Gut Microbiota Alterations in Alzheimer’s Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Fecal Sample Collection and DNA Isolation
2.4. Shotgun Metagenomics and Quality Control
2.5. Exploratory Assessment
2.6. Cognitive Functions and Emotional, Neuropsychiatric, and Functionality Assessment
2.7. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Cognitive Functions and Emotional, Neuropsychiatric, and Functionality Assessment
3.3. Alpha- and Beta-Diversity
3.4. Diversity Measures and AD Cognitive Assessment
3.5. Bacterial Phylum Abundance and AD Cognitive Assessment
4. Discussion
4.1. Cognitive Alterations
4.2. Alpha- and Beta-Diversity Differences among Groups
Reference | Number of Samples | Methods | Country | Results |
---|---|---|---|---|
This study | 25 AD 25 HC | Shotgun metagenomics | Spain | ↓ alpha-diversity (Chao1 and Shannon indices) Distinct microbial communities of AD compared with HC |
Vogt et al., 2017 [9] | 25 AD 25 HC | 16S rRNA | United States | ↓ alpha-diversity (Chao1, Shannon, Simpson, and Inverse Simpson indices) ↓ Firmicutes and Bifidobacterium ↑ Bacteroidetes |
Haran et al., 2019 [54] | 108 elders | Shotgun metagenomics | United States | ↓ butyrate-producing taxa ↑ proinflammatory taxa |
Saji, Niida et al., 2019 [8] | 34 AD 94 HC | t-RFLP | Japan | ↑ alpha-diversity (Shannon and Simpson indices) ↓ Bacteroides |
Ueda et al., 2019 [50] | 7 AD 15 MCI 21 HC | 16S rRNA Shotgun metagenomics | Japan | ↓ F. prausnitzii in MCI Abundances of this bacteria correlated with worse cognitive function |
Guo et al., 2021 [48] | 18 AD 20 MCI 18 HC | 16S rRNA | China | Distinct microbial communities of AD compared with MCI and HC ↓ Bacteroides, Lachnospira, and Ruminiclostridium ↑ Prevotella Abundances correlated with worse cognitive function. |
Liu et al., 2019 [49] | 33 AD 32 MCI 32 HC | 16S rRNA | China | Distinct microbial communities of AD compared with MCI and HC |
Duan et al., 2021 [57] | 18 MCI | 16S rRNA | China | ↓ Firmicutes ↑ Bacteroidetes |
Pan et al., 2021 [55] | 22 MCI 26 HC | 16S rRNA | China | Distinct microbial communities of MCI compared with HC |
4.3. Relation between Microbial Phylum Abundance and AD Cognitive Assessment
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Duyckaerts, C.; Delatour, B.; Potier, M.-C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009, 118, 5–36. [Google Scholar] [CrossRef]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E. Role of the gut microbiota in nutrition and health. Br. Med. J. 2018, 361, k2179. [Google Scholar] [CrossRef]
- Alkasir, R.; Li, J.; Li, X.D.; Jin, M.; Zhu, B.L. Human gut microbiota: The links with dementia development. Protein Cell 2017, 8, 90–102. [Google Scholar] [CrossRef]
- Saji, N.; Niida, S.; Murotani, K.; Hisada, T.; Tsuduki, T.; Sugimoto, T.; Kimura, A.; Toba, K.; Sakurai, T. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan. Sci. Rep. 2019, 9, 1008. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Solas, M.; Milagro, F.I.; Ramírez, M.J. Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr. Opin. Pharmacol. 2017, 37, 87–92. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Zhu, M. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol. Neurobiol. 2020, 57, 5026–5043. [Google Scholar] [CrossRef]
