Unified Nomenclature for Genes Involved in Prokaryotic Aerobic Arsenite Oxidation. J. Bacteriol. 2012, 194, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wang, Q.; Wang, G. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation. Front. Microbiol. 2020, 11, 569282. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Lievremont, D.; Simeonova, D.D.; Hubert, J.-C.; Lett, M.-C. Arsenite Oxidase Aox Genes from a Metal-Resistant_B-Proteobacterium. J. Bacteriol. 2002, 185, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.J.; Conrads, T.; Hille, R.; Kuhn, P. Crystal Structure of the 100 KDa Arsenite Oxidase from Alcaligenes Faecalis in Two Crystal Forms at 1.64 Å and 2.03 Å. Structure 2001, 9, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.; Phung, L.T. Genes and Enzymes Involved in Bacterial Oxidation and Reduction of Inorganic Arsenic. Appl. Environ. Microbiol. 2005, 71, 599–608. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Huang, Y.; Rensing, C.; Wang, G. In Silico Analysis of Bacterial Arsenic Islands Reveals Remarkable Synteny and Functional Relatedness between Arsenate and Phosphate. Front. Microbiol. 2013, 4, 347. [Google Scholar] [CrossRef]
- Liu, G.; Liu, M.; Kim, E.H.; Maaty, W.S.; Bothner, B.; Lei, B.; Rensing, C.; Wang, G.; McDermott, T.R. A Periplasmic Arsenite-Binding Protein Involved in Regulating Arsenite Oxidation. Environ. Microbiol. 2012, 14, 1624–1634. [Google Scholar] [CrossRef]
- Sardiwal, S.; Santini, J.M.; Osborne, T.H.; Djordjevic, S. Characterization of a Two-Component Signal Transduction System That Controls Arsenite Oxidation in the Chemolithoautotroph NT-26. FEMS Microbiol. Lett. 2010, 313, 20–28. [Google Scholar] [CrossRef]
- Koechler, S.; Cleiss-Arnold, J.; Proux, C.; Sismeiro, O.; Dillies, M.A.; Goulhen-Chollet, F.; Hommais, F.; Lièvremont, D.; Arsène-Ploetze, F.; Coppée, J.Y.; et al. Multiple Controls Affect Arsenite Oxidase Gene Expression in Herminiimonas Arsenicoxydans. BMC Microbiol. 2010, 10, 53. [Google Scholar] [CrossRef]
- Slyemi, D.; Moinier, D.; Talla, E.; Bonnefoy, V. Organization and Regulation of the Arsenite Oxidase Operon of the Moderately Acidophilic and Facultative Chemoautotrophic Thiomonas Arsenitoxydans. Extremophiles 2013, 17, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, H.; Rensing, C.; Zhao, K.; Johnstone, L.; Wang, G. Genome Sequence of the Facultative Anaerobic Arsenite-Oxidizing and Nitrate-Reducing Bacterium Acidovorax sp. Strain NO1. J. Bacteriol. 2012, 194, 1635–1636. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Han, Y.; Shi, K.; Fan, X.; Wang, L.; Li, M.; Wang, G. An Oxidoreductase AioE Is Responsible for Bacterial Arsenite Oxidation and Resistance. Sci. Rep. 2017, 7, 41536. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Sun, G.X.; Yan, Y.; Konstantinidis, K.T.; Zhang, S.Y.; Deng, Y.; Li, X.M.; Cui, H.L.; Musat, F.; Popp, D.; et al. The Great Oxidation Event Expanded the Genetic Repertoire of Arsenic Metabolism and Cycling. Proc. Natl. Acad. Sci. USA 2020, 117, 10414–10421. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mandal, G.; Rosen, B.P. Expression of Arsenic Resistance Genes in the Obligate Anaerobe Bacteroides Vulgatus ATCC 8482, a Gut Microbiome Bacterium. Anaerobe 2016, 39, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Luo, X.; Xu, Z.; Liu, L.; Zhang, R. Bacillus sp. CDB3 Isolated from Cattle Dip-Sites Possesses Two Ars Gene Clusters. J. Environ. Sci. 2011, 23, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Busenlehner, L.S.; Pennella, M.A.; Giedroc, D.P. The SmtB/ArsR Family of Metalloregulatory Transcriptional Repressors: Structural Insights into Prokaryotic Metal Resistance. FEMS Microbiol. Rev. 2003, 27, 131–143. [Google Scholar] [CrossRef]
