Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. L. siceraria Cultivation Methods
2.3. Soil Sample Collection
2.4. Detection of Soil Chemical Properties
2.5. Examination of Soil Enzyme Activity
2.6. Soil Microbial Sequencing
2.7. Sequencing Data Processing
2.8. Data Statistics and Analysis
3. Results
3.1. Effects of T. harzianum on Growth Indexes of L. siceraria
3.2. Effects of T. harzianum on Soil Physical and Chemical Properties of L. siceraria
3.3. Effect of T. harzianum on Enzyme Activity in Rhizosphere Soil of L. siceraria
3.4. Effects of T. harzianum on Soil Microbial Diversity and Species Richness
3.4.1. Microbial Cluster Analysis
3.4.2. Microbial Alpha and Beta Diversity Analysis
3.5. The Community Composition and Structure of CC and CT Groups
3.6. Microbial LEfSe Analysis
3.7. Functions of Bacterial and Fungal Communities
4. Discussion
4.1. The Promoting Effect of T. harzianum on the Growth of L. siceraria
4.2. Effects of T. harzianum on Soil Chemical Properties and Enzyme Activities
4.3. Effects of T. harzianum on Microbial Community Structure in the Rhizosphere Soil of L. siceraria
4.4. Effects of T. harzianum on Microbial Community Function in the Rhizosphere Soil of L. siceraria
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nkosi, L.S.; Ntuli, N.R.; Mavengahama, S. Morpho-Agronomic Evaluation of Lagenaria siceraria Landraces and Their Populations. Plants 2022, 11, 1558. [Google Scholar] [CrossRef]
- Maja, D.; Mavengahama, S.; Mashilo, J. Cucurbitacin biosynthesis in cucurbit crops, their pharmaceutical value and agricultural application for management of biotic and abiotic stress: A review. S. Afr. J. Bot. 2022, 145, 3–12. [Google Scholar] [CrossRef]
- Yao, J.; Wu, C.Y.; Fan, L.J.; Kang, M.H.; Liu, Z.R.; Huang, Y.H.; Xu, X.L.; Yao, Y.J. Effects of the Long-Term Continuous Cropping of Yongfeng Yam on the Bacterial Community and Function in the Rhizospheric Soil. Microorganisms 2023, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.K.; Li, C.Y.; Wang, Y.P.; Li, X.Y.; Liu, R.; Hua, X.W.; Liu, X.L.; Qi, H.; Seo, T. Microecological Shifts in the Rhizosphere of Perennial Large Trees and Seedlings in Continuous Cropping of Poplar. Microorganisms 2024, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, M.Z.; Yu, J.; Yao, G.L.; Yang, H.G.; Iqbal, H.A.; Tahir, H.; Cui, H.G.; Liu, Y.; Wu, Y.G. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration-An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Zhu, Q.; Yang, H.R.; Zhou, J.; Dai, C.C.; Wang, X.X. An integrated prevention strategy to address problems associated with continuous cropping of watermelon caused by Fusarium oxysporum. Eur. J. Plant Pathol. 2019, 155, 293–305. [Google Scholar] [CrossRef]
- Gu, X.; Yang, N.; Zhao, Y.; Liu, W.H.; Li, T.F. Long-term watermelon continuous cropping leads to drastic shifts in soil bacterial and fungal community composition across gravel mulch fields. BMC Microbiol. 2022, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.G.; Gao, D.M.; Liu, J.; Qiao, P.L.; Zhou, X.L.; Lu, H.B.; Wu, X.; Liu, D.; Jin, X.; Wu, F.Z. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. Eur. J. Soil. Biol. 2014, 60, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, M.; Xu, J.; Yao, X.; Lou, L.; Hou, Q.; Zhu, L.; Yang, X.; Liu, G.; Xu, J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int. J. Mol. Sci. 2024, 25, 8288. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.T.; Jiang, X.L. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application. Sci. Rep. 2021, 11, 21585. [Google Scholar] [CrossRef] [PubMed]