- Jemimah, S.; Chabib, C.M.M.; Hadjileontiadis, L. Gut microbiome dysbiosis in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. PLoS ONE 2023, 18, 285346. [Google Scholar] [CrossRef]
- Tasnim, N.; Abulizi, N.; Pither, J. Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live? Front. Microbiol. 2017, 8, 1935. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Cabrera, C.P.V.; Torrente, M. Modifiable risk factors for dementia: The role of gut microbiota. Curr. Alzheimer Res. 2021, 18, 993–1009. [Google Scholar] [CrossRef]
- Ellouze, I.; Sheffler, J.; Nagpal, R. Dietary patterns and Alzheimer’s disease: An updated review linking nutrition to neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef]
- Rinninella, E.; Tohumcu, E.; Raoul, P. The role of diet in shaping human gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2023, 62, 101828. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F. The Effects of the Mediterranean Diet on Health and Gut Microbiota. Nutrients 2023, 15, 2150. [Google Scholar] [CrossRef]
- Agarwal, P.; Leurgans, S.E.; Agrawal, S. Association of Mediterranean-DASH Intervention for Neurodegenerative Delay and Mediterranean diets with Alzheimer disease pathology. Neurology 2023, 100, 2259–2268. [Google Scholar] [CrossRef]
- Van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease—A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Santos-Beneit, G.; Bodega, P. Validation of a questionnaire to measure overall Mediterranean lifestyle habits for research application: The MEDiterranean LIFEstyle index (MEDLIFE). Nutr. Hosp. 2015, 32, 1153. [Google Scholar]
- Anastasiou, C.A.; Yannakoulia, M.; Kontogianni, M.D. Mediterranean lifestyle in relation to cognitive health: Results from the HELIAD study. Nutrients 2018, 10, 1557. [Google Scholar] [CrossRef]
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018, 9, 2013. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Peña-Casanova, J. Teoría e Interpretación: Normalidad, Semiología y Patolología Neuropsicológicas; Test-Barcelona Services SL: Barcelona, Spain, 2019. [Google Scholar]
- Folstein, M.F.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Buschke, H.; Kuslansky, G.; Katz, M. Screening for dementia with the memory impairment screen. Neurology 1999, 52, 231. [Google Scholar] [CrossRef]
- Buschke, H. Cued recall in amnesia. J. Clin. Exp. Neuropsychol. 1984, 6, 433–440. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Skills. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Cacho, J.; García-García, R.; Arcaya, J.; Vicente, J.L.; Lantada, N. A proposal for application and scoring of the Clock Drawing Test in Alzheimer’s disease. Rev. Neurol. 1999, 28, 648–655. [Google Scholar]
- Shulman, K.I. Clock-drawing: Is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 2000, 15, 548–561. [Google Scholar] [CrossRef]
