Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquito Collection and Identification
2.2. Barcoding Culex Identification (COI)
2.3. Wolbachia Detection Real-Time Quantitative PCR
2.4. Wolbachia 16S rRNA and WSP Typing
2.5. Wolbachia MLST Analysis
2.6. Nanopore Sequencing
2.7. Phylogenetic Analysis
3. Results
3.1. Phylogenetic Analysis
3.1.1. Maximum Likelihood Tree of Wolbachia Based on 16S rRNA Gene
3.1.2. Maximum Likelihood Tree of Wolbachia Based on the WSP Gene
3.1.3. Maximum Likelihood Tree (Parenting Links) for MLST Analysis
4. Discussion
4.1. Wolbachia Detection
4.2. Prevalence Difference
4.3. Typing and Classification
4.4. Diversity by Host Species
4.5. Diversity within Individuals of the Same Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name | Primers | Pb | Tm | Reference |
---|---|---|---|---|
Wol_F Wol_R Probe | Forward: 5′-CCAGCAGCCGCGGTAAT-3′ Reverse: 5′-CGCCCTTTACGCCCAAT-3′ Probe: 5′-CGGAGAGGGCTAGCGTTATTCGGAATT-3′ | 464 | 60 | (Mee et al., 2015) [42] |
WSP | Forward: 5′-GTCCAATARSTGATGARGAAAC-3′ Reverse: 5′-CYGCACCAAYAGYRCTRTAAA-3′ | 540 | 51 | (Baldo et al., 2006) [42] |
WolbF Wspec | Forward: 5′-GAAGATAATGACGGTACTCAC-3′ Reverse: 5′-AGCTTCGAGTGAAACCAATTC-3′ | 800 | 45 | (Carvajal et al., 2019) [44] |
BC1culicm JeR2m | Forward: 5′-CAGGAAACAGCTATGACCCAAARAATCARAAYARRTGTTG-3′ Reverse: 5′-GTAAAACGACGGCCAGTTCWACWAAYCAYAAARWTATTG-3′ | 658 | 51 | (Hebert et al., 2003) [39] |
CoxA | Forward: 5′-TTGGRGCRATYAACTTTATAG-3′ Reverse: 5′-CTAAAGACTTTKACRCCAGT-3′ | 487 | 53 | (Baldo et al., 2006) [42] |
GatB | Forward: 5′-GAKTTAAAYCGYGCAGGBGTT-3′ Reverse: 5′-TGGYAAYTCRGGYAAAGATGA-3′ | 471 | 54 | (Baldo et al., 2006) [42] |
HcpA | Forward: 5′-GAAATARCAGTTGCTGCAAA-3′ Reverse: 5′-GAAAGTYRAGCAAGYTCT G-3′ | 515 | 48 | (Baldo et al., 2006) [42] |
FbpA | Forward: 5′-GCTGCTCCRCTTGGYWTGAT-3′ Reverse: 5′-CCRCCAGARAAAAYYACTATT C-3′ | 509 | 53 | (Baldo et al., 2006) [42] |
FtsZ | Forward: 5′-TACTGACTGTTGGAGTTGTAACTAAGCCGT-3′ Reverse: 5′-TGCCAGTTGCAAGAACAGAAACTCTAACTC-3′ | 600 | 58 | (Hu et al., 2020) [46] |
Cycle step | Temp. | Time | Cycles |
---|---|---|---|
Initial denaturation | 95 °C | 15 min | 1 |
Denaturation | 95 °C | 30–60 s | 26–35 |
Annealing | 50–68 °C | 30–60 s | |
Elongation | 72 °C | 1–4 min | |
Final elongation | 72 °C | 10 min | 1 |
Cycle Step | Temp. | Time | Cycle |
---|---|---|---|
Activate uracile_N_glycosylase | 50 °C | 2 min | 1 |
Activation Taq | 95 °C | 10 min | 1 |
Denaturation | 95 °C | 15 s | 40 |
Hybridization–polymerization | 60 °C | 1 min |
References
- Werren, J.H.; Zhang, W.; Guo, L.R. Evolution and phylogeny of Wolbachia: Reproductive parasites of arthropods. Proc. R. Soc. B Biol. Sci. 1995, 261, 55–63. [Google Scholar]
- O’Neill, S.L.; Giordano, R.; Colbert AM, E.; Karr, T.L.; Robertson, H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts asociated with cytoplasmic incompatibility in insects. Proc. Natl. Acad Sci. USA 1992, 89, 2699–2702. [Google Scholar] [CrossRef] [PubMed]
- Bandi, C.; Anderson, T.J.C.; Genchi, C.; Blaxter, M.L. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. B: Biol. Sci. 1998, 265, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Hertig, M.; Wolbach, S.B. Studies on Rickettsia-like Micro-Organisms in Insects. J. Med. Res. 1924, 44, 329–374.7. [Google Scholar]
- Zug, R.; Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 2012, 7, e385442012. [Google Scholar] [CrossRef]