- Rosen, B.P.; Bhattacharjee, H.; Zhou, T.; Walmsley, A.R. Mechanism of the ArsA ATPase. Biochim. Biophys. Acta-Biomembr. 1999, 1461, 207–215. [Google Scholar] [CrossRef]
- Meng, Y.L.; Liu, Z.; Rosen, B.P. As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia Coli. J. Biol. Chem. 2004, 279, 18334–18341. [Google Scholar] [CrossRef]
- Wu, J.; Rosen, B.P. The ArsD Gene Encodes a Second Trans-Acting Regulatory Protein of the Plasmid-Encoded Arsenical Resistance Operon. Mol. Microbiol. 1993, 8, 615–623. [Google Scholar] [CrossRef]
- Lin, Y.F.; Yang, J.; Rosen, B.P. ArsD Residues Cys12, Cys13, and Cys18 Form an As(III)-Binding Site Required for Arsenic Metallochaperone Activity. J. Biol. Chem. 2007, 282, 16783–16791. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kamli, M.R.; Ali, A. Diversity of Arsenate Reductase Genes (Arsc Genes) from Arsenic-Resistant Environmental Isolates of E. Coli. Curr. Microbiol. 2009, 59, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Rosen, B.P. Saccharomyces Cerevisiae ACR2 Gene Encodes an Arsenate Reductase. FEMS Microbiol. Lett. 1998, 168, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Rai, R.; Rai, L.C. Biochemical and Molecular Basis of Arsenic Toxicity and Tolerance in Microbes and Plants; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124199552. [Google Scholar]
- Krafft, T.; Macy, J.M. Purification and Characterization of the Respiratory Arsenate Reductase of Chrysiogenes Arsenatis. Eur. J. Biochem. 1998, 255, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Ducluzeau, A.L.; Nitschke, W.; Schoepp-Cothenet, B. Enzyme Phylogenies as Markers for the Oxidation State of the Environment: The Case of Respiratory Arsenate Reductase and Related Enzymes. BMC Evol. Biol. 2008, 8, 206. [Google Scholar] [CrossRef] [PubMed]
- Szyttenholm, J.; Chaspoul, F.; Bauzan, M.; Ducluzeau, A.L.; Chehade, M.H.; Pierrel, F.; Denis, Y.; Nitschke, W.; Schoepp-Cothenet, B. The Controversy on the Ancestral Arsenite Oxidizing Enzyme; Deducing Evolutionary Histories with Phylogeny and Thermodynamics. Biochim. Biophys. Acta-Bioenerg. 2020, 1861, 148252. [Google Scholar] [CrossRef]
- Green, H.H. Description of a Bacterium Which Oxidizes Arsenite to Arsenate, and of One Which Reduces Arsenate to Arsenite, Isolated from a Cattle-Dipping Tank. S. Afr. J. Sci. 1918, 14, 465–467. [Google Scholar]
- Yin, S.; Zhang, X.; Yin, H.; Zhang, X. Current Knowledge on Molecular Mechanisms of Microorganism-Mediated Bioremediation for Arsenic Contamination: A Review. Microbiol. Res. 2022, 258, 126990. [Google Scholar] [CrossRef]
- Warelow, T.P.; Oke, M.; Schoepp-Cothenet, B.; Dahl, J.U.; Bruselat, N.; Sivalingam, G.N.; Leimkühler, S.; Thalassinos, K.; Kappler, U.; Naismith, J.H.; et al. The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster. PLoS ONE 2013, 8, e72535. [Google Scholar] [CrossRef]
- Kalimuthu, P.; Heath, M.D.; Santini, J.M.; Kappler, U.; Bernhardt, P.V. Electrochemically Driven Catalysis of Rhizobium sp. NT-26 Arsenite Oxidase with Its Native Electron Acceptor Cytochrome C552. Biochim. Biophys. Acta-Bioenerg. 2014, 1837, 112–120. [Google Scholar] [CrossRef]
