Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Neutrophil Preparations
2.3. Irrigation Solution Titration Experiments
2.4. Microscopy
2.5. Image Analysis
2.6. Flow Cytometry
3. Results
3.1. Irrigation Solutions Inhibit the Growth of S. aureus at Low Concentrations
3.2. Visualization and Quantification of Irrigation Solution Effects on Nascent S. aureus Biofilms
3.3. Neutrophil Membrane Integrity at Low Irrigation Solution Concentrations
3.4. Neutrophil Motility and Engagement of Bacteria in Irrigation Solutions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikora, A.; Zahra, F. Nosocomial Infections; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. JAMA 2023, 329, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- CDC. Surgical Site Infection Event (SSI). Natl. Healthc. Saf. Netw. 2024, 1–39. Available online: https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/ImportingProcedureData.pdf (accessed on 2 March 2024).
- Owens, C.D.; Stoessel, K. Surgical site infections: Epidemiology, microbiology and prevention. J. Hosp. Infect. 2008, 70, 3–10. [Google Scholar] [CrossRef]
- Fakoya, A.; Afolabi, A.; Ayandipo, O.; Makanjuola, O.; Adepoju, O.; Ajagbe, O.; Afuwape, O. A Comparison of Chlorhexidine-Alcohol and Povidone-Iodine-Alcohol on the Incidence of Surgical Site Infection. Cureus 2024, 16, e51901. [Google Scholar] [CrossRef]
- Chauveaux, D. Preventing surgical-site infections: Measures other than antibiotics. Orthop. Traumatol. Surg. Res. 2015, 101 (Suppl. S1), S77–S83. [Google Scholar] [CrossRef] [PubMed]
- Alfred, M.; Catchpole, K.; Huffer, E.; Fredendall, L.; Taaffe, K.M. Work systems analysis of sterile processing: Decontamination. BMJ Qual. Saf. 2019, 29, 320–328. [Google Scholar] [CrossRef]
- Williams, M.M.; Armbruster, C.R.; Arduino, M.J. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: A review. Biofouling 2013, 29, 147–162. [Google Scholar] [CrossRef]
- Costa, D.M.; Johani, K.; Melo, D.S.; Lima, L.L.; Tipple, A.; Hu, H.; Vickery, K. Biofilm contamination of high-touched surfaces in intensive care units: Epidemiology and potential impacts. Lett. Appl. Microbiol. 2019, 68, 269–276. [Google Scholar] [CrossRef]
- Gibson, J.F.; Pidwill, G.R.; Carnell, O.T.; Surewaard, B.G.J.; Shamarina, D.; Sutton, J.A.F.; Jeffery, C.; Derré-Bobillot, A.; Archambaud, C.; Siggins, M.K.; et al. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog. 2021, 17, e1009880. [Google Scholar] [CrossRef]
- Sward, E.W.; Fones, E.M.; Spaan, R.R.; Pallister, K.B.; Haller, B.L.; Guerra, F.E.; Zurek, O.W.; Nygaard, T.K.; Voyich, J.M. Staphylococcus aureus SaeR/S-Regulated Factors Decrease Monocyte-Derived Tumor Necrosis Factor-α to Reduce Neutrophil Bactericidal Activity. J. Infect. Dis. 2018, 217, 943–952. [Google Scholar] [CrossRef]
- Guerra, F.E.; Addison, C.B.; de Jong, N.W.M.; Azzolino, J.; Pallister, K.B.; van Strijp, J.; Voyich, J.M. Staphylococcus aureus SaeR/S-regulated factors reduce human neutrophil reactive oxygen species production. J. Leukoc. Biol. 2016, 100, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Voyich, J.M.; Vuong, C.; DeWald, M.; Nygaard, T.K.; Kocianova, S.; Griffith, S.; Jones, J.; Iverson, C.; Sturdevant, D.E.; Braughton, K.R.; et al. The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J. Infect. Dis. 2009, 199, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.E.; Borgogna, T.R.; Patel, D.M.; Sward, E.W.; Voyich, J.M. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2017, 7, 286. [Google Scholar] [CrossRef]