- Weinert, L.A.; Araujo-Jnr, E.V.; Ahmed, M.Z.; Welch, J.J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150249. [Google Scholar] [CrossRef]
- Bleidorn, C.; Gerth, M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol. Ecol. 2018, 94, 163. [Google Scholar] [CrossRef]
- Carvalho, L.P.C.; da Silva Costa, G.; Júnior, A.M.P.; de Paulo, P.F.M.; Silva, G.S.; Carioca, A.L.P.M.; Rodrigues, B.L.; Pessoa, F.A.C.; Medeiros, J.F. DNA Barcoding of genus Culicoides biting midges (Diptera: Ceratopogonidae) in the Brazilian Amazon. Acta Trop. 2022, 235, 106619. [Google Scholar] [CrossRef]
- Ballère, M.; Bouvet, A.; Mermoz, S.; Le Toan, T.; Koleck, T.; Bedeau, C.; André, M.; Forestier, E.; Frison, P.-L.; Lardeux, C. SAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery. Remote Sens. Environ. 2020, 252, 112159. [Google Scholar] [CrossRef]
- Foley, D.H.; Weitzman, A.L.; Miller, S.E.; Faran, M.E.; Rueda, L.M.; Wilkerson, R.C. The value of georeferenced collection records for predicting patterns of mosquito species richness and endemism in the Neotropics. Ecol. Èntomol. 2008, 33, 12–23. [Google Scholar] [CrossRef]
- Talaga, S.; Duchemin, J.B.; Girod, R.; Dusfour, I. The culex mosquitoes (Diptera: Culicidae) of French guiana: A comprehensive review with the description of three new species. J. Med. Entomol. 2021, 58, 182–221. [Google Scholar] [PubMed]
- Hellemans, S.; Kaczmarek, N.; Marynowska, M.; Calusinska, M.; Roisin, Y.; Fournier, D. Bacteriome-associated Wolbachia of the parthenogenetic termite Cavitermes tuberosus. FEMS Microbiol. Ecol. 2019, 95, fiy235. [Google Scholar] [CrossRef] [PubMed]
- Rey, O.; Estoup, A.; Facon, B.; Loiseau, A.; Aebi, A. Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata. PLoS ONE 2013, 8, 58467. [Google Scholar] [CrossRef] [PubMed]
- Reeves, D.D.; Price, S.L.; Ramalho, M.O.; Moreau, C.S. The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae). Neotrop. Entomol. 2020, 49, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.N.P.D.; Carvalho-Costa, L.F.; Rebêlo, J.M.M. Molecular evidence suggests that wolbachia pipientis (rickettsiales: Anaplasmataceae) is widely associated with south american sand flies (diptera: Psychodidae). J. Med. Entomol. 2021, 58, 2186–2195. [Google Scholar] [CrossRef]
- Díaz-Nieto, L.M.; Gil, M.F.; Lazarte, J.N.; Perotti, M.A.; Berón, C.M. Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria. Sci. Rep. 2021, 11, 1094. [Google Scholar] [CrossRef]
- de Oliveira, C.; Gonçalves, D.; Baton, L.; Shimabukuro, P.; Carvalho, F.; Moreira, L. Broader prevalence of Wolbachia in insects including potential human disease vectors. Bull.Èntomol. Res. 2015, 105, 305–315. [Google Scholar] [CrossRef]
- Laidoudi, Y.; Medkour, H.; Levasseur, A.; Davoust, B.; Mediannikov, O. New molecular data on filaria and its wolbachia from red howler monkeys (Alouatta macconnelli) in French Guiana—A preliminary study. Pathogens 2020, 9, 626. [Google Scholar] [CrossRef]
- Glowska, E.; Dragun-Damian, A.; Dabert, M.; Gerth, M. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect. Genet. Evol. 2015, 30, 140–146. [Google Scholar] [CrossRef]
- Sicard, M.; Bonneau, M.; Weill, M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes 3. Curr. Opin. Insect. Sci. 2019, 34, 12–20. [Google Scholar] [CrossRef]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Baldo, L.; Hotopp, J.C.D.; Jolley, K.A.; Bordenstein, S.R.; Biber, S.A.; Choudhury, R.R.; Hayashi, C.; Maiden, M.C.J.; Tettelin, H.; Werren, J.H. Multilocus sequence typing system for the endosymbiont wolbachia pipientis. Appl. Environ. Microbiol. 2006, 72, 7098–7110. [Google Scholar] [CrossRef] [PubMed]