- Dobbs, A.J.; Anderson, B.F.; Faber, H.R.; Baker, E.N. Three-Dimensional Structure of Cytochrome c from Two Alcaligenes Species and the Implications for Four-Helix Bundle Structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 1996, 52, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Niks, D.; Hille, R.; Vieira, M.; Schoepp-Cothenet, B.; Marques, A.T.; Romão, M.J.; Santos-Silva, T.; Santini, J.M. Electron Transfer through Arsenite Oxidase: Insights into Rieske Interaction with Cytochrome C. Biochim. Biophys. Acta-Bioenerg. 2017, 1858, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Van Lis, R.; Nitschke, W.; Warelow, T.P.; Capowiez, L.; Santini, J.M.; Schoepp-Cothenet, B. Heterologously Expressed Arsenite Oxidase: A System to Study Biogenesis and Structure/Function Relationships of the Enzyme Family. Biochim. Biophys. Acta-Bioenerg. 2012, 1817, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, F.; Dastgheib, S.M.M.; Zhao, F.J.; Zhang, J.; Verbarg, S.; Frühling, A.; Brinkmann, H.; Osborne, T.H.; Sikorski, J.; Balloux, F.; et al. Phylogenomics Reveals the Basis of Adaptation of Pseudorhizobium Species to Extreme Environments and Supports a Taxonomic Revision of the Genus. Syst. Appl. Microbiol. 2021, 44, 126165. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Rosen, B.P. Arsenate Reductases in Prokaryotes and Eukaryotes. Environ. Health Perspect. 2002, 110, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Zegers, I.; Martins, J.C.; Willem, R.; Wyns, L.; Messens, J. Arsenate Reductase from S. Aureus Plasmid PI258 Is a Phosphatase Drafted for Redox Duty. Nat. Struct. Biol. 2001, 8, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Radaev, S.; Rosen, B.P.; Gatti, D.L. Structure of the ArsA ATPase: The Catalytic Subunit of a Heavy Metal Resistance Pump. EMBO J. 2000, 19, 4838–4845. [Google Scholar] [CrossRef]
- Gladysheva, T.B.; Oden, K.L.; Rosen, B.P. Properties of the Arsenate Reductase of Plasmid R773. Biochemistry 1994, 33, 7288–7293. [Google Scholar] [CrossRef]
- Shi, J.; Mukhopadhyay, R.; Rosen, B.P. Identification of a Triad of Arginine Residues in the Active Site of the ArsC Arsenate Reductase of Plasmid R773. FEMS Microbiol. Lett. 2003, 227, 295–301. [Google Scholar] [CrossRef]
- Martin, P.; DeMel, S.; Shi, J.; Gladysheva, T.; Gatti, D.L.; Rosen, B.P.; Edwards, B.F.P. Insights into the Structure, Solvation, and Mechanism of ArsC Arsenate Reductase, a Novel Arsenic Detoxification Enzyme. Structure 2001, 9, 1071–1081. [Google Scholar] [CrossRef]
- Bentley, R.; Chasteen, T.G. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250–271. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Rensing, C.; Rosen, B.P.; Zhu, Y.G. Arsenic Biomethylation by Photosynthetic Organisms. Trends Plant Sci. 2012, 17, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Sun, G.X.; Rosen, B.P.; Zhang, S.Y.; Deng, Y.; Zhu, B.K.; Rensing, C.; Zhu, Y.G. Recurrent Horizontal Transfer of Arsenite Methyltransferase Genes Facilitated Adaptation of Life to Arsenic. Sci. Rep. 2017, 7, 7741. [Google Scholar] [CrossRef] [PubMed]
- Challenger, F.; Higginbottom, C.; Ellis, L. The Formation of Organo-Metalloid Compounds by Microorganisms. Part I. Trimethylarsine and Dimethylethylarsine. J. Chem. Soc. 1933, 95–100. [Google Scholar] [CrossRef]
- Cullen, W.R. Chemical Mechanism of Arsenic Biomethylation. Chem. Res. Toxicol. 2014, 27, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Mallick, I.; Hossain, S.T.; Sinha, S.; Mukherjee, S.K. Brevibacillus sp. KUMAs2, a Bacterial Isolate for Possible Bioremediation of Arsenic in Rhizosphere. Ecotoxicol. Environ. Saf. 2014, 107, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Bagade, A.V.; Bachate, S.P.; Dholakia, B.B.; Giri, A.P.; Kodam, K.M. Characterization of Roseomonas and Nocardioides spp. for Arsenic Transformation. J. Hazard. Mater. 2016, 318, 742–750. [Google Scholar] [CrossRef]
