Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Growth Conditions and RDX Analytical Method
2.2. Bacterial Growth and RDX Degradation Detection
2.3. Complete Genome Sequencing
2.3.1. Bacterial Cell Pellet Preparation
2.3.2. DNA Extraction and Library Preparation
2.3.3. Genome Sequencing and Assembly
2.3.4. Bioinformatics Analysis of the Genome Sequence
2.4. Proteomics and Metabolomics
2.4.1. Bacterial Cell Pellet Preparation
2.4.2. Protein Extraction, Digestion, and LC-MS/MS Analysis
2.4.3. Data Processing and Bioinformatics Analysis of Proteomics
2.4.4. Metabolite Extraction and UHPLC-Q-TOF MS
2.4.5. Data Processing and Bioinformatics Analysis of Metabolomics
2.4.6. Combined Analysis of Proteomics and Metabolomics
3. Results
3.1. Growth Curve of Rhodococcus sp. Strain DN22 in LB Medium
3.2. Growth Curve of Rhodococcus sp. Strain DN22 and RDX Degradation by Rhodococcus sp. Strain DN22 in the Medium Utilizing RDX as an Exclusive Nitrogen Source
3.3. Complete Genome Sequencing Analysis
3.4. Proteomic and Metabolomic Analysis
3.4.1. RDX Degradation by Rhodococcus sp. Strain DN22 Cells in the Medium Utilizing RDX as an Exclusive Nitrogen Source
3.4.2. Proteomic Analysis
3.4.3. Metabolomic Analysis
4. Discussion
4.1. Analysis of Some Significantly Differentially Expressed Proteins
4.2. Combined Analysis of Proteomics and Complete Genome Sequencing: Focusing on the Two Proteins Related to RDX Degradation
4.3. Combined Analysis of Proteomics and Metabolomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aamir Khan, M.; Sharma, A.; Yadav, S.; Celin, S.M.; Sharma, S. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. Chemosphere 2022, 294, 133641. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Sharma, A.; Yadav, S.; Celin, S.M.; Sharma, S.; Noureldeen, A.; Darwish, H. Enhancing remediation of RDX-contaminated soil by introducing microbial formulation technology coupled with biostimulation. J. Environ. Chem. Eng. 2021, 9, 106019. [Google Scholar] [CrossRef]
- Crocker, F.H.; Indest, K.J.; Fredrickson, H.L. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl. Microbiol. Biotechnol. 2006, 73, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.V.; Nelson, D.R.; Duxbury, T. Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (rdx) as a nitrogen source by a Rhodococcus sp. strain dn22. Soil Biol. Biochem. 1998, 30, 1159–1167. [Google Scholar] [CrossRef]
- Seth-Smith, H.M.; Rosser, S.J.; Basran, A.; Travis, E.R.; Dabbs, E.R.; Nicklin, S.; Bruce, N.C. Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 2002, 68, 4764–4771. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.T.; Crocker, F.H.; Fredrickson, H.L. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl. Environ. Microbiol. 2005, 71, 8265–8272. [Google Scholar] [CrossRef]
- Fuller, M.E.; McClay, K.; Hawari, J.; Paquet, L.; Malone, T.E.; Fox, B.G.; Steffan, R.J. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl. Microbiol. Biotechnol. 2009, 84, 535–544. [Google Scholar] [CrossRef]
- Kim, D.; Choi, K.Y.; Yoo, M.; Zylstra, G.J.; Kim, E. Biotechnological Potential of Rhodococcus Biodegradative Pathways. J. Microbiol. Biotechnol. 2018, 28, 1037–1051. [Google Scholar] [CrossRef]
- Fournier, D.; Halasz, A.; Spain, J.; Fiurasek, P.; Hawari, J. Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl. Environ. Microbiol. 2002, 68, 166–172. [Google Scholar] [CrossRef]
- Annamaria, H.; Manno, D.; Strand, S.E.; Bruce, N.C.; Hawari, J. Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway. Environ. Sci. Technol. 2010, 44, 9330–9336. [Google Scholar] [CrossRef]