- Bonifay, T.; Le Turnier, P.; Epelboin, Y.; Carvalho, L.; De Thoisy, B.; Djossou, F.; Duchemin, J.-B.; Dussart, P.; Enfissi, A.; Lavergne, A.; et al. Review on Main Arboviruses Circulating on French Guiana, An Ultra-Peripheric European Region in South America. Viruses 2023, 15, 1268. [Google Scholar] [CrossRef] [PubMed]
- Epelboin, Y.; Chaney, S.C.; Guidez, A.; Habchi-Hanriot, N.; Talaga, S.; Wang, L.; Dusfour, I. Successes and failures of sixty years of vector control in French Guiana: What is the next step? Mem. Inst. Oswaldo. Cruz. 2018, 113, e1703982018. [Google Scholar] [CrossRef] [PubMed]
- Carrington, L.B.; Tran, B.C.N.; Le, N.T.H.; Luong, T.T.H.; Nguyen, T.T.; Nguyen, P.T.; Nguyen, C.V.V.; Nguyen, H.T.C.; Vu, T.T.; Vo, L.T.; et al. Field-and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc. Natl. Acad Sci. USA 2018, 115, 361–366. [Google Scholar] [CrossRef]
- Tantowijoyo, W.; Andari, B.; Arguni, E.; Budiwati, N.; Nurhayati, I.; Fitriana, I.; Ernesia, I.; Daniwijaya, E.W.; Supriyati, E.; Yusdiana, D.H.; et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Neglected Trop. Dis. 2020, 14, e0008157. [Google Scholar] [CrossRef]
- Dainty, K.R.; Hawkey, J.; Judd, L.M.; Pacidônio, E.C.; Duyvestyn, J.M.; Gonçalves, D.S.; Lin, S.Y.; O’Donnell, T.B.; O’Neill, S.L.; Simmons, C.P.; et al. wMel wolbachia genome remains stable after 7 years in australian aedes aegypti field populations. Microb. Genom. 2021, 7, 000641. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Ross, P.A.; Rašić, G. Wolbachia strains for disease control: Ecological and evolutionary considerations. Evol. Appl. 2015, 8, 751–768. [Google Scholar] [CrossRef]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef]
- Martín-Park, A.; Che-Mendoza, A.; Contreras-Perera, Y.; Pérez-Carrillo, S.; Puerta-Guardo, H.; Villegas-Chim, J.; Guillermo-May, G.; Medina-Barreiro, A.; Delfín-González, H.; Méndez-Vales, R.; et al. Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl. Trop. Dis. 2022, 16, e0010324. [Google Scholar] [CrossRef]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Gesto, J.S.M.; Pinto, S.B.; Dias, F.B.S.; Peixoto, J.; Costa, G.; Kutcher, S.; Montgomery, J.; Green, B.R.; Anders, K.L.; Ryan, P.A.; et al. Large-Scale Deployment and Establishment of Wolbachia Into the Aedes aegypti Population in Rio de Janeiro, Brazil. Front. Microbiol. 2021, 12, 711107. [Google Scholar] [CrossRef] [PubMed]
- Pocquet, N.; O’connor, O.; Flores, H.A.; Tutagata, J.; Pol, M.; Hooker, D.J.; Inizan, C.; Russet, S.; Duyvestyn, J.M.; Pacidônio, E.C.; et al. Assessment of fitness and vector competence of a new caledonia wmel aedes aegypti strain before field-release. PLoS Neglected Trop. Dis. 2021, 15, e0009752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; Wang, X.; et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Pinto, S.B.; Riback, T.I.; Sylvestre, G.; Costa, G.; Peixoto, J.; Dias, F.B.; Tanamas, S.K.; Simmons, C.P.; Dufault, S.M.; Ryan, P.A. Effectiveness of wolbachia-infected mosquito deployments in reducing the incidence of dengue and other aedes-borne diseases in niterói, brazil: A quasi-experimental study. PLoS Negl. Trop. Dis. 2021, 15, e00095562021. [Google Scholar] [CrossRef]