- Dubois, B.; Slachevsky, A.; Litvan, I. The FAB: A frontal assessment battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef]
- León-Estrada, I.; García-García, J.; Roldán-Tapia, L. Escala de reserva cognitiva: Ajuste del modelo teórico y baremación. Rev. Neurol. 2017, 64, 7–16. [Google Scholar] [CrossRef]
- Casals-Coll, M.; Sánchez-Benavides, G.; Meza-Cavazos, S. Spanish Multicenter Normative Studies (NEURONORMA Project): Normative Data and Equivalence of Four BNT Short-Form Versions. Arch. Clin. Neuropsychol. 2013, 29, 60–74. [Google Scholar] [CrossRef]
- Kaplan, E.; Goodglass, H.; Weintraub, S. Boston Naming Test (2nd(BNT-2); Pro-Ed: Austin, TX, USA, 2001. [Google Scholar]
- Goldberg, D.; Bridges, K.; Duncan-Jones, P. Detecting anxiety and depression in general medical settings. Br. Med. J. 1988, 297, 897. [Google Scholar] [CrossRef]
- Soldevila-Domenech, N.; Forcano, L.; Vintro-Alcaraz, C. Interplay between cognition and weight reduction in individuals following a Mediterranean Diet: Three-year follow-up of the PREDIMED-Plus trial. Clin. Nutr. 2021, 40, 5221–5237. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Nuzum, N.D.; Szymlek-Gay, E.A.; Loke, S. Differences in the gut microbiome across typical ageing and in Parkinson’s disease. Neuropharmacology 2023, 235, 109566. [Google Scholar] [CrossRef]
- Botto, R.; Callai, N.; Cermelli, A. Anxiety and depression in Alzheimer’s disease: A systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol. Sci. 2022, 43, 4107–4124. [Google Scholar] [CrossRef]
- Schwertner, E.; Pereira, J.B.; Xu, H. Behavioral and psychological symptoms of dementia in different dementia disorders: A large-scale study of 10,000 individuals. J. Alzheimer’s Dis. 2022, 87, 1307–1318. [Google Scholar] [CrossRef]
- Seixas-Lima, B.; Binns, M.; Black, S.E.; Fischer, C.; Freedman, M.; Kumar, S.; Lahiri, D.; Roncero, C.T.; Strother, S.; Tang-Wai, D.F.; et al. Relationships between neuropsychiatric symptoms and cognitive profiles in Alzheimer’s disease and related syndromes. Int. J. Geriatr. Psychiatry 2023, 38, e5960. [Google Scholar] [CrossRef]
- Rouch, I.; Padovan, C.; Boublay, N. Association between executive function and the evolution of behavioral disorders in Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2020, 35, 1043–1050. [Google Scholar] [CrossRef]
- Banning, L.C.; Ramakers, I.H.; Köhler, S. The association between biomarkers and neuropsychiatric symptoms across the Alzheimer’s disease spectrum. Am. J. Geriatr. Psychiatry 2020, 28, 735–744. [Google Scholar] [CrossRef]
- Devanand, D.P.; Lee, S.; Huey, E.D. Associations between neuropsychiatric symptoms and neuropathological diagnoses of Alzheimer disease and related dementias. JAMA Psychiatry 2022, 79, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Clemmensen, F.K.; Hoffmann, K.; Siersma, V. The role of physical and cognitive function in performance of activities of daily living in patients with mild-to-moderate Alzheimer’s disease—A cross-sectional study. BMC Geriatr. 2020, 20, 513. [Google Scholar] [CrossRef]