- Ghimire, N.; Pettygrove, B.A.; Pallister, K.B.; Stangeland, J.; Stanhope, S.; Klapper, I.; Voyich, J.M.; Stewart, P.S. Direct microscopic observation of human neutrophil-Staphylococcus aureus interaction in vitro suggests a potential mechanism for initiation of biofilm infection on an implanted medical device. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef]
- Pettygrove, B.A.; Kratofil, R.M.; Alhede, M.; Jensen, P.; Newton, M.; Qvortrup, K.; Pallister, K.B.; Bjarnsholt, T.; Kubes, P.; Voyich, J.M.; et al. Delayed neutrophil recruitment allows nascent Staphylococcus aureus biofilm formation and immune evasion. Biomaterials 2021, 275, 120775. [Google Scholar] [CrossRef]
- Mueller, T.C.; Loos, M.; Haller, B.; Mihaljevic, A.L.; Nitsche, U.; Wilhelm, D.; Friess, H.; Kleeff, J.; Bader, F.G. Intra-operative wound irrigation to reduce surgical site infections after abdominal surgery: A systematic review and meta-analysis. Langenbeck’s Arch. Surg. 2015, 400, 167–181. [Google Scholar] [CrossRef]
- Kavolus, J.J.; Schwarzkopf, R.; Rajaee, S.S.; Chen, A.F. Irrigation Fluids Used for the Prevention and Treatment of Orthopaedic Infections. J. Bone Jt. Surg. 2019, 102, 76–84. [Google Scholar] [CrossRef]
- Sneader, W. Drug Discovery; Wiley: New York, NY, USA, 2005; pp. 41–73. [Google Scholar] [CrossRef]
- Romano, V.; Di Gennaro, D.; Sacco, A.M.; Festa, E.; Roscetto, E.; Basso, M.A.; Ascione, T.; Balato, G. Cell Toxicity Study of Antiseptic Solutions Containing Povidone-Iodine and Hydrogen Peroxide. Diagnostics 2022, 12, 2021. [Google Scholar] [CrossRef]
- Siddiqi, A.; Abdo, Z.E.; Springer, B.D.; Chen, A.F. Pursuit of the ideal antiseptic irrigation solution in the management of periprosthetic joint infections. J. Bone Jt. Infect. 2021, 6, 189–198. [Google Scholar] [CrossRef]
- Ruder, J.A.; Springer, B.D. Treatment of Periprosthetic Joint Infection Using Antimicrobials: Dilute Povidone-Iodine Lavage. J. Bone Jt. Infect. 2017, 2, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Bashyal, R.K.; Mathew, M.; Bowen, E.; James, G.A.; Stulberg, S.D. A Novel Irrigant to Eliminate Planktonic Bacteria and Eradicate Biofilm Superstructure with Persistent Effect during Total Hip Arthroplasty. J. Arthroplast. 2022, 37, S647–S652. [Google Scholar] [CrossRef]
- Poppolo Deus, F.; Ouanounou, A. Chlorhexidine in Dentistry: Pharmacology, Uses, and Adverse Effects. Int. Dent. J. 2022, 72, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Lung, B.E.; Le, R.; Callan, K.; McLellan, M.; Issagholian, L.; Yi, J.; McMaster, W.C.; Yang, S.; So, D.H. Chlorhexidine gluconate lavage during total joint arthroplasty may improve wound healing compared to dilute betadine. J. Exp. Orthop. 2022, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Frisch, N.B.; Kadri, O.M.; Tenbrunsel, T.; Abdul-Hak, A.; Qatu, M.; Davis, J.J. Intraoperative chlorhexidine irrigation to prevent infection in total hip and knee arthroplasty. Arthroplast. Today 2017, 3, 294–297. [Google Scholar] [CrossRef]
- Thom, H.; Norman, G.; Welton, N.J.; Crosbie, E.J.; Blazeby, J.; Dumville, J.C. Intra-Cavity Lavage and Wound Irrigation for Prevention of Surgical Site Infection: Systematic Review and Network Meta-Analysis. Surg. Infect. 2021, 22, 144–167. [Google Scholar] [CrossRef]
- Voyich, J.M.; Braughton, K.R.; Sturdevant, D.E.; Whitney, A.R.; Sai, B.; Porcella, S.F.; Daniel Long, R.; Dorward, D.W.; Gardner, D.J.; Kreiswirth, B.N.; et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 2005, 175, 3907–3919. [Google Scholar] [CrossRef]