- Al-Shuaibi, B.K.; Kazerooni, E.A.; Al-Maqbali, D.; Al-Kharousi, M.; Al-Yahya’ei, M.N.; Hussain, S.; Velazhahan, R.; Al-Sadi, A.M. Biocontrol Potential of Trichoderma ghanense and Trichoderma citrinoviride toward Pythium aphanidermatum. J. Fungi 2024, 10, 284. [Google Scholar] [CrossRef]
- Tyskiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Scisel, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavira, A.; Gea, F.J.; Santos, M. Plant Growth Promotion and Biocontrol of Pythium ultimum by Saline Tolerant Trichoderma Isolates under Salinity Stress. Int. J. Environ. Res. Public Health 2019, 16, 2053. [Google Scholar] [CrossRef]
- Erazo, J.G.; Palacios, S.A.; Pastor, N.; Giordano, F.D.; Rovera, M.; Reynoso, M.M.; Venisse, J.S.; Torres, A.M. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol. Control 2021, 164, 104774. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, N.; Zeng, X.Y.; Lan, Q.L.; Ma, N.; Wu, C.C. Effects of biochar and Trichoderma on bacterial community diversity in continuous cropping soil. Hortic. Environ. Biotechnol. 2022, 63, 1–12. [Google Scholar] [CrossRef]
- Patkowska, E.; Mielniczuk, E.; Jamiołkowska, A.; Skwaryło-Bednarz, B.; Błażewicz-Woźniak, M. The Influence of Trichoderma harzianum Rifai T-22 and Other Biostimulants on Rhizosphere Beneficial Microorganisms of Carrot. Agronomy 2020, 10, 1637. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Hu, J.; Li, H.; Zhao, Z.; Wu, Y.; Li, J.; Zhou, Y.; Yang, K.; Yang, H. Trichoderma harzianum inoculation promotes sweet sorghum growth in the saline soil by modulating rhizosphere available nutrients and bacterial community. Front. Plant Sci. 2023, 14, 1258131. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, Q.; Ma, T.; Wu, R. Release risk of soil phosphorus under different farming systems: Indoor experiments and in-situ measurement. Soil. Tillage Res. 2024, 240, 106106. [Google Scholar] [CrossRef]
- Walkley, A. An Examination of Methods for Determining Organic Carbon and Nitrogen in Soils. (with One Text-figure.). J. Agric. Sci. 1935, 25, 598–609. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Meena, S.N.; Sharma, S.K.; Singh, P.; Meena, B.P.; Ram, A.; Meena, R.L.; Singh, D.; Meena, R.B.; Nogiya, M.; Jain, D.; et al. Comparative analysis of soil quality and enzymatic activities under different tillage based nutrient management practices in soybean–wheat cropping sequence in Vertisols. Sci. Rep. 2024, 14, 6840. [Google Scholar] [CrossRef]
- Zhaoying, L. Soil Sucrase: Detection Conditions Based on DNS Colorimetric. Chin. Agric. Sci. 2016, 27, 171–176. [Google Scholar]