- Baillon, S.; Gasper, A.; Wilson-Morkeh, F. Prevalence and severity of neuropsychiatric symptoms in early-versus late-onset Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 433–438. [Google Scholar] [CrossRef]
- Kaiser, N.C.; Liang, L.-J.; Melrose, R.J. Differences in anxiety among patients with early-versus late-onset Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci. 2014, 26, 73–80. [Google Scholar] [CrossRef]
- Banning, L.C.; Ramakers, I.H.; Rosenberg, P.B. Alzheimer’s disease biomarkers as predictors of trajectories of depression and apathy in cognitively normal individuals, mild cognitive impairment, and Alzheimer’s disease dementia. Int. J. Geriatr. Psychiatry 2021, 36, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, A.; Westman, E.; Lebedev, A.V. Structural brain changes associated with depressive symptoms in the elderly with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2014, 85, 930–935. [Google Scholar] [CrossRef]
- Azocar, I.; Livingston, G.; Huntley, J. The Association Between Impaired Awareness and Depression, Anxiety, and Apathy in Mild to Moderate Alzheimer’s Disease: A Systematic Review. Front. Psychiatry 2021, 12, 633081. [Google Scholar] [CrossRef]
- Guo, M.; Peng, J.; Huang, X. Gut microbiome features of Chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J. Alzheimer’s Dis. 2021, 80, 299–310. [Google Scholar] [CrossRef]
- Liu, P.; Wu, L.; Peng, G. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 2019, 80, 633–643. [Google Scholar] [CrossRef]
- Ueda, A.; Shinkai, S.; Shiroma, H. Identification of Faecalibacterium prausnitzii strains for gut microbiome-based intervention in Alzheimer’s-type dementia. Cell Rep. Med. 2021, 2, 100398. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.; Yang, Y. The diversity of gut microbiota in type 2 diabetes with or without cognitive impairment. Aging Clin. Exp. Res. 2021, 33, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Sergeev, I.N.; Aljutaily, T.; Walton, G. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020, 12, 222. [Google Scholar] [CrossRef]
- Plassais, J.; Gbikpi-Benissan, G.; Figarol, M. Gut microbiome alpha-diversity is not a marker of Parkinson’s disease and multiple sclerosis. Brain Commun. 2021, 3, 113. [Google Scholar] [CrossRef] [PubMed]
- Haran, J.P.; Bhattarai, S.K.; Foley, S.E. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio 2019, 10, e00632-19. [Google Scholar] [CrossRef]
- Pan, Q.; Li, Y.-Q.; Guo, K. Elderly patients with mild cognitive impairment exhibit altered gut microbiota profiles. J. Immunol. Res. 2021, 2021, 5578958. [Google Scholar] [CrossRef]
- Ferreiro, A.L.; Choi, J.; Ryou, J. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 2023, 15, eabo2984. [Google Scholar] [CrossRef]
- Duan, M.; Liu, F.; Fu, H. Preoperative microbiomes and intestinal barrier function can differentiate prodromal Alzheimer’s disease from normal neurocognition in elderly patients scheduled to undergo orthopedic surgery. Front. Cell Infect. Microbiol. 2021, 11, 592842. [Google Scholar] [CrossRef]
