Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Process
2.1.1. Microorganisms
2.1.2. Culture Medium
2.1.3. Raw Materials
2.1.4. Culture Condition
2.2. Magnesium Lactate Crystallization and Recovery
2.3. Product Characterization and Analytical Techniques
2.3.1. X-ray Fluorescence (XRF) Analysis
2.3.2. X-ray Diffraction (XRD) Analysis
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Tomato Juice Used for Fermentation Process
3.2. Production of Magnesium Lactate through Fermentation Process
3.3. Magnesium Lactate Recovery through Crystallization
3.4. Characterization of Magnesium Lactate Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Beavers, E.M.; Klabunde, K.J.; Wang, B.; Sun, S. Lactic Acid–Magnesium Oxide Nanocrystal Interactions: How Nanoparticle Size and Shape Affect Chemistry and Template Oligomerization. New J. Chem. 2009, 33, 1951–1959. [Google Scholar] [CrossRef]
- Song, L.; Yang, D.; Liu, R.; Liu, S.; Dai, L.; Dai, X. Microbial Production of Lactic Acid from Food Waste: Latest Advances, Limits, and Perspectives. Bioresour. Technol. 2022, 345, 126052. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Hashemi, S.M.B. Lactic Acid Production—Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.I.; Kim, W.K.; Seo, D.K.; Yoo, I.S.; Kim, E.K.; Yoon, H.H. Production of Lactic Acid from Food Wastes. Appl. Biochem. Biotechnol. 2003, 105–108, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Koo, Y.M.; Lin, J. Production of Lactic Acid from Paper Sludge by Simultaneous Saccharification and Fermentation. Adv. Biochem. Eng. Biotechnol. 2004, 87, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Vadlani, P.V.; Kumar, A.; Hardwidge, P.R.; Govind, R.; Tanaka, T.; Kondo, A. Enhanced D-Lactic Acid Production from Renewable Resources Using Engineered Lactobacillus Plantarum. Appl. Microbiol. Biotechnol. 2016, 100, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Bahry, H.; Abdalla, R.; Pons, A.; Taha, S.; Vial, C. Optimization of Lactic Acid Production Using Immobilized Lactobacillus Rhamnosus and Carob Pod Waste from the Lebanese Food Industry. J. Biotechnol. 2019, 306, 81–88. [Google Scholar] [CrossRef] [PubMed]
- El-Sheshtawy, H.S.; Fahim, I.; Hosny, M.; El-Badry, M.A. Optimization of Lactic Acid Production from Agro-Industrial Wastes Produced by Kosakonia Cowanii. Curr. Res. Green Sustain. Chem. 2022, 5, 100228. [Google Scholar] [CrossRef]
- Lobeda, K.; Jin, Q.; Wu, J.; Zhang, W.; Huang, H. Lactic Acid Production from Food Waste Hydrolysate by Lactobacillus Pentosus: Focus on Nitrogen Supplementation, Initial Sugar Concentration, PH, and Fed-Batch Fermentation. J. Food Sci. 2022, 87, 3071–3083. [Google Scholar] [CrossRef] [PubMed]
- Popova-Krumova, P.; Danova, S.; Atanasova, N.; Yankov, D. Lactic Acid Production by Lactiplantibacillus Plantarum AC 11S—Kinetics and Modeling. Microorganisms 2024, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, D.M.; Wheeler, L.J.; Noller, C.H.; Keyser, R.B.; White, J.L. Neutralization of Acid in the Rumen by Magnesium Oxide and Magnesium Carbonate. J. Dairy Sci. 1982, 65, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Darwin; Blignaut, D. Alkaline Treatment for Preventing Acidosis in the Rumen Culture Fermenting Carbohydrates: An Experimental Study in Vitro. J. Adv. Vet. Anim. Res. 2019, 6, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, B.; Tesfaye, A.; Muleta, D.; Bahiru, A.; Terefework, Z.; Wessel, G. Isolation and Molecular Identification of Lactic Acid Bacteria Using 16s RRNA Genes from Fermented Teff (Eragrostis Tef (Zucc.)) Dough. Int. J. Food Sci. 2018, 2018, 8510620. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Hedlund, B. HPLC Analysis of Organic Acids in Lactic Acid Fermented Vegetables. Z. Lebensm. Unters. Forsch. 1983, 176, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, D.; Chen, C.; Wang, Z.; Qin, P.; Tan, T. Efficient Magnesium Lactate Production with in Situ Product Removal by Crystallization. Bioresour. Technol. 2015, 198, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Otaka, A.; Hokura, A.; Nakai, I. Determination of Trace Elements in Soybean by X-Ray Fluorescence Analysis and Its Application to Identification of Their Production Areas. Food Chem. 2014, 147, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Jendrzejewska, I. Application of X-Ray Powder Diffraction for Analysis of Selected Dietary Supplements Containing Magnesium and Calcium. Front. Chem. 2020, 8, 672. [Google Scholar] [CrossRef] [PubMed]
