Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Culture Media
2.3. Analytical Methods
2.4. Data Analysis
3. Results
3.1. Effect of the C/N Ratio
3.2. Adjustment of the C/N Ratio
3.3. Effect of Temperature
3.4. Effect of Initial Spores’ Suspension
3.5. Batch-Bioreactor Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasilakis, G.; Karayannis, D.; Massouras, T.; Politis, I.; Papanikolaou, S. Biotechnological conversions of mizithra second cheese whey by wild-type non-conventional yeast strains: Production of yeast cell biomass, single-cell oil and polysaccharides. Appl. Sci. 2022, 12, 11471. [Google Scholar] [CrossRef]
- Giannakis, N.; Carmona-Cabello, M.; Makri, A.; Leiva-Candia, D.; Filippi, K.; Argeiti, C.; Pateraki, C.; Dorado, M.P.; Koutinas, A.; Stylianou, E. Spent coffee grounds and orange peel residues based biorefinery for microbial oil and biodiesel conversion estimation. Renew. Energy 2023, 209, 382–392. [Google Scholar] [CrossRef]
- Karayannis, D.; Vasilakis, G.; Charisteidis, I.; Litinas, A.; Manolopoulou, E.; Tsakalidou, E.; Papanikolaou, S. Screening of new industrially important bacterial strains for 1,3-propanediol, 2,3-butanediol and ethanol production through biodiesel-derived glycerol fermentations. Microorganisms 2023, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Michnick, S.; Roustan, J.-L.; Remize, F.; Barre, R.; Dequin, S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 1997, 13, 738–793. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.W.; Pandey, A. Glycerol waste to value added products and its potential applications. Syst. Microbiol. Biomanufacturing 2021, 1, 378–396. [Google Scholar] [CrossRef]
- Choi, W.J.; Hartono, M.R.; Chan, W.H.; Yeo, S.S. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl. Microbiol. Biotechnol. 2011, 89, 1255–1264. [Google Scholar] [CrossRef]
- Metsoviti, M.; Paramithiotis, S.; Drosinos, E.H.; Galiotou-Panayotou, M.; Nychas, G.J.E.; Zeng, A.P.; Papanikolaou, S. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng. Life Sci. 2012, 12, 57–68. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Fakas, S.; Fick, M.; Chevalot, I.; Galiotou-Panayotou, M.; Komaitis, M.; Marc, I.; Aggelis, G. Biotechnological valorization of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 2008, 32, 60–71. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Ladakis, D.; Papanikolaou, S.; de Castro, A.M.; Koutinas, A.A. Evaluation of 1,3-propanediol production by two Citrobacter freundii strains using crude glycerol and soybean cake hydrolysate. Env. Sci. Pollut. Res. 2019, 26, 35523–35532. [Google Scholar] [CrossRef]
- Andre, A.; Chatzifragkou, A.; Diamantopoulou, P.; Sarris, D.; Philippoussis, A.; Galiotou-Panayotou, M.; Komaitis, M.; Papanikolaou, S. Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains. Eng. Life Sci. 2009, 9, 468–478. [Google Scholar] [CrossRef]