- Paul, T.; Chakraborty, A.; Islam, E.; Mukherjee, S.K. Arsenic Bioremediation Potential of Arsenite-Oxidizing Micrococcus sp. KUMAs15 Isolated from Contaminated Soil. Pedosphere 2018, 28, 299–310. [Google Scholar] [CrossRef]
- Satyapal, G.K.; Mishra, S.K.; Srivastava, A.; Ranjan, R.K.; Prakash, K.; Haque, R.; Kumar, N. Possible Bioremediation of Arsenic Toxicity by Isolating Indigenous Bacteria from the Middle Gangetic Plain of Bihar, India. Biotechnol. Rep. 2018, 17, 117–125. [Google Scholar] [CrossRef]
- Bagade, A.; Nandre, V.; Paul, D.; Patil, Y.; Sharma, N.; Giri, A.; Kodam, K. Characterisation of Hyper Tolerant Bacillus Firmus L-148 for Arsenic Oxidation. Environ. Pollut. 2020, 261, 114124. [Google Scholar] [CrossRef]
- Aguilar, N.C.; Faria, M.C.S.; Pedron, T.; Batista, B.L.; Mesquita, J.P.; Bomfeti, C.A.; Rodrigues, J.L. Isolation and Characterization of Bacteria from a Brazilian Gold Mining Area with a Capacity of Arsenic Bioaccumulation. Chemosphere 2020, 240, 124871. [Google Scholar] [CrossRef] [PubMed]
- Sher, S.; Tahir Ishaq, M.; Abbas Bukhari, D.; Rehman, A. Brevibacterium sp. Strain CS2: A Potential Candidate for Arsenic Bioremediation from Industrial Wastewater. Saudi J. Biol. Sci. 2023, 30, 103781. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Samadder, S.R. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. J. Environ. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef] [PubMed]
- ALSamman, M.T.; Sotelo, S.; Sánchez, J.; Rivas, B.L. Arsenic Oxidation and Its Subsequent Removal from Water: An Overview. Sep. Purif. Technol. 2023, 309, 123055. [Google Scholar] [CrossRef]
- Roy, M.; van Genuchten, C.M.; Rietveld, L.; van Halem, D. Integrating Biological As(III) Oxidation with Fe(0) Electrocoagulation for Arsenic Removal from Groundwater. Water Res. 2021, 188, 116531. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; McPhedran, K. Applications of Biological Sulfate Reduction for Remediation of Arsenic—A Review. Chemosphere 2019, 222, 932–944. [Google Scholar] [CrossRef]
- Liu, E.; Yang, Y.; Xie, Z.; Wang, J.; Chen, M. Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water 2022, 14, 942. [Google Scholar] [CrossRef]
- Parsania, S.; Mohammadi, P.; Soudi, M.R. Biotransformation and Removal of Arsenic Oxyanions by Alishewanella Agri PMS5 in Biofilm and Planktonic States. Chemosphere 2021, 284, 131336. [Google Scholar] [CrossRef]
- Le Pape, P.; Battaglia-Brunet, F.; Parmentier, M.; Joulian, C.; Gassaud, C.; Fernandez-Rojo, L.; Guigner, J.M.; Ikogou, M.; Stetten, L.; Olivi, L.; et al. Complete Removal of Arsenic and Zinc from a Heavily Contaminated Acid Mine Drainage via an Indigenous SRB Consortium. J. Hazard. Mater. 2017, 321, 764–772. [Google Scholar] [CrossRef]
- Serrano, J.; Leiva, E. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters. Water 2017, 9, 994. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Corynebacterium Glutamicum MTCC 2745 Immobilized on Granular Activated Carbon/MnFe2O4 Composite: A Novel Biosorbent for Removal of As(III) and As(V) Ions. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2016, 168, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, Y.T.; Morimoto, S. Comparison of 18S RDNA Primers for Estimating Fungal Diversity in Agricultural Soils Using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis. Soil Sci. Plant Nutr. 2008, 54, 701–710. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped Potential: Exploiting Fungi in Bioremediation of Hazardous Chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Bhargavi, S.D.; Savitha, J. Arsenate Resistant Penicillium Coffeae: A Potential Fungus for Soil Bioremediation. Bull. Environ. Contam. Toxicol. 2014, 92, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Srivastava, P.K.; Verma, P.C.; Kharwar, R.N.; Singh, N.; Tripathi, R.D. Soil Fungi for Mycoremediation of Arsenic Pollution in Agriculture Soils. J. Appl. Microbiol. 2015, 119, 1278–1290. [Google Scholar] [CrossRef] [PubMed]
- Govarthanan, M.; Mythili, R.; Kamala-Kannan, S.; Selvankumar, T.; Srinivasan, P.; Kim, H. In-Vitro Bio-Mineralization of Arsenic and Lead from Aqueous Solution and Soil by Wood Rot Fungus, Trichoderma sp. Ecotoxicol. Environ. Saf. 2019, 174, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Soares Guimarães, L.H.; Segura, F.R.; Tonani, L.; von-Zeska-Kress, M.R.; Rodrigues, J.L.; Calixto, L.A.; Silva, F.F.; Batista, B.L. Arsenic Volatilization by Aspergillus sp. and Penicillium sp. Isolated from Rice Rhizosphere as a Promising Eco-Safe Tool for Arsenic Mitigation. J. Environ. Manage. 2019, 237, 170–179. [Google Scholar] [CrossRef]
- Tripathi, P.; Khare, P.; Barnawal, D.; Shanker, K.; Srivastava, P.K.; Tripathi, R.D.; Kalra, A. Bioremediation of Arsenic by Soil Methylating Fungi: Role of Humicola sp. Strain 2WS1 in Amelioration of Arsenic Phytotoxicity in Bacopa monnieri L. Sci. Total Environ. 2020, 716, 136758. [Google Scholar] [CrossRef]
- Mukherjee, A.; Das, D.; Kumar Mondal, S.; Biswas, R.; Das, T.K.; Boujedaini, N.; Khuda-Bukhsh, A.R. Tolerance of Arsenate-Induced Stress in Aspergillus Niger, a Possible Candidate for Bioremediation. Ecotoxicol. Environ. Saf. 2010, 73, 172–182. [Google Scholar] [CrossRef]
- Čerňanský, S.; Kolenčík, M.; Ševc, J.; Urík, M.; Hiller, E. Fungal Volatilization of Trivalent and Pentavalent Arsenic under Laboratory Conditions. Bioresour. Technol. 2009, 100, 1037–1040. [Google Scholar] [CrossRef]
- Choe, S.I.; Sheppard, D.C. Bioremediation of Arsenic Using an Aspergillus System; Elsevier, B.V.: Amsterdam, The Netherlands, 2016; ISBN 9780444635136. [Google Scholar]
- Páez-Espino, D.; Tamames, J.; De Lorenzo, V.; Cánovas, D. Microbial Responses to Environmental Arsenic. BioMetals 2009, 22, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Kalia, K.; Joshi, D.N. Detoxification of Arsenic. In Handbook of Toxicology of Chemical Warfare Agents; Academic Press: Cambridge, MA, USA, 2009; pp. 1083–1100. [Google Scholar] [CrossRef]
- Suwalsky, M.; Rivera, C.; Sotomayor, C.P.; Jemiola-Rzeminska, M.; Strzalka, K. Monomethylarsonate (MMAv) Exerts Stronger Effects than Arsenate on the Structure and Thermotropic Properties of Phospholipids Bilayers. Biophys. Chem. 2008, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, C.; Lei, M.; Luo, K.; Wang, L.; Liu, R.; Li, Y.; Hu, Y. Bioremediation of Organic/Heavy Metal Contaminants by Mixed Cultures of Microorganisms: A Review. Open Chem. 2022, 20, 793–807. [Google Scholar] [CrossRef]
- Nitzsche, K.S.; Weigold, P.; Lösekann-Behrens, T.; Kappler, A.; Behrens, S. Microbial Community Composition of a Household Sand Filter Used for Arsenic, Iron, and Manganese Removal from Groundwater in Vietnam. Chemosphere 2015, 138, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.K.; Lee, M.H.; Park, H.J.; Lee, J.U. Bioleaching of Arsenic and Heavy Metals from Mine Tailings by Pure and Mixed Cultures of Acidithiobacillus spp. J. Ind. Eng. Chem. 2015, 21, 451–458. [Google Scholar] [CrossRef]