- Shah, T.; Khan, Z.; Asad, M.; Imran, A.; Niazi, M.B.K.; Dewil, R.; Ahmad, A.; Ahmad, P. Straw incorporation into microplastic-contaminated soil can reduce greenhouse gas emissions by enhancing soil enzyme activities and microbial community structure. J. Environ. Manag. 2024, 351, 119616. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Hussein, H.-A.A.; Alshammari, S.O.; Abd El-Sadek, M.E.; Kenawy, S.K.M.; Badawy, A.A. The Promotive Effect of Putrescine on Growth, Biochemical Constituents, and Yield of Wheat (Triticum aestivum L.) Plants under Water Stress. Agriculture 2023, 13, 587. [Google Scholar] [CrossRef]
- Marra, R.; Lombardi, N.; Piccolo, A.; Bazghaleh, N.; Prashar, P.; Vandenberg, A.; Woo, S. Mineral Biofortification and Growth Stimulation of Lentil Plants Inoculated with Trichoderma Strains and Metabolites. Microorganisms 2022, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.L.; Fan, C.; Yuan, H.M.; Wu, G.W.; Sun, J.; Zhang, S.Q. The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy 2022, 12, 2293. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.S.; Cao, H.L.; Fan, Y.; Du, K.; Bu, X.; Gao, D.M. Effects of Trichoderma harzianum biofertilizer on growth, yield, and quality of Bupleurum chinense. Plant Direct 2022, 6, e461. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, Z.; Wang, Y.; Chen, X.; Yin, C.; Mao, Z. Effects of Trichoderma harzianum Fertilizer on the Soil Environment of Malus hupehensis Rehd. Seedlings under Replant Conditions. HortScience 2021, 56, 1073–1079. [Google Scholar] [CrossRef]
- Li, W.; Fu, Y.; Jiang, Y.; Hu, J.; Wei, Y.; Li, H.; Li, J.; Yang, H.; Wu, Y. Synergistic Biocontrol and Growth Promotion in Strawberries by Co-Cultured Trichoderma harzianum TW21990 and Burkholderia vietnamiensis B418. J. Fungi 2024, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.F.; Wang, Z.R.; Zhu, Y.J.; Wang, J.P.; Liu, B. Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse. Sci. Rep. 2020, 10, 13729. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Tang, S.S.; Liu, X.D.; Ren, X.L.; Wang, S.N.; Gao, Z.G. The Effects of Trichoderma viride T23 on Rhizosphere Soil Microbial Communities and the Metabolomics of Muskmelon under Continuous Cropping. Agronomy 2023, 13, 1092. [Google Scholar] [CrossRef]
- Pan, X.; Raaijmakers, J.M.; Carrión, V.J. Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning. Trends Microbiol. 2023, 31, 959–971. [Google Scholar] [CrossRef]
- Emenike, C.U.; Agamuthu, P.; Fauziah, S.H.; Omo-Okoro, P.N.; Jayanthi, B. Enhanced Bioremediation of Metal-Contaminated Soil by Consortia of Proteobacteria. Water Air Soil. Pollut. 2023, 234, 731. [Google Scholar] [CrossRef]
- Carlton, J.D.; Langwig, M.V.; Gong, X.; Aguilar-Pine, E.J.; Vázquez-Rosas-Landa, M.; Seitz, K.W.; Baker, B.J.; De Anda, V. Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles. ISME Commun. 2023, 3, 64. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xu, Z.; Xie, J.; Hesselberg-Thomsen, V.; Tan, T.; Zheng, D.; Strube, M.L.; Dragoš, A.; Shen, Q.; Zhang, R.; et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022, 16, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, C.; Xiao, J.L.; Wei, L.; Tian, Y.; Liang, Z.H. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express 2020, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Yin, C.M.; Pan, F.B.; Wang, X.B.; Xiang, L.; Wang, Y.F.; Wang, J.Z.; Tian, C.P.; Chen, J.; Mao, Z.Q. Analysis of the Fungal Community in Apple Replanted Soil Around Bohai Gulf. Hortic. Plant J. 2018, 4, 175–181. [Google Scholar] [CrossRef]