- Chaves, E.B.; Nascimento-Pereira, A.C.; Pinto, J.L.; Rodrigues, B.L.; de Andrade, M.S.; Rêbelo, J.M. Detection of Wolbachia in Mosquitoes (Diptera: Culicidae) in the State of Maranhão, Brazil. J. Med. Entomol. 2022, 59, 1831–1836. [Google Scholar] [CrossRef]
- Forattini, O.P. Culicidologia Médica; Edsup—Editora dea Universidade de Sao Paulo: Sao Paulo, Brasil, 2002. [Google Scholar]
- Hebert PD, N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Talaga, S.; Leroy, C.; Guidez, A.; Dusfour, I.; Girod, R.; Dejean, A.; Murienne, J. DNA reference libraries of French Guianese mosquitoes for barcoding and metabarcoding. PLoS ONE 2017, 12, e0176993. [Google Scholar] [CrossRef]
- Chabanol, E.; Romoli, O.; Talaga, S.; Epelboin, Y.; Heu, K.; Prévot, G.; Gendrin, M. A novel mosquito species identification method based on PCR and capillary electrophoresis. Authorea Prepr. 2023. [CrossRef]
- Mee, P.T.; Weeks, A.R.; Walker, P.J.; Hoffmann, A.A.; Duchemin, J.B. Detection of low-level Cardinium and Wolbachia infections in Culicoides. Appl. Environ. Microbiol. 2015, 81, 6177–6188. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Windsor, D.M. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc. R. Soc. B Biol. Sci. 2000, 267, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, T.M.; Hashimoto, K.; Harnandika, R.K.; Amalin, D.M.; Watanabe, K. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasites Vectors 2019, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.L.C.; Loose, M.; Tyson, J.R.; de Cesare, M.; Brown, B.L.; Jain, M.; Leggett, R.M.; Eccles, D.A.; Zalunin, V.; Urban, J.M.; et al. MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Research 2015, 4, 1075. [Google Scholar] [CrossRef]
- Hu, Y.; Xi, Z.; Liu, X.; Wang, J.; Guo, Y.; Ren, D.; Wu, H.; Wang, X.; Chen, B.; Liu, Q. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasites Vectors 2020, 13, 28. [Google Scholar] [CrossRef]
- Sahlin, K.; Lim MC, W.; Prost, S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 2021, 11, 1392–1398. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res 2018, 46, D41–D47. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert PD, N. BOLD: The Barcode of Life Data System: Barcoding. Mol. Ecol. Notes. 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson Toby, J.; Higgins, D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002, 2, 23. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. 1993. Available online: https://academic.oup.com/mbe/article/10/3/512/1016366 (accessed on 2 May 2024).
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 2016, 25, 5806–5826. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Khanipov, K.; Albayrak, L.; Golovko, G.; Pimenova, M.; Saldaña, M.A.; Rojas, M.M.; Hornett, E.A.; Motl, G.C.; Fredregill, C.L.; et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front. Microbiol. 2018, 9, 2160. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Yu, W.; Jiang, J.; Sanchez, C.; Karna, A.K.; Martinez, K.J.; Hanley, K.A.; Buenemann, M.; Hansen, I.A.; Xue, R.D.; et al. Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecol. Evol. 2019, 9, 6148–6156. [Google Scholar] [CrossRef] [PubMed]
- Teo CH, J.; Lim PK, C.; And Mak, K. Detection of Dengue Viruses and Wolbachia in Aedes Aegypti and Aedes Albopictus Larvae from Four Urban Localities in Kuala Lumpur, Malaysia. Trop. Biomed. 2017, 34, 583–597. Available online: http://www.sanofipasteur.com/en/ (accessed on 21 March 2024).