- Jackson, R.G.; Rylott, E.L.; Fournier, D.; Hawari, J.; Bruce, N.C. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc. Natl. Acad. Sci. USA 2007, 104, 16822–16827. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Trott, S.; Spain, J.C.; Halasz, A.; Paquet, L.; Hawari, J. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: Insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl. Environ. Microbiol. 2003, 69, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Rylott, E.L.; Jackson, R.G.; Edwards, J.; Womack, G.L.; Seth-Smith, H.M.; Rathbone, D.A.; Strand, S.E.; Bruce, N.C. An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat. Biotechnol. 2006, 24, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Cary, T.J.; Rylott, E.L.; Zhang, L.; Routsong, R.M.; Palazzo, A.J.; Strand, S.E.; Bruce, N.C. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat. Biotechnol. 2021, 39, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lai, J.L.; Zhang, Y.; Luo, X.G.; Han, M.W.; Zhao, S.P. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX. Environ. Pollut. 2021, 285, 117478. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Cupples, A.M. Diversity and abundance of the functional genes and bacteria associated with RDX degradation at a contaminated site pre- and post-biostimulation. Appl. Microbiol. Biotechnol. 2021, 105, 6463–6475. [Google Scholar] [CrossRef]
- Jaafaryneya, M.; Amani, J.; Halabian, R. Biodegradation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by Actinomycetes species, first time isolated and characterized from water, wastewater, and sludge. Water Environ. J. 2023, 37, 538–548. [Google Scholar] [CrossRef]
- Indest, K.J.; Hancock, D.E.; Jung, C.M.; Eberly, J.O.; Mohn, W.W.; Eltis, L.D.; Crocker, F.H. Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9. Appl. Environ. Microbiol. 2013, 79, 1746–1750. [Google Scholar] [CrossRef]
- Coleman, N.V.; Spain, J.C.; Duxbury, T. Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J. Appl. Microbiol. 2002, 93, 463–472. [Google Scholar] [CrossRef]
- Seth-Smith, H.M.; Edwards, J.; Rosser, S.J.; Rathbone, D.A.; Bruce, N.C. The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl. Environ. Microbiol. 2008, 74, 4550–4552. [Google Scholar] [CrossRef]
- Chong, C.S.; Sabir, D.K.; Lorenz, A.; Bontemps, C.; Andeer, P.; Stahl, D.A.; Strand, S.E.; Rylott, E.L.; Bruce, N.C. Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl. Environ. Microbiol. 2014, 80, 6601–6610. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, R.F.; Elsden, S.R. The yields of Streptococcus faecalis grown in continuous culture. J. Gen. Appl. Microbiol. 1960, 22, 726–739. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Peluso, P.; Babayan, P.; Yeadon, P.J.; Yu, C.; Fisher, W.W.; Chin, C.S.; Rapicavoli, N.A.; Rank, D.R.; Li, J.; et al. Long-read, whole-genome shotgun sequence data for five model organisms. Sci. Data 2014, 1, 140045. [Google Scholar] [CrossRef] [PubMed]
- Faino, L.; Seidl, M.F.; Datema, E.; van den Berg, G.C.; Janssen, A.; Wittenberg, A.H.; Thomma, B.P. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. mBio 2015, 6, e00936-15. [Google Scholar] [CrossRef] [PubMed]
- Sit, C.S.; Ruzzini, A.C.; Van Arnam, E.B.; Ramadhar, T.R.; Currie, C.R.; Clardy, J. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc. Natl. Acad. Sci. USA 2015, 112, 13150–13154. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Kudoh, S.; Hoshino, T. Draft Genome Sequence of Cryophilic Basidiomycetous Yeast Mrakia blollopis SK-4, Isolated from an Algal Mat of Naga-ike Lake in the Skarvsnes Ice-Free Area, East Antarctica. Genome Announc. 2015, 3, e01454-14. [Google Scholar] [CrossRef] [PubMed]