- Yoshikawa, J.; Habe, H.; Morita, T.; Fukuoka, T.; Imura, T.; Iwabuchi, H.; Uemura, S.; Tamura, T.; Kitamoto, D. Production of mannitol from raw glycerol by Candida azyma. J. Biosci. Bioeng. 2014, 117, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Filippousi, R.; Antoniou, D.; Tryfinopoulou, P.; Nisiotou, A.A.; Nychas, G.-J.; Koutinas, A.A.; Papanikolaou, S. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel-derived crude glycerol: Microbial production of polyols, endopolysaccharides and lipid. J. Appl. Microbiol. 2019, 127, 1080–1100. [Google Scholar] [CrossRef] [PubMed]
- Filippousi, R.; Tsouko, E.; Mordini, K.; Ladakis, D.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Sustainable arabitol production by a newly isolated Debaryomyces prosopidis strain cultivated on biodiesel-derived glycerol. Carbon Resour. Convers. 2022, 5, 92–99. [Google Scholar] [CrossRef]
- Vastaroucha, E.-S.; Maina, S.; Michou, S.; Kalantzi, O.; Pateraki, C.; Koutinas, A.A.; Papanikolaou, S. Bioconversions of biodiesel-derived glycerol into sugar alcohols by newly isolated wild-type Yarrowia lipolytica strains. Reactions 2021, 2, 499–513. [Google Scholar] [CrossRef]
- Vastaroucha, E.-S.; Stoforos, N.; Aggelis, G.; Papanikolaou, S. Studies of polyol production by the yeast Yarrowia lipolytica growing on crude glycerol under stressful conditions. Carbon Resour. Convers. 2024, 7, 100210. [Google Scholar] [CrossRef]
- Sarantou, S.; Stoforos, N.G.; Kalantzi, O.; Papanikolaou, S. Biotechnological valorization of biodiesel-derived glycerol: Trials with the non-conventional yeasts Yarrowia lipolytica and Rhodosporidium sp. Carbon Resour. Convers. 2021, 4, 61–75. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S. Biotechnological production of sugar-alcohols: Focus on Yarrowia lipolytica and edible/medicinal mushrooms. Process Biochem. 2023, 124, 113–131. [Google Scholar] [CrossRef]
- Rywinska, A.; Rymowicz, W.; Marcinkiewicz, M. Valorization of raw glycerol for citric acid production by Yarrowia lipolytica yeast. Electron. J. Biotechnol. 2010, 13, 9–10. [Google Scholar] [CrossRef]
- Sarris, D.; Sampani, Z.; Rapti, A.; Papanikolaou, S. Valorization of crude glycerol, residue deriving from biodiesel-production process, with the use of wild-type new isolated Yarrowia lipolytica strains: Production of metabolites with pharmaceutical and biotechnological interest. Curr. Pharm. Biotechnol. 2019, 20, 881–894. [Google Scholar] [CrossRef]
- Wang, Z.; Ning, T.; Gao, K.; He, X.; Zhang, H. Utilization of glycerol and crude glycerol for polysaccharide production by an endophytic fungus Chaetomium globosum CGMCC 6882. Prep. Biochem. Biotechnol. 2019, 49, 807–812. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Filippousi, R.; Antoniou, D.; Varfi, E.; Xenopoulos, E.; Sarris, D.; Papanikolaou, S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol. Lett. 2020, 367, fnaa063. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 2002, 82, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Aggelis, G. Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol. 2009, 21, 83–87. [Google Scholar] [CrossRef]
- Tchakouteu, S.; Kalantzi, O.; Gardeli, C.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Lipid production by yeasts growing on biodiesel-derived crude glycerol: Strain selection and impact of substrate concentration on the fermentation efficiency. J. Appl. Microbiol. 2015, 118, 911–927. [Google Scholar] [CrossRef] [PubMed]