- Hao, W.Y.; Ren, L.X.; Ran, W.; Shen, Q.R. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 2010, 336, 485–497. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, R.; Mao, Y.F.; Jiang, W.T.; Chen, X.S.; Shen, X.; Yin, C.M.; Mao, Z.Q. Effects of Trichoderma asperellum 6S-2 on Apple Tree Growth and Replanted Soil Microbial Environment. J. Fungi 2022, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xi, X.; Qian, X.; Li, J.; Tao, Y.; Li, L.; Zhou, G. Revealing the microbial composition changes and relationship with Fusarium caused by rot disease in the Crocus sativus L. Ann. Microbiol. 2024, 74, 24. [Google Scholar] [CrossRef]
- Xue, T.; Fang, Y.; Li, H.; Li, M.; Li, C. The Effects of Exogenous Benzoic Acid on the Physicochemical Properties, Enzyme Activities and Microbial Community Structures of Perilla frutescens Inter-Root Soil. Microorganisms 2024, 12, 1190. [Google Scholar] [CrossRef]
Sample | Plant Height (cm) | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|
CC | 18.06 ± 0.94 b | 9.02 ± 0.06 b | 3.29 ± 0.05 b |
CT | 21.93 ± 1.70 a | 11.23 ± 0.15 a | 3.44 ± 0.03 a |
Sample | SOC/(g/kg) | AP/(mg/kg) | AK/(mg/kg) | TN/(mg/kg) | EC/(mS/cm) | pH |
---|---|---|---|---|---|---|
CC | 7.3 ± 0.34 b | 41.29 ± 1.52 b | 110.4 ± 1.89 b | 640.49 ± 12.27 b | 0.43 ± 0.01 b | 7.78 ± 0.11 a |
CT | 9.3 ± 0.20 a | 50.60 ± 0.89 a | 134.0 ± 0.81 a | 745.63 ± 11.34 a | 0.49 ± 0.01 a | 7.51 ± 0.01 b |
Sample | Urease (mg/g/d) | NAP (mg/g/d) | CAT (mg/g/d) | Sucrase (mg/g/d) |
---|---|---|---|---|
CC | 0.48 ± 0.01 a | 0.97 ± 0.01 a | 1.20 ± 0.04 b | 7.89 ± 0.05 b |
CT | 0.49 ± 0.02 a | 1.04 ± 0.06 a | 1.42 ± 0.06 a | 12.74 ± 0.44 a |
Sample | OTUs | ACE | Chao | Shannon | Simpson | Coverage | |
---|---|---|---|---|---|---|---|
Bacterial | CC | 3337.00 ± 280.83 a | 4076.75 ± 413.76 a | 3919.7 ± 361.43 a | 7.01 ± 0.09 a | 0.0022 ± 0.0001 a | 0.968223 |
CT | 3499.67 ± 63.01 a | 4278.05 ± 88.28 a | 4122.7 ± 106.67 a | 7.10 ± 0.05 a | 0.0021 ± 0.0002 a | 0.969683 | |
Fungal | CC | 499.67 ± 50.02 a | 512.96 ± 57.98 a | 516.86 ± 65.16a | 4.36 ± 0.06 b | 0.0309 ± 0.0022 a | 0.999498 |
CT | 503.00 ± 11.53 a | 509.37 ± 10.85 a | 510.12 ± 11.04 a | 4.65 ± 0.10 a | 0.0215 ± 0.0022 b | 0.999693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Mu, H.; Liu, S.; Qi, S.; Mou, S. Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria. Microorganisms 2024, 12, 1987. https://doi.org/10.3390/microorganisms12101987
Wang J, Mu H, Liu S, Qi S, Mou S. Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria. Microorganisms. 2024; 12(10):1987. https://doi.org/10.3390/microorganisms12101987
Chicago/Turabian StyleWang, Jinlei, Hongmei Mu, Shan Liu, Saike Qi, and Saifeng Mou. 2024. "Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria" Microorganisms 12, no. 10: 1987. https://doi.org/10.3390/microorganisms12101987
APA StyleWang, J., Mu, H., Liu, S., Qi, S., & Mou, S. (2024). Effects of Trichoderma harzianum on Growth and Rhizosphere Microbial Community of Continuous Cropping Lagenaria siceraria. Microorganisms, 12(10), 1987. https://doi.org/10.3390/microorganisms12101987