- Cattaneo, A.; Cattane, N.; Galluzzi, S. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2016, 49, 60–68. [Google Scholar] [CrossRef]
- Saji, N.; Murotani, K.; Hisada, T. The relationship between the gut microbiome and mild cognitive impairment in patients without dementia: A cross-sectional study conducted in Japan. Sci. Rep. 2019, 9, 19227. [Google Scholar]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimer’s Dement. 2022, 18, 457–468. [Google Scholar] [CrossRef]
- Power, R.; Prado-Cabrero, A.; Mulcahy, R. The role of nutrition for the aging population: Implications for cognition and Alzheimer’s disease. Annu. Rev. Food Sci. Technol. 2019, 10, 619–639. [Google Scholar] [CrossRef]
- Wanapaisan, P.; Chuansangeam, M.; Nopnipa, S. Association between gut microbiota with mild cognitive impairment and Alzheimer’s disease in a Thai population. Neurodegener. Dis. 2022, 22, 43–54. [Google Scholar] [CrossRef]
- Li, B.; He, Y.; Ma, J. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimer’s Dement. 2019, 15, 1357–1366. [Google Scholar] [CrossRef]
- Bradley, P.H.; Pollard, K.S. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome 2017, 5, 36. [Google Scholar] [CrossRef]
- Li, Z.; Lu, G.; Li, Z. Altered actinobacteria and firmicutes phylum associated epitopes in patients with parkinson’s disease. Front. Immunol. 2021, 12, 632482. [Google Scholar] [CrossRef]
HC (n = 25) | AD (n = 25) | p-Value | ||||
---|---|---|---|---|---|---|
Mean or Count | SD or % | Mean or Count | SD or % | |||
Age (years) | 70.6 | 4.9 | 73.0 | 5.0 | t(48) = 1.71 | 0.090 |
Sex (M/F) | 13M, 12F | 52% M | 12M, 13F | 48% M | Χ2 = 0.08 | 0.780 |
BMI (kg/m2) | 26.6 | 3.2 | 24.7 | 3.6 | t(48) = 1.96 | 0.060 |
Education (years) | 10.4 | 4.8 | 9.8 | 5.0 | t(48) = 0.43 | 0.670 |
Smoke status | ||||||
Current smoker | 3 | 12% | 1 | 4% | Χ2 = 1.13 | 0.570 |
Former smoker | 8 | 32% | 8 | 32% | ||
Non-smoker | 14 | 56% | 16 | 64% | ||
Alcohol consumption | ||||||
Current consumer | 7 | 28% | 3 | 12% | Χ2 = 3.70 | 0.150 |
Former consumer | 0 | 0% | 2 | 8% | ||
Non-consumer | 18 | 72% | 20 | 80% | ||
MEDLIFE | ||||||
Food consumption | 9.80 | 1.63 | 10.20 | 1.63 | F(1,48) = 0.75 | 0.391 |
Dietary habits | 4.60 | 1.08 | 4.40 | 1.15 | F(1,48) = 0.64 | 0.421 |
Physical and social activity | 3.88 | 0.97 | 3.44 | 1.04 | F(1,48) = 2.13 | 0.144 |
HC | AD | p-Value | ||||
---|---|---|---|---|---|---|
Mean or Count | SD or % | Mean or Count | SD or % | |||
OBTII | ||||||
Personal orientation | 25.00 | 0.00 | 23.60 | 2.24 | H(1) = 12.06 | <0.001 |
Spatial orientation | 24.60 | 2.00 | 20.28 | 5.79 | H(1) = 23.38 | <0.001 |
Temporary orientation | 69.60 | 2.00 | 46.32 | 23.34 | H(1) = 27.73 | <0.001 |
MMSE | 28.88 | 1.79 | 21.72 | 4.30 | F(1,48) = 59.18 | <0.001 |
MIS | 6.83 | 1.40 | 1.64 | 2.12 | H(1) = 30.83 | <0.001 |
DS | ||||||
Forward span | 5.60 | 1.22 | 4.80 | 1.08 | H(1) = 4.60 | 0.032 |
Backward span | 3.84 | 1.03 | 3.48 | 0.96 | H(1) = 1.52 | 0.217 |
FCSRT | ||||||
1st free recall | 5.40 | 2.40 | 0.84 | 1.25 | t(48) = 8.42 | <0.001 |