- Filippousi, R.; Diamantopoulou, P.; Stavropoulou, M.; Makris, D.P.; Papanikolaou, S. Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochem. 2022, 123, 52–62. [Google Scholar] [CrossRef]
- Karayannis, D.; Papanikolaou, S.; Vatistas, C.; Paris, C.; Chevalot, I. Yeast lipid produced through glycerol conversions and its use for enzymatic synthesis of amino acid-based biosurfactants. Int. J. Mol. Sci. 2023, 24, 714. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010, 112, 639–654. [Google Scholar] [CrossRef]
- Kothri, M.; Mavrommati, M.; Elazzazy, A.M.; Baeshen, M.N.; Moussa, T.A.A.; Aggelis, G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol. Lett. 2020, 367, fnaa028. [Google Scholar] [CrossRef]
- Čertik, M.; Shimizu, S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 1999, 87, 1–14. [Google Scholar] [CrossRef]
- Fakas, S.; Papanikolaou, S.; Galiotou-Panayotou, M.; Komaitis, M.; Aggelis, G. Biochemistry and biotechnology of single cell oil. In New Horizons in Biotechnology; Pandey, A., Larroche, C., Eds.; Asiatech Publisher: Delhi, India, 2009. [Google Scholar]
- Papanikolaou, S.; Aggelis, G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. [Google Scholar] [CrossRef]
- Passoth, V. Lipids of yeasts and filamentous fungi and their importance for biotechnology. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A., Ed.; Springer: Cham, Germany, 2017. [Google Scholar]
- Ratledge, C.; Wynn, J.P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–51. [Google Scholar] [PubMed]
- Kyriakaki, P.; Zisis, F.; Pappas, A.C.; Mavrommatis, A.; Tsiplakou, E. Effects of PUFA-rich dietary strategies on ruminants’ mammary gland gene network: A nutrigenomics review. Metabolites 2023, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Kyriakaki, P.; Mavrommatis, A.; Mitsiopoulou, C.; Tsiplakou, E. Effect of whole sesame seeds dietary inclusion levels on transcriptional signatures of lipid metabolism in mammary gland of goats. Small Rumin. Res. 2024, 236, 107294. [Google Scholar] [CrossRef]
- Kalampounias, G.; Gardeli, C.; Alexis, S.; Anagnostopoulou, E.; Androutsopoulou, T.; Dritsas, P.; Aggelis, G.; Papanikolaou, S.; Katsoris, P. Poly-unsaturated fatty acids (PUFAs) from Cunninghamella elegans grown on glycerol induce cell death and increase intracellular reactive oxygen species. J. Fungi 2024, 10, 130. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C. Microbial production of γ-linolenic acid. In Handbook of Functional Lipids; Taylor & Francis Group: Abingdon, UK, 2006. [Google Scholar]
- Ratledge, C. Microbial oils: An introductory overview of current status and future prospects. OCL 2013, 20, D602. [Google Scholar] [CrossRef]
- Rezapour-Firouzi, S. Herbal oil supplement with hot-nature diet for multiple sclerosis. Nutr. Lifestyle Neurol. Autoimmune Dis. 2017, 24, 229–245. [Google Scholar]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef]