- Thongsripong, P.; Chandler, J.A.; Green, A.B.; Kittayapong, P.; Wilcox, B.A.; Kapan, D.D.; Bennett, S.N. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol. Evol. 2017, 8, 1352–1368. [Google Scholar] [CrossRef]
- Balaji, S.; Jayachandran, S.; Prabagaran, S.R. Evidence for the natural occurrence of Wolbachia in Aedes aegypti mosquitoes. FEMS Microbiol. Lett. 2019, 366, fnz055. [Google Scholar] [CrossRef]
- Bennett, K.L.; Gómez-Martínez, C.; Chin, Y.; Saltonstall, K.; McMillan, W.O.; Rovira, J.R.; Loaiza, J.R. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci. Rep. 2019, 9, 12160. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbeormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
- Blagrove MS, C.; Arias-Goeta, C.; Failloux, A.B.; Sinkins, S.P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. USA 2012, 109, 255–260. [Google Scholar] [CrossRef]
- Liang, X.; Tan, C.H.; Sun, Q.; Zhang, M.; Wong, P.S.J.; Li, M.I.; Mak, K.W.; Martín-Park, A.; Contreras-Perera, Y.; Puerta-Guardo, H.; et al. Wolbachia wAlbB remains stable in Aedes aegypti over 15 years but exhibits genetic background-dependent variation in virus blocking. PNAS Nexus 2022, 1, pgac203. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.A.; Callahan, A.G.; Yang, Q.; Jasper, M.; Arif, M.A.; Afizah, A.N.; Nazni, W.A.; Hoffmann, A.A. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecol. Evol. 2020, 10, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, C.L.; Tantely, L.M.; Raharimalala, F.N.; Hurn, E.; Boyer, S.; Walker, T. Diverse novel resident Wolbachia strains in Culicine mosquitoes from Madagascar. Sci. Rep. 2018, 8, 17456. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Turelli, M.; Harshman, L.G. Factors Affecting the Distribution of Cytoplasmic Incompatibility in Drosophila Simulans. Genetics 1990, 126, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Turelli, M. Evolution of Incompatibility-Inducing Microbes and Their Hosts. Evolution 1994, 48, 1500. [Google Scholar]
- Jiggins, F.M. The spread of Wolbachia through mosquito populations. PLOS Biol. 2017, 15, e2002780. [Google Scholar] [CrossRef]
- Maria Inácio da Silva, L.; Zimmer Dezordi, F.; Henrique Santos Paiva, M.; Luz Wallau, G.; Moraes Rego, P. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021, 10, 39. [Google Scholar] [CrossRef]
- Werren, J.H.; Windsor, D.; Guo, L. Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. B Biol. Sci. 1995, 262, 197–204. [Google Scholar]
- Turelli, M.; Cooper, B.S.; Richardson, K.M.; Ginsberg, P.S.; Peckenpaugh, B.; Antelope, C.X.; Kim, K.J.; May, M.R.; Abrieux, A.; Wilson, D.A.; et al. Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Curr. Biol. 2018, 28, 963–971.e8. [Google Scholar] [CrossRef]
- Ruiz, A.; Gutiérrez-Bugallo, G.; Rodríguez-Roche, R.; Pérez, L.; González-Broche, R.; Piedra, L.A.; Martínez, L.C.; Menéndez, Z.; Vega-Rúa, A.; Bisset, J.A. First report of natural Wolbachia infections in mosquitoes from Cuba. Acta Trop. 2023, 242, 106891. [Google Scholar] [CrossRef]
- Ravikumar, H.; Puttaraju, H.P. molecular_phylogenetic_affiliation_of_wolbachia.12. J. Vector. Borne. Dis. 2015, 52, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Dutton, T.J.; Sinkins, S.P. Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol. Biol. 2004, 13, 317–322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clervil, E.; Guidez, A.; Talaga, S.; Carinci, R.; Gaborit, P.; Lavergne, A.; Tirera, S.; Duchemin, J.-B. Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping. Microorganisms 2024, 12, 1994. https://doi.org/10.3390/microorganisms12101994
Clervil E, Guidez A, Talaga S, Carinci R, Gaborit P, Lavergne A, Tirera S, Duchemin J-B. Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping. Microorganisms. 2024; 12(10):1994. https://doi.org/10.3390/microorganisms12101994
Chicago/Turabian StyleClervil, Emmanuelle, Amandine Guidez, Stanislas Talaga, Romuald Carinci, Pascal Gaborit, Anne Lavergne, Sourakhata Tirera, and Jean-Bernard Duchemin. 2024. "Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping" Microorganisms 12, no. 10: 1994. https://doi.org/10.3390/microorganisms12101994
APA StyleClervil, E., Guidez, A., Talaga, S., Carinci, R., Gaborit, P., Lavergne, A., Tirera, S., & Duchemin, J. -B. (2024). Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping. Microorganisms, 12(10), 1994. https://doi.org/10.3390/microorganisms12101994