- Pettygrove, B.A.; Smith, H.J.; Pallister, K.B.; Voyich, J.M.; Stewart, P.S.; Parker, A.E. Experimental Designs to Study the Aggregation and Colonization of Biofilms by Video Microscopy with Statistical Confidence. Front. Microbiol. 2021, 12, 785182. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, N.; Butcher, R. Antibiotic Solutions for Surgical Irrigation. Can. J. Health Technol. 2022, 2. [Google Scholar] [CrossRef]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Goswami, K.; Austin, M.S. Intraoperative povidone-iodine irrigation for infection prevention. Arthroplast. Today 2019, 5, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Giannelli, M.; Chellini, F.; Margheri, M.; Tonelli, P.; Tani, A. Effect of chlorhexidine digluconate on different cell types: A molecular and ultrastructural investigation. Toxicol. In Vitro 2008, 22, 308–317. [Google Scholar] [CrossRef]
- Schmidt, K.; Estes, C.; McLaren, A.; Spangehl, M.J. Chlorhexidine Antiseptic Irrigation Eradicates Staphylococcus epidermidis From Biofilm: An In Vitro Study. Clin. Orthop. Relat. Res. 2018, 476, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Alhede, M.; Lorenz, M.; Fritz, B.G.; Jensen, P.; Ring, H.C.; Bay, L.; Bjarnsholt, T. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes. Med. Microbiol. Immunol. 2020, 209, 669–680. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018, 120, 5.1.1–5.1.11. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, X.; Lv, W.; Zhou, J. The Toxicity and Antibacterial Effects of Povidone-Iodine Irrigation in Fracture Surgery. Orthop. Surg. 2022, 14, 2286–2297. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Wu, M.; Cochrane, N.H.; Belay, E.; Myntti, M.F.; James, G.A.; Ryan, S.P.; Seyler, T.M. Efficacy of common antiseptic solutions against clinically relevant microorganisms in biofilm. Bone Jt. J. 2021, 103-B, 908–915. [Google Scholar] [CrossRef]
- Li, Y.; Karlin, A.; Loike, J.D.; Silverstein, S.C. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proc. Natl. Acad. Sci. USA 2002, 99, 8289–8294. [Google Scholar] [CrossRef]
- Trott, A.T. Chapter 7—Wound Cleansing and Irrigation. In Wounds and Lacerations, 4th ed.; W.B. Saunders: Philadelphia, PA, USA, 2012; pp. 73–81. Available online: https://www.sciencedirect.com/science/article/pii/B9780323074186000071 (accessed on 2 March 2024).
- Broek, P.J.V.D.; Buys, L.F.; Van Furth, R. Interaction of povidone-iodine compounds, phagocytic cells, and microorganisms. Antimicrob Agents Chemother. Antimicrob. Agents Chemother. 1982, 22, 593–597. [Google Scholar] [CrossRef]
- Cao, S.; Liu, P.; Zhu, H.; Gong, H.; Yao, J.; Sun, Y.; Geng, G.; Wang, T.; Feng, S.; Han, M.; et al. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions. PLoS ONE 2015, 10, e0137221. [Google Scholar] [CrossRef]
- Oster, L.; Schröder, J.; Rugi, M.; Schimmelpfennig, S.; Sargin, S.; Schwab, A.; Najder, K. Extracellular pH Controls Chemotaxis of Neutrophil Granulocytes by Regulating Leukotriene B4 Production and Cdc42 Signaling. J. Immunol. 2022, 209, 136–144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, G.; Predtechenskaya, M.; Voyich, J.M.; James, G.; Stewart, P.S.; Borgogna, T.R. Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms. Microorganisms 2024, 12, 1951. https://doi.org/10.3390/microorganisms12101951
Gaur G, Predtechenskaya M, Voyich JM, James G, Stewart PS, Borgogna TR. Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms. Microorganisms. 2024; 12(10):1951. https://doi.org/10.3390/microorganisms12101951
Chicago/Turabian StyleGaur, Gauri, Maria Predtechenskaya, Jovanka M. Voyich, Garth James, Philip S. Stewart, and Timothy R. Borgogna. 2024. "Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms" Microorganisms 12, no. 10: 1951. https://doi.org/10.3390/microorganisms12101951
APA StyleGaur, G., Predtechenskaya, M., Voyich, J. M., James, G., Stewart, P. S., & Borgogna, T. R. (2024). Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms. Microorganisms, 12(10), 1951. https://doi.org/10.3390/microorganisms12101951