- Čertik, M.; Berhan, S.S.; Sajbidor, J. Lipid production and fatty acid composition of selected strains belonging to Mucorales. Acta Biotechnol. 1993, 13, 193–196. [Google Scholar] [CrossRef]
- Čertik, M.; Megova, J.; Horenitzky, R. Effect of nitrogen sources on the activities of lipo-genic enzymes in oleaginous fungus Cunninghamella echinulata. J. Gen. Appl. Microbiol. 1999, 45, 289–293. [Google Scholar] [CrossRef]
- Čertík, M.; Adamechová, Z.; Laoteng, K. Microbial production of γ-linolenic acid: Submerged versus solid-state fermentations. Food Sci. Biotechnol. 2012, 21, 921–926. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Fakas, S.; Komaitis, M.; Aggelis, G. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur. J. Lipid Sci. Technol. 2007, 109, 1060–1070. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Rontou, M.; Belka, A.; Athenaki, M.; Gardeli, C.; Mallouchos, A.; Kalantzi, O.; Koutinas, A.A.; Kookos, I.K.; Zeng, A.P.; et al. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng. Life Sci. 2016, 17, 262–281. [Google Scholar] [CrossRef] [PubMed]
- Fakas, S.; Bellou, S.; Makri, A.; Aggelis, G. Single cell oil and gamma-linolenic acid production by Thamnidium elegans grown on raw glycerol. In Microbial Conversions of Raw Glycerol; Aggelis, G., Ed.; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Fakas, S.; Papanikolaou, S.; Batsos, A.; Galiotou-Panayotou, M.; Mallouchos, A.; Aggelis, G. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 2009, 33, 573–580. [Google Scholar] [CrossRef]
- Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Aggelis, G.; Papanikolaou, S. Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur. J. Lipid Sci. Technol. 2010, 112, 1048–1057. [Google Scholar] [CrossRef]
- Chatzifragkou, A.; Makri, A.; Belka, A.; Bellou, S.; Mavrou, M.; Mastoridou, M.; Mystrioti, P.; Onjaro, G.; Aggelis, G.; Papanikolaou, S. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy. 2011, 36, 1097–1108. [Google Scholar] [CrossRef]
- Bellou, S.; Moustogianni, A.; Makri, A.; Aggelos, G. Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl. Biochem. Biotechnol. 2012, 166, 146–158. [Google Scholar] [CrossRef]
- Bellou, S.; Makri, A.; Sarris, D.; Michos, K.; Rentoumi, P.; Celik, A.; Papanikolaou, S.; Aggelis, G. The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J. Biotechnol. 2014, 170, 50–59. [Google Scholar] [CrossRef]
- Economou, C.N.; Aggelis, G.; Pavlou, S.; Vayenas, D.V. Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol. Bioeng. 2010, 108, 1049–1055. [Google Scholar] [CrossRef]
- Klempova, T.; Basil, E.; Kubatova, A.; Čertik, M. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi. Biotechnol. J. 2013, 8, 794–800. [Google Scholar] [CrossRef]
- Sukrutha, S.K.; Adamechova, Z.; Rachana, K.; Savitha, J.; Čertik, M. Optimization of physiological growth conditions for maximal gamma-linolenic acid production by Cunninghamella blakesleeana-JSK2. J. Am. Oil Chem. Society 2014, 91, 1507–1513. [Google Scholar] [CrossRef]