Sugars | Organic Acid | |
---|---|---|
Column | YMC-Pack Polyamine II (250 × 4.6 mm) | YMC-Triart C18 (3 µm, 12 nm), 150 × 3.0 mm |
Eluent | Acetonitrile/water (75/25, v/v) | 20 mM H3PO4 |
Oven temp. | 26 °C | 37 °C |
Flow rate | 1.0 mL/min | 1.0 mL/min |
Detector | RI (Shodex RI-101, Tokyo, Japan) | UV at 220 nm |
Inj. Volume | 20 ㎕ | 20 ㎕ |
Name | Medium | Bacteria | Note |
---|---|---|---|
MRS-0 | MRS medium | L. plantarum | To test performance of two bacteria and select the suitable bacteria for following experiments |
MRS-1 | MRS medium | L. paracasei | |
MRS-2 | MRS medium diluted with water at 1:1 ratio | L. paracasei | To test the fermentation performance with saving materials |
TMT-1 | Tomato juice | L. paracasei | To test the fermentation performance with real tomato juice |
TMT-2 | Tomato juice diluted with water at 1:1 ratio | L. paracasei | To test the fermentation performance with diluted tomato juice |
Fructose (g/L) | Glucose (g/L) | Citric Acid (g/L) | Glutamic Acid (g/L) | Tartaric Acid (mg/L) |
14.64 ± 0.17 | 13.12 ± 0.22 | 6.42 ± 0.18 | 1.24 ± 0.10 | 596.66 ± 7.25 |
Malic Acid (mg/L) | Ascorbic Acid (mg/L) | Succinic Acid (mg/L) | Lactic Acid (mg/L) | Acetic Acid (mg/L) |
714.36 ± 9.85 | 3.93 ± 0.44 | ND * | ND | ND |
Test Name | Final Lactate Concentration (g/L) | Lactic Acid Yield from Glucose (g/g) | Magnesium Lactate Recovery from Solution (%) |
---|---|---|---|
MRS-1 | 95 | 0.9 | 79.9 |
MRS-2 | 107 | 0.92 | 95.9 |
TMT-1 | 72 | 0.63 | 82.4 |
TMT-2 | 78 | 0.73 | 91.1 |
Sample | Al2O3 (%) | CaO (%) | Cr2O3 (%) | Fe2O3 (%) | K2O (%) | MgO (%) | MnO (%) | Na2O (%) | P2O5 (%) | LOI (%) |
---|---|---|---|---|---|---|---|---|---|---|
Al (%) | Ca (%) | Cr (%) | Fe (%) | K (%) | Mg (%) | Mn (%) | Na (%) | P (%) | ||
MRS-1 | 0.09 | 0.11 | 1.99 | 4.34 | 0.11 | 11.09 | 0.12 | 0.06 | 0.44 | 81.65 |
0.02 | 0.08 | 0.68 | 1.52 | 0.05 | 6.69 | 0.09 | 0.02 | 0.10 | ||
MRS-2 | 0.08 | 0.02 | 0.55 | 1.16 | 0 | 15.93 | 0.03 | 0.03 | 0 | 82.21 |
0.02 | 0.01 | 0.19 | 0.40 | 0 | 9.61 | 0.02 | 0.01 | 0 | ||
TMT-1 | 0.08 | 0.03 | 0.59 | 1.24 | 0.04 | 16.87 | 0.03 | 0.07 | 0.06 | 80.99 |
0.02 | 0.02 | 0.20 | 0.43 | 0.02 | 10.17 | 0.02 | 0.03 | 0.01 | ||
TMT-2 | 0.09 | 0.02 | 0.74 | 1.54 | 0 | 16.03 | 0.04 | 0.04 | 0.01 | 81.50 |
0.02 | 0.01 | 0.25 | 0.54 | 0 | 9.67 | 0.03 | 0.01 | 0.00 | ||
Mg lactate dihydrate (theoretical) | - | - | - | - | - | 16.90 | - | - | - | 83.10 |
- | - | - | - | - | 10.19 | - | - | - | ||
Mg lactate anhydrous (theoretical) | - | - | - | - | - | 19.91 | - | - | - | 80.09 |
- | - | - | - | - | 12.01 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, S.; Kang, H.Y. Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate. Microorganisms 2024, 12, 2011. https://doi.org/10.3390/microorganisms12102011
Won S, Kang HY. Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate. Microorganisms. 2024; 12(10):2011. https://doi.org/10.3390/microorganisms12102011
Chicago/Turabian StyleWon, Sangmin, and Ho Young Kang. 2024. "Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate" Microorganisms 12, no. 10: 2011. https://doi.org/10.3390/microorganisms12102011
APA StyleWon, S., & Kang, H. Y. (2024). Production of Magnesium Dilactate through Lactic Acid Fermentation with Magnesium Carbonate. Microorganisms, 12(10), 2011. https://doi.org/10.3390/microorganisms12102011