- Vega-Hernandez, S.; Weijma, J.; Buisman, C.J.N. Immobilization of Arsenic as Scorodite by a Thermoacidophilic Mixed Culture via As(III)-Catalyzed Oxidation with Activated Carbon. J. Hazard. Mater. 2019, 368, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Viacava, K.; Qiao, J.; Janowczyk, A.; Poudel, S.; Jacquemin, N.; Meibom, K.L.; Shrestha, H.K.; Reid, M.C.; Hettich, R.L.; Bernier-Latmani, R. Meta-Omics-Aided Isolation of an Elusive Anaerobic Arsenic-Methylating Soil Bacterium. ISME J. 2022, 16, 1740–1749. [Google Scholar] [CrossRef]
- Lee, M.K.; Saunders, J.A.; Wilson, T.; Levitt, E.; Saffari Ghandehari, S.; Dhakal, P.; Redwine, J.; Marks, J.; Billor, Z.M.; Miller, B.; et al. Field-Scale Bioremediation of Arsenic-Contaminated Groundwater Using Sulfate-Reducing Bacteria and Biogenic Pyrite. Bioremediat. J. 2019, 23, 1–21. [Google Scholar] [CrossRef]
- Duverger, A.; Berg, J.S.; Busigny, V.; Guyot, F.; Bernard, S.; Miot, J. Mechanisms of Pyrite Formation Promoted by Sulfate-Reducing Bacteria in Pure Culture. Front. Earth Sci. 2020, 8, 588310. [Google Scholar] [CrossRef]
- Crognale, S.; Casentini, B.; Amalfitano, S.; Fazi, S.; Petruccioli, M.; Rossetti, S. Biological As(III) Oxidation in Biofilters by Using Native Groundwater Microorganisms. Sci. Total Environ. 2019, 651, 93–102. [Google Scholar] [CrossRef]
Bacteria | Dominant Mechanism of Arsenic Tolerance | Maximum Tolerated Arsenic Concentration | Reference | |
---|---|---|---|---|
As(III) | As(V) | |||
Brevibacillus sp. KUMAs2 | Plasmid-mediated | 17 mM | 265 mM | [74] |
Roseomonas sp. L-159a | aioA, aioB | 2 mM | 50 mM | [75] |
Nocardioides sp. L-37a | Activation of ArsC | 5 mM | 100 mM | |
Micrococcus sp. KUMAs15 | Upregulation of aioB | 733 µM | 400 mM | [76] |
Pseudomonas AK1 | Expression of the aio operon | 13 mM | - | [77] |
Pseudomonas AK9 | 15 mM | |||
Bacillus firmus L-148 | Expression of ars and aio operon | 75 mM | - | [78] |
Bacillus cereus | As(III) efflux | 24 mM | - | [79] |
Lysinibacillus boronitolerans | ||||
Brevibacterium sp. CS2 | aioB | 40 mM | 275 mM | [80] |
Fungi | Dominant Mechanism of Arsenic Tolerance | Maximum Tolerated Arsenic Concentration | Reference | |
---|---|---|---|---|
As(III) | As(V) | |||
Penicillium coffeae | Unknown | - | 500 mM | [92] |
Aspergillus oryzae FNBR_L35 | Biosorption, Biomethylation | - | 71 mM a | [93] |
Fusarium sp. FNBR_B7, FNBR_LK5, FNBR_B3 | ||||
Aspergillus nidulans FNBR_LK1 | ||||
Rhizomucor variqbilis sp. FNBR_B9 | ||||
Emericella sp. FNBR_BA5 | ||||
Trichoderma sp. MG | Biomineralization | 6 mM b | [94] | |
Aspergillus sp. LMC 330.04 | Biomethylation | 0.0244 mM | 0.0225 mM | [95] |
Penicillium sp. LMC 331.03 | ||||
Humicola sp. 2WS1 | arsM | 38 mM | 12 mM | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
William, V.U.; Magpantay, H.D. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms 2024, 12, 74. https://doi.org/10.3390/microorganisms12010074
William VU, Magpantay HD. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms. 2024; 12(1):74. https://doi.org/10.3390/microorganisms12010074
Chicago/Turabian StyleWilliam, Vladimir U., and Hilbert D. Magpantay. 2024. "Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation" Microorganisms 12, no. 1: 74. https://doi.org/10.3390/microorganisms12010074
APA StyleWilliam, V. U., & Magpantay, H. D. (2024). Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation. Microorganisms, 12(1), 74. https://doi.org/10.3390/microorganisms12010074