- Moustogianni, A.; Bellou, S.; Triantaphyllidou, I.E.; Aggelis, G. Feasibility of raw glycerol conversion into single cell oil by Zygomycetes under non-aseptic conditions. Biotechnol. Bioeng. 2015, 112, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Gardeli, C.; Athenaki, M.; Xenopoulos, E.; Mallouchos, A.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J. Appl. Microbiol. 2017, 123, 1461–1477. [Google Scholar] [CrossRef] [PubMed]
- Carota, E.; Crognale, S.; D’Annibale, A.; Petruccioli, M. Bioconversion of agro-industrial waste into microbial oils by filamentous fungi. Process Saf. Environ. Prot. 2018, 117, 143–151. [Google Scholar] [CrossRef]
- Varma, P.S.; Chandrasekharan, S.; Venkateswaran, G.; Rajendran, S.; Mallapureddy, K.K.; Pandey, A.; Parameswaran, B. Optimization of process parameters for the production of γ-linolenic acid by Cunninghamella elegans CFR C07 in submerged fermentation. Food Technol. Biotechnol. 2018, 56, 96–100. [Google Scholar] [PubMed]
- Papanikolaou, S.; Aggelis, G. Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J. Microbiol. Biotechnol. 2019, 35, 63. [Google Scholar] [CrossRef]
- Mohamed, H.; El-Shanawany, A.-R.; Shah, A.M.; Nazir, Y.; Naz, T.; Ullah, S.; Mustafa, K.; Song, Y. Comparative analysis of different isolated oleaginous Mucoromycota fungi for their γ-linolenic acid and carotenoid production. BioMed. Res. Int. 2020, 2020, 3621543. [Google Scholar] [CrossRef]
- Somacal, S.; Pinto, V.S.; Vendruscolo, R.G.; Somacal, S.; Wagner, R.; Ballus, C.A.; Kuhn, R.C.; Mazutti, M.A.; Menezes, C.R. Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. Biocatal. Agric. Biotechnol. 2020, 30, 101831. [Google Scholar] [CrossRef]
- Dritsas, P.; Aggelis, G. Studies on the co-metabolism of glucose and glycerol in the fungus Umbelopsis isabellina. Carbon Resour. Convers. 2023, 6, 326–333. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Chevalot, I.; Komaitis, M.; Aggelis, G.; Marc, I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek 2001, 80, 215–224. [Google Scholar] [CrossRef]
- Vasilakis, G.; Rigos, E.-M.; Giannakis, N.; Diamantopoulou, P.; Papanikolaou, S. Spent mushroom substrate hydrolysis and utilization as potential alternative feedstock for anaerobic co-digestion. Microorganisms 2023, 11, 532. [Google Scholar] [CrossRef]
- Quinn, L.; Dempsey, R.; Casey, E.; Kane, A.; Murphy, C.D. Production of drug metabolites by immobilised Cunninghamella elegans: From screening to scale up. J. Ind. Microbiol. Biotechnol. 2015, 201542, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Cha, C.J.; Doerge, D.R.; Cerniglia, C.E. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 2001, 67, 4358–4360. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Leakey, J.E.; Cerniglia, C.E. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol. Lett. 1996, 138, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.D.; Zhang, D.; Heinze, T.M.; Cerniglia, C.E. Transformation of amoxapine by Cunninghamella elegans. Appl. Environ. Microbiol. 2000, 66, 3646–3649. [Google Scholar] [CrossRef] [PubMed]