Total free recall | 20.12 | 8.04 | 2.28 | 5.28 | H(1) = 31.56 | <0.001 |
Total recall | 37.16 | 10.11 | 5.64 | 11.87 | H(1) = 32.72 | <0.001 |
Delayed free recall | 8.32 | 3.78 | 0.20 | 0.65 | H(1) = 36.51 | <0.001 |
Total delayed recall | 13.20 | 3.71 | 1.36 | 2.97 | H(1) = 35.18 | <0.001 |
TMT A | 61.64 | 35.72 | 218.00 | 268.36 | H(1) = 8.24 | 0.004 |
TMT B | 201.17 | 262.30 | 225.00 | 330.92 | H(1) = 0.88 | 0.346 |
CDT | 9.08 | 1.76 | 5.62 | 3.35 | H(1) = 15.07 | <0.001 |
PCBTII | 29.20 | 2.06 | 26.68 | 4.79 | H(1) = 5.08 | 0.024 |
FAB | 17.08 | 1.11 | 12.24 | 4.63 | H(1) = 19.45 | <0.001 |
CRS | 12.40 | 5.42 | 11.12 | 4.51 | F(1,48) = 0.82 | 0.369 |
Boston-C | 12.00 | 1.71 | 9.40 | 3.13 | t(37.1) = −3.64 | <0.001 |
CEF | ||||||
Semantic fluency | 16.87 | 4.66 | 10.28 | 4.79 | F(1,47) = 23.80 | <0.001 |
Formal fluency | 12.68 | 5.86 | 8.44 | 4.91 | F(1,48) = 7.69 | 0.008 |
GOLDBERG | ||||||
Anxiety scale | 1.32 | 2.32 | 1.12 | 1.83 | H(1) = 0.04 | 0.826 |
Depression scale | 0.92 | 1.87 | 0.96 | 2.01 | H(1) = 0.04 | 0.840 |
LEQ | 12.48 | 5.22 | 10.79 | 5.30 | F(1,47) = 1.26 | 0.267 |
HC | AD | p-Value | ||||
---|---|---|---|---|---|---|
Mean or Count | SD or % | Mean or Count | SD or % | |||
NPBTII | 1.04 | 2.99 | 5.96 | 4.20 | H(1) = 25.59 | <0.001 |
NPEBTII | 0.00 | 0.00 | 0.42 | 0.88 | H(1) = 5.66 | 0.017 |
ADL | ||||||
Basic activities | 0.00 | 0.00 | 1.88 | 3.44 | H(1) = 13.58 | <0.001 |
Instrumental activities | 0.20 | 0.71 | 32.44 | 15.60 | H(1) = 40.34 | <0.001 |
FEATURE | METADATA | COEF | StdErr | N | N not 0 | p | q |
---|---|---|---|---|---|---|---|
Phylum.Acidobacteria | MEDcT | −0.37471 | 0.12475 | 25 | 25 | 0.006 | 0.036 |
Phylum.Acidobacteria | MEDT | −0.22184 | 0.07320 | 25 | 25 | 0.006 | 0.061 |
Phylum.Actinobacteria | MEDcT | −0.33567 | 0.13587 | 25 | 25 | 0.021 | 0.066 |
Phylum.Armatimonadetes | MEDcT | −0.45215 | 0.13859 | 25 | 22 | 0.003 | 0.036 |
Phylum.Armatimonadetes | MEDT | −0.22803 | 0.08638 | 25 | 22 | 0.015 | 0.062 |
Phylum.Chlorobi | MEDcT | −0.33536 | 0.12306 | 25 | 25 | 0.012 | 0.046 |
Phylum.Chlorobi | MEDT | −0.19716 | 0.07240 | 25 | 25 | 0.012 | 0.061 |
Phylum.Chloroflexi | MEDcT | −0.36241 | 0.12745 | 25 | 25 | 0.009 | 0.044 |
Phylum.Chloroflexi | MEDT | −0.20554 | 0.07589 | 25 | 25 | 0.013 | 0.061 |
Phylum.Cyanobacteria | MEDT | −0.14261 | 0.05837 | 25 | 25 | 0.023 | 0.070 |
Phylum.Deinococcus.Thermus | MEDcT | −0.42398 | 0.15167 | 25 | 25 | 0.010 | 0.044 |
Phylum.Deinococcus.Thermus | MEDT | −0.23198 | 0.09124 | 25 | 25 | 0.018 | 0.065 |
Phylum.Gemmatimonadetes | MEDcT | −0.46382 | 0.15229 | 25 | 25 | 0.006 | 0.036 |
Phylum.Gemmatimonadetes | MEDT | −0.27341 | 0.08951 | 25 | 25 | 0.006 | 0.061 |
Phylum.Kiritimatiellaeota | MEDcT | −0.53515 | 0.16450 | 25 | 24 | 0.004 | 0.036 |
Phylum.Kiritimatiellaeota | MEDT | −0.27882 | 0.10145 | 25 | 24 | 0.011 | 0.061 |
Phylum.Nitrospirae | MEDcT | −0.36010 | 0.14063 | 25 | 25 | 0.017 | 0.059 |
Phylum.Nitrospirae | MEDT | −0.20941 | 0.08299 | 25 | 25 | 0.019 | 0.065 |
Phylum.Omnitrophica | MEDcT | −0.45225 | 0.19750 | 25 | 17 | 0.032 | 0.089 |