- Badouin, H.; Hood, M.E.; Gouzy, J.; Aguileta, G.; Siguenza, S.; Perlin, M.H.; Cuomo, C.A.; Fairhead, C.; Branca, A.; Giraud, T. Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus Microbotryum lychnidis-dioicae. Genetics 2015, 200, 1275–1284. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.S.; Lin, C.J.; Hwang, J.K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004, 13, 1402–1406. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef] [PubMed]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Deng, T.; Yuan, W.; Deng, H.; Jin, M. Plasma metabolomic study in Chinese patients with wet age-related macular degeneration. BMC Ophthalmol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Li, L.; Tang, S.; Liu, C.; Fu, X.; Shi, Z.; Mao, H. Metabolomics Reveals that Crossbred Dairy Buffaloes Are More Thermotolerant than Holstein Cows under Chronic Heat Stress. J. Agric. Food Chem. 2018, 66, 12889–12897. [Google Scholar] [CrossRef] [PubMed]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef]
- Hakimi, A.A.; Reznik, E.; Lee, C.H.; Creighton, C.J.; Brannon, A.R.; Luna, A.; Aksoy, B.A.; Liu, E.M.; Shen, R.; Lee, W.; et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 2016, 29, 104–116. [Google Scholar] [CrossRef]
- Jacob-Dubuisson, F.; Mechaly, A.; Betton, J.M.; Antoine, R. Structural insights into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol. 2018, 16, 585–593. [Google Scholar] [CrossRef]
Insert Size (bp) | Reads Length (bp) | Raw Data (Mb) | Adapter (%) | Duplication (%) | Total Reads (#) | Filtered Reads (%) | Low Quality Filtered Reads (%) | Clean Data (Mb) |
---|---|---|---|---|---|---|---|---|
350 | (150:150) | 1169 | 1.08 | 0.23 | 7,798,630 | 2.23 | 0 | 1143 |
Valid ZWM Number (#) | Subreads Number (#) | Subreads Total Bases (bp) | Subreads Mean Length (bp) | Subreads N50 (bp) | Subreads N90 (bp) | Subreads Max Length (bp) | Subreads Min Length (bp) |
---|---|---|---|---|---|---|---|
83,467 | 710,098 | 6,965,000,535 | 9808 | 10,364 | 6752 | 195,292 | 1000 |
Inputs of Sequence Alignment (Sequences from UniProt (Left) with Complete Genome Sequencing Results in This Study (Right)) | Identities | |
---|---|---|
Oxidoreductase (Q09Q55) | Nucleotide sequence of plasmid #5 | 150/150 (100%) |
Cytochrome P450 (Q2PZX0) | Nucleotide sequence of plasmid #5 | 235/236 (99%) |
Adrenodoxin reductase-like (Q8GPH8) | The entire sequence of the gene encoding oxidoreductase in plasmid #5 | 425/425 (100%) |
Cytochrome P450-like protein XplA (Q8GPH7) | The entire sequence of the gene encoding cytochrome P450 in plasmid #5 | 552/552 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yao, Q.; Li, N.; Xia, M.; Deng, Y. Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22. Microorganisms 2024, 12, 76. https://doi.org/10.3390/microorganisms12010076
Zhou X, Yao Q, Li N, Xia M, Deng Y. Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22. Microorganisms. 2024; 12(1):76. https://doi.org/10.3390/microorganisms12010076
Chicago/Turabian StyleZhou, Xiangzhe, Qifa Yao, Nuomin Li, Min Xia, and Yulin Deng. 2024. "Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22" Microorganisms 12, no. 1: 76. https://doi.org/10.3390/microorganisms12010076
APA StyleZhou, X., Yao, Q., Li, N., Xia, M., & Deng, Y. (2024). Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22. Microorganisms, 12(1), 76. https://doi.org/10.3390/microorganisms12010076