- Parshikov, I.A.; Muraleedharan, K.M.; Avery, M.A.; Williamson, J.S. Transformation of artemisinin by Cunninghamella elegans. Appl. Microbiol. Biotechnol. 2004, 64, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Bajaj, I.; Saudagar, P.; Singhal, R. Media optimization for the production of γ- linolenic acid by Cunninghamella echinulata var. elegans MTCC 552 using response surface methodology. Int. J. Food Eng. 2008, 4, 1–34. [Google Scholar]
- Burmester, A.; Richter, M.; Schultze, K.; Voelz, K.; Schachtschabel, D.; Boland, W.; Wöstemeyer, J.; Schimek, C. Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet. Biol. 2007, 44, 1096–1108. [Google Scholar] [CrossRef]
- Schimek, C.; Wöstemeyer, J. Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry 2009, 70, 1867–1875. [Google Scholar] [CrossRef]
- Laoteng, K.; Čertík, M.; Cheevadhanark, S. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem. Pap. 2011, 65, 97–103. [Google Scholar] [CrossRef]
- Gu, X.; Fu, X.; Li, L. Effect of temperature and agitation speed on fatty acid accumulationin Mortierella alpina. Int. J. Agric. Biol. 2018, 20, 2319–2324. [Google Scholar]
- Srivastava, A.K.; Gupta, S. Fed-batch fermentation—Design strategies. Compr. Biotechnol. 2011, 2, 515–526. [Google Scholar]
- Erkmen, O.; Bozoglu, T.F. Food Microbiology: Principles into Practice; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Brown, D.E.; Zainudeen, M.A. Effect of inoculum size on the aeration pattern of batch cultures of a fungal microorganism. Biotechnol. Bioeng. 1978, 20, 1045–1061. [Google Scholar] [CrossRef]
C/N (mol/mol) | Time (h) | pH | Scons (g/L) | X (g/L) | L (g/L) | PUFA (mg/L) | GLA (mg/L) | YX/S (g/g) | YL/S (g/g) | KL/X (g/g) | PX (mg/L/h) | PL (mg/L/h) | PPUFA (mg/L/h) | PGLA (mg/L/h) | FANcons (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11 | 110 | 5.1 a ± 0.2 | 30.0 a ± 0.1 | 11.9 a ± 0.3 | 1.7 a ± 0.1 | 573 a ± 34 | 224 a ± 25 | 0.39 a ± 0.01 | 0.06 a ± 0.00 | 0.15 a ± 0.00 | 107.8 a ± 3.1 | 15.9 a ± 0.5 | 5.2 a ± 0.2 | 2.0 a ± 0.2 | 412.5 a ± 4.6 |
110 | 240 | 6.0 b ± 0.0 | 18.1 b ± 0.5 | 5.4 b ± 0.2 | 2.1 b ± 0.1 | 460 b ± 33 | 128 b ± 12 | 0.30 b ± 0.00 | 0.11 b ± 0.00 | 0.38 b ± 0.00 | 22.6 b ± 0.6 | 8.6 b ± 0.2 | 1.9 b ± 0.2 | 0.5 b ± 0.1 | 47.9 b ± 0.2 |
220 | 240 | 6.1 b ± 0.0 | 10.1 c ± 0.2 | 2.7 c ± 0.0 | 1.6 a ± 0.0 | 326 c ± 18 | 83 c ± 7 | 0.27 c ± 0.01 | 0.16 c ± 0.00 | 0.59 c ± 0.00 | 11.3 c ± 0.0 | 6.7 c ± 0.0 | 1.2 c ± 0.1 | 0.3 c ± 0.0 | 26.0 c ± 0.1 |
C/N (mol/mol) | Time (h) | g/100 g of Total FA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | Δ9 C18:1 | Δ9,12 C18:2 | Δ6,9,12 C18:3 | C20:0 | C22:0 | Δ4,7,10,13,16,19 C22:6 | SFA | UFA | MUFA | PUFA | ||
11 | 110 | 17.7 a ± 0.4 | 6.1 a ± 0.2 | 39.4 a ± 1.0 | 16.1 a ± 0.8 | 13.2 a ± 1.1 | 2.0 a ± 0.6 | 1.0 a ± 0.1 | 4.4 a ± 0.3 | 26.8 a ± 2.0 | 73.2 a ± 1.5 | 39.4 a ± 1.0 | 33.7 a ± 1.3 |
110 | 240 | 18.5 a ± 2.0 | 6.0 a ± 0.0 | 51.6 b ± 1.9 | 14.3 ab ± 1.1 | 6.1 b ± 0.8 | 0.7 b ± 0.4 | 1.0 a ± 0.3 | 1.5 b ± 0.2 | 26.5 a ± 2.3 | 73.5 a ± 3.4 | 51.6 b ± 1.9 | 21.9 b ± 2.1 |
220 | 240 | 18.9 a ± 0.8 | 6.1 a ± 0.3 | 52.4 b ± 2.2 | 13.8 b ± 0.5 | 5.2 b ± 0.2 | 1.4 a ± 0.1 | 0.9 a ± 0.0 | 1.4 b ± 0.2 | 27.3 a ± 2.1 | 72.7 a ± 2.1 | 52.4 b ± 2.2 | 20.4 b ± 0.7 |