Phylum.Omnitrophica | MEDT | −0.27288 | 0.11549 | 25 | 17 | 0.027 | 0.076 |
Phylum.Planctomycetes | MEDcT | −0.35369 | 0.11748 | 25 | 25 | 0.006 | 0.036 |
Phylum.Planctomycetes | MEDT | −0.20408 | 0.06962 | 25 | 25 | 0.008 | 0.061 |
Phylum.Proteobacteria | MEDT | −0.25193 | 0.05843 | 25 | 25 | <0.001 | 0.009 |
FEATURE | METADATA | COEF | StdErr | N | N not 0 | p | q |
---|---|---|---|---|---|---|---|
Phylum.Thermodesulfobacteria | POBTII | 0.32178 | 0.83389 | 25 | 24 | 0.001 | 0.044 |
Phylum.Thermodesulfobacteria | SOBTII | 0.31115 | 0.83137 | 25 | 24 | 0.001 | 0.044 |
Phylum.Thermodesulfobacteria | TOBTII | 0.31320 | 0.83108 | 25 | 24 | 0.001 | 0.044 |
Phylum.Thermodesulfobacteria | OBTII | −0.31225 | 0.82957 | 25 | 24 | 0.001 | 0.044 |
Phylum.Acidobacteria | ADLTBTII | −0.20988 | 0.06986 | 25 | 25 | 0.007 | 0.056 |
Phylum.Acidobacteria | ADLIBTII | 0.23272 | 0.07885 | 25 | 25 | 0.007 | 0.056 |
Phylum.Aquificae | ADLTBTII | −0.17086 | 0.06520 | 25 | 25 | 0.016 | 0.056 |
Phylum.Aquificae | ADLIBTII | 0.19350 | 0.07359 | 25 | 25 | 0.015 | 0.056 |
Phylum.Armatimonadetes | ADLIBTII | 0.18689 | 0.09763 | 25 | 22 | 0.069 | 0.094 |
Phylum.Bacteroidetes | ADLIBTII | −0.06670 | 0.03297 | 25 | 25 | 0.055 | 0.088 |
Phylum.Calditrichaeota | ADLTBTII | −0.23865 | 0.08102 | 25 | 21 | 0.007 | 0.056 |
Phylum.Chrysiogenetes | ADLTBTII | −0.20443 | 0.08632 | 25 | 23 | 0.027 | 0.056 |
Phylum.Chrysiogenetes | ADLIBTII | 0.22331 | 0.09742 | 25 | 23 | 0.032 | 0.060 |
Phylum.Cyanobacteria | ADLBBTII | −0.14739 | 0.04294 | 25 | 25 | 0.002 | 0.077 |
Phylum.Cyanobacteria | ADLTBTII | −0.17467 | 0.04975 | 25 | 25 | 0.002 | 0.053 |
Phylum.Cyanobacteria | ADLIBTII | 0.18648 | 0.05615 | 25 | 25 | 0.003 | 0.053 |
Phylum.Deferribacteres | ADLTBTII | −0.15443 | 0.06382 | 25 | 25 | 0.024 | 0.056 |
Phylum.Deferribacteres | ADLIBTII | 0.17102 | 0.07204 | 25 | 25 | 0.027 | 0.056 |
Phylum.Deinococcus.Thermus | ADLTBTII | −0.19024 | 0.09019 | 25 | 25 | 0.047 | 0.079 |
Phylum.Fibrobacteres | ADLIBTII | 0.20090 | 0.09244 | 25 | 23 | 0.041 | 0.071 |
Phylum.Firmicutes | ADLTBTII | −0.10671 | 0.04554 | 25 | 25 | 0.029 | 0.057 |
Phylum.Firmicutes | ADLIBTII | 0.11630 | 0.05140 | 25 | 25 | 0.034 | 0.061 |
Phylum.Fusobacteria | ADLTBTII | −0.15690 | 0.06588 | 25 | 25 | 0.026 | 0.056 |
Phylum.Fusobacteria | ADLIBTII | 0.18415 | 0.07436 | 25 | 25 | 0.021 | 0.056 |
Phylum.Gemmatimonadetes | ADLTBTII | −0.21647 | 0.08996 | 25 | 25 | 0.025 | 0.056 |
Phylum.Gemmatimonadetes | ADLIBTII | 0.23129 | 0.10154 | 25 | 25 | 0.033 | 0.060 |
Phylum.Kiritimatiellaeota | ADLTBTII | −0.25375 | 0.09809 | 25 | 24 | 0.017 | 0.056 |
Phylum.Kiritimatiellaeota | ADLIBTII | 0.28087 | 0.11071 | 25 | 24 | 0.019 | 0.056 |
Phylum.Nitrospirae | ADLTBTII | −0.19524 | 0.07960 | 25 | 25 | 0.023 | 0.056 |
Phylum.Nitrospirae | ADLIBTII | 0.21528 | 0.08984 | 25 | 25 | 0.026 | 0.056 |
Phylum.Omnitrophica | ADLTBTII | −0.33695 | 0.09838 | 25 | 17 | 0.002 | 0.053 |
Phylum.Omnitrophica | ADLIBTII | 0.39218 | 0.11104 | 25 | 17 | 0.002 | 0.053 |