S0 (g/L) | Time (h) | pH | Scons (g/L) | X (g/L) | L (g/L) | PUFA (mg/L) | GLA (mg/L) | YX/S (g/g) | YL/S (g/g) | KL/X (g/g) | PX (mg/L/h) | PL (mg/L/h) | PPUFA (mg/L/h) | PGLA (mg/L/h) | FANcons (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 108 | 4.0 a ± 0.1 | 31.5 a ± 0.2 | 13.0 a ± 0.2 | 1.9 a ± 0.0 | 600 a ± 8 | 243 a ± 16 | 0.41 a ± 0.01 | 0.06 a ± 0.00 | 0.15 a ± 0.00 | 120.3 a ± 1.9 | 18.5 a ± 0.3 | 5.6 a ± 0.2 | 2.3 a ± 0.2 | 310.5 a ± 1.1 |
50 | 192 | 3.6 b ± 0.0 | 55.2 b ± 0.1 | 16.6 b ± 0.1 | 3.3 b ± 0.1 | 1007 b ± 67 | 343 b ± 25 | 0.30 b ± 0.00 | 0.06 a ± 0.00 | 0.20 b ± 0.00 | 86.5 b ± 0.4 | 17.2 b ± 0.4 | 5.3 a ± 0.3 | 1.8 b ± 0.1 | 562.4 b ± 1.5 |
S0 (g/L) | Time (h) | g/100 g of Total FA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | Δ9 C18:1 | Δ9,12 C18:2 | Δ6,9,12 C18:3 | C20:0 | C22:0 | Δ4,7,10,13,16,19 C22:6 | SFA | UFA | MUFA | PUFA | ||
30 | 108 | 17.5 a ± 0.6 | 8.4 a ± 0.4 | 40.0 a ± 0.6 | 15.9 a ± 0.4 | 12.8 a ± 0.3 | 1.1 a ± 0.1 | 0.7 a ± 0.1 | 3.0 a ± 0.6 | 28.3 a ± 1.2 | 71.7 a ± 1.3 | 40.0 a ± 0.6 | 31.6 a ± 0.6 |
50 | 192 | 17.1 a ± 0.1 | 7.8 a ± 0.5 | 41.9 a ± 1.2 | 17.1 a ± 0.9 | 10.4 b ± 0.5 | 1.6 a ± 0.6 | 0.7 a ± 0.0 | 3.0 a ± 0.2 | 27.2 a ± 1.1 | 72.4 a ± 0.1 | 41.9 a ± 1.2 | 30.5 a ± 1.3 |
T (°C) | Time (h) | pH | Scons (g/L) | X (g/L) | L (g/L) | PUFA (mg/L) | GLA (mg/L) | YX/S (g/g) | YL/S (g/g) | KL/X (g/g) | PX (mg/L/h) | PL (mg/L/h) | PPUFA (mg/L/h) | PGLA (mg/L/h) | FANcons (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12 | 480 | 3.7 a ± 0.1 | 23.3 a ± 1.2 | 11.0 a ± 0.5 | 2.0 a ± 0.1 | 626 a ± 34 | 310 a ± 18 | 0.47 a ± 0.00 | 0.09 a ± 0.00 | 0.18 a ± 0.00 | 22.9 a ± 1.1 | 4.2 a ± 0.1 | 1.3 a ± 0.1 | 0.7 a ± 0.0 | 310.9 a ± 1.0 |
20 | 198 | 3.6 a ± 0.2 | 23.6 a ± 0.1 | 11.3 a ± 0.3 | 1.9 a ± 0.1 | 593 a ± 27 | 255 b ± 12 | 0.48 b ± 0.00 | 0.08 b ± 0.00 | 0.17 a ± 0.01 | 57.1 b ± 0.3 | 9.6 b ± 0.3 | 3.0 b ± 0.1 | 1.3 b ± 0.0 | 314.5 a ± 7.2 |
T (°C) | Time (h) | g/100 g of Total FA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | Δ9 C18:1 | Δ9,12 C18:2 | Δ6,9,12 C18:3 | C20:0 | C22:0 | Δ4,7,10,13,16,19 C22:6 | SFA | UFA | MUFA | PUFA | ||
12 | 480 | 20.7 a ± 0.8 | 7.2 a ± 0.4 | 39.3 a ± 1.6 | 14.5 a ± 0.2 | 15.5 a ± 0.3 | 0.8 a ± 0.1 | 0.4 a ± 0.1 | 1.3 a ± 0.1 | 29.4 a ± 1.6 | 70.6 a ± 2.3 | 39.3 a ± 1.6 | 31.3 a ± 0.9 |
20 | 163 | 17.9 b ± 0.2 | 7.7 a ± 0.3 | 40.9 a ± 0.5 | 15.5 b ± 0.2 | 13.4 b ± 0.1 | 1.1 b ± 0.1 | 0.5 a ± 0.0 | 2.3 b ± 0.2 | 27.9 a ± 0.7 | 72.1 a ± 0.6 | 40.9 a ± 0.5 | 31.2 a ± 0.3 |
Spores/ mL | Time (h) | pH | Scons (g/L) | X (g/L) | L (g/L) | PUFA (mg/L) | GLA (mg/L) | YX/S (g/g) | YL/S (g/g) | KL/X (g/g) | PX (mg/L/h) | PL (mg/L/h) | PPUFA (mg/L/h) | PGLA (mg/L/h) | FANcons (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30,000 | 122 | 4.0 a ± 0.0 | 30.5 a ± 0.0 | 12.8 a ± 0.3 | 1.7 a ± 0.1 | 495 a ± 25 | 199 a ± 14 | 0.42 a ± 0.00 | 0.06 a ± 0.00 | 0.13 a ± 0.00 | 104.9 a ± 0.8 | 13.9 a ± 0.4 | 4.1 a ± 0.2 | 1.6 a ± 0.1 | 306.0 a ± 0.3 |