Phylum.Planctomycetes | ADLTBTII | −0.18046 | 0.06805 | 25 | 25 | 0.015 | 0.056 |
Phylum.Planctomycetes | ADLIBTII | 0.19990 | 0.07681 | 25 | 25 | 0.016 | 0.056 |
Phylum.Spirochaetes | ADLTBTII | −0.12290 | 0.05052 | 25 | 25 | 0.024 | 0.056 |
Phylum.Spirochaetes | ADLIBTII | 0.14160 | 0.05702 | 25 | 25 | 0.021 | 0.056 |
Phylum.Synergistetes | ADLTBTII | −0.27061 | 0.11414 | 25 | 25 | 0.027 | 0.056 |
Phylum.Synergistetes | ADLIBTII | 0.30977 | 0.12883 | 25 | 25 | 0.025 | 0.056 |
Phylum.Thermotogae | ADLTBTII | −0.15337 | 0.06481 | 25 | 25 | 0.027 | 0.056 |
Phylum.Thermotogae | ADLIBTII | 0.16936 | 0.07315 | 25 | 25 | 0.030 | 0.059 |
Medyterranean Style Index (MEDLIFE) | Activities of Daily Living | Orientation |
---|---|---|
Phylum.Acidobacteria | Phylum.Acidobacteria | Phylum.Thermodesulfobacteria |
Phylum.Actinobacteria | Phylum.Aquificae | |
Phylum.Armatimonadetes | Phylum.Armatimonadetes | |
Phylum.Chlorobi | Phylum.Bacteroidetes | |
Phylum.Chloroflexi | Phylum.Calditrichaeota | |
Phylum.Cyanobacteria | Phylum.Chlamydiae | |
Phylum.Deinococcus.Thermus | Phylum.Chlorobi | |
Phylum.Gemmatimonadetes | Phylum.Chloroflexi | |
Phylum.Kiritimatiellaeota | Phylum.Chrysiogenetes | |
Phylum.Nitrospirae | Phylum.Cyanobacteria | |
Phylum.Omnitrophica | Phylum.Deferribacteres | |
Phylum.Planctomycetes | Phylum.Deinococcus.Thermus | |
Phylum.Proteobacteria | Phylum.Fibrobacteres | |
Phylum.Firmicutes | ||
Phylum.Fusobacteria | ||
Phylum.Gemmatimonadetes | ||
Phylum.Kiritimatiellaeota | ||
Phylum.Nitrospirae | ||
Phylum.Omnitrophica | ||
Phylum.Planctomycetes | ||
Phylum.Spirochaetes | ||
Phylum.Synergistetes | ||
Phylum.Thermotogae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo, D.; Carrión, N.; Cabrera, C.; Heredia, L.; Marquès, M.; Forcadell-Ferreres, E.; Pino, M.; Zaragoza, J.; Moral, A.; Cavallé, L.; et al. Gut Microbiota Alterations in Alzheimer’s Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. Microorganisms 2024, 12, 2046. https://doi.org/10.3390/microorganisms12102046
Mateo D, Carrión N, Cabrera C, Heredia L, Marquès M, Forcadell-Ferreres E, Pino M, Zaragoza J, Moral A, Cavallé L, et al. Gut Microbiota Alterations in Alzheimer’s Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. Microorganisms. 2024; 12(10):2046. https://doi.org/10.3390/microorganisms12102046
Chicago/Turabian StyleMateo, David, Nerea Carrión, Cristian Cabrera, Luis Heredia, Montse Marquès, Eva Forcadell-Ferreres, Maria Pino, Josep Zaragoza, Alfons Moral, Lluís Cavallé, and et al. 2024. "Gut Microbiota Alterations in Alzheimer’s Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle" Microorganisms 12, no. 10: 2046. https://doi.org/10.3390/microorganisms12102046
APA StyleMateo, D., Carrión, N., Cabrera, C., Heredia, L., Marquès, M., Forcadell-Ferreres, E., Pino, M., Zaragoza, J., Moral, A., Cavallé, L., González-de-Echávarri, J. M., Vicens, P., Domingo, J. L., & Torrente, M. (2024). Gut Microbiota Alterations in Alzheimer’s Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. Microorganisms, 12(10), 2046. https://doi.org/10.3390/microorganisms12102046