120,000 | 104 | 3.7 b ± 0.0 | 30.9 b ± 0.2 | 13.3 a ± 0.2 | 1.9 b ± 0.0 | 553 b ± 14 | 220 b ± 5 | 0.43 b ± 0.00 | 0.06 a 0.00 | 0.14 a ± 0.01 | 127.4 b ± 1.4 | 18.3 b ± 0.5 | 5.3 b ± 0.2 | 2.1 b ± 0.1 | 309.9 b ± 0.1 |
Spores/ mL | Time (h) | g/100 g of Total FA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | Δ9 C18:1 | Δ9,12 C18:2 | Δ6,9,12 C18:3 | C20:0 | C22:0 | Δ4,7,10,13,16,19 C22:6 | SFA | UFA | MUFA | PUFA | ||
30,000 | 122 | 17.9 a ± 0.4 | 8.1 a ± 1.1 | 42.9 a ± 1.2 | 14.3 a ± 0.1 | 11.7 a ± 0.7 | 0.8 a ± 0.2 | 0.7 a ± 0.1 | 3.1 a ± 0.1 | 28.0 a ± 0.8 | 72.0 a ± 2.1 | 42.9 a ± 1.2 | 29.1 a ± 0.9 |
120,000 | 104 | 17.7 a ± 0.5 | 8.1 a ± 0.5 | 42.0 a ± 0.1 | 15.3 b ± 0.0 | 11.6 a ± 0.1 | 1.0 a ± 0.0 | 0.8 a ± 0.0 | 3.0 a ± 0.0 | 28.1 a ± 0.1 | 71.9 a ± 0.1 | 42.0 a ± 0.1 | 29.9 a ± 0.1 |
V–Vw (L) | C/N (mol/ mol) | Agitation (rpm) | Time (h) | pH | Scons (g/L) | X (g/L) | L (g/L) | PRO (g/L) | IPS (g/L) | KL/X (g/g) | KPRO/X (g/g) | KIPS/X (g/g) | PL (mg/L/h) | PPRO (mg/L/h) | PIPS (mg/L/h) | FANcons (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.0–1.8 | 18.3 | 900 | 141 | 4.6 a ± 0.3 | 25.7 a ± 0.0 | 11.0 a ± 0.3 | 1.7 a ± 0.1 | 4.4 a ± 0.2 | 2.8 a ± 0.1 | 0.15 a ± 0.01 | 0.40 a ± 0.03 | 0.26 a ± 0.01 | 11.9 a ± 0.9 | 31.0 a ± 1.6 | 20.0 a ± 0.6 | 314.5 a ± 2.3 |
20.0–15.0 | 110 | 200 | 244 | 6.1 b ± 0.1 | 17.8 b ± 0.3 | 5.2 b ± 0.1 | 1.9 a ± 0.1 | 0.9 b ± 0.0 | 1.3 b ± 0.1 | 0.36 b ± 0.03 | 0.18 b ± 0.01 | 0.25 a ± 0.02 | 7.6 b ± 0.6 | 3.8 b ± 0.0 | 5.3 b ± 0.4 | 45.3 b ± 0.5 |
C/N (mol/mol) | Time (h) | PUFA (mg/L) | GLA (mg/L) | PPUFA (mg/L/h) | PGLA (mg/L/h) | g/100 g of Total FA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C16:0 | Δ9 C18:1 | Δ9,12 C18:2 | Δ6,9,12 C18:3 | Δ4,7,10,13,16,19 C22:6 | SFA | UFA | PUFA | ||||||
18.3 | 141 | 553 a ± 10 | 223 a ± 11 | 3.9 a ± 0.1 | 1.6 a ± 0.1 | 17.0 a ± 0.2 | 39.3 a ± 0.7 | 16.3 a ± 0.4 | 13.1 a ± 0.2 | 3.1 a ± 0.3 | 28.2 a ± 1.0 | 71.8 a ± 2.3 | 32.5 a ± 0.6 |
110 | 244 | 336 b ± 25 | 91 b ± 4 | 1.4 b ± 0.1 | 0.4 b ± 0.0 | 19.4 b ± 1.1 | 55.7 b ± 2.2 | 12.8 b ± 0.7 | 4.8 b ± 0.2 | 1.1 b ± 0.3 | 27.2 a ± 0.9 | 72.4 a ± 3.1 | 17.7 b ± 1.3 |
Microorganism | Culture Conditions | Substrate | C/N (mol/mol) | S0 (g/L) | Χ (g/L) | L (g/L) | PUFA (mg/L) | GLA (mg/L) | KL/X (%, w/w) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Cunninghamella elegans CCF-1318 | Batch-flask 120 h | Glucose | u.d. | 50 | 12.1 | 3.2 | 723.2 | 297.6 | 26.7 | [41] |
C. elegans CCF 2591 | Batch-flask 92 h | Glucose | 27.0 | 30 | 8.2 | 1.3 | 269.7 | 130.1 | 15.2 | [53] |
C. elegans NRRL Y-1393 | Batch-flask 360 h | Glucose | 190 | 22.0 | 13.5 | 7.0 | 1582 | 525 | 51.9 | [36] |
Batch-flask 360 h | Glycerol | 190 | 30.0 | 13.5 | 8.4 | 1689 | 487 | 62.7 | ||
C. elegans NRRL Y-1392 | Batch-flask –28 °C 108 h | Glycerol | 11.0 | 30 | 11.9 | 1.7 | 573.0 | 224.0 | 15.0 | Current study |
Batch-flask –28 °C 108 h | 110.0 | 30 | 5.4 | 2.1 | 460.0 | 128.0 | 38.0 | |||
Batch-flask –28 °C 108 h | 220.0 | 30 | 5.2 | 1.6 | 326.0 | 83.0 | 59.0 | |||
Batch-flask –28 °C 108 h | 18.3 | 30 | 13.0 | 1.9 | 600.0 | 243.0 | 15.0 | |||
Batch-flask –28 °C 192 h | 18.3 | 50 | 16.6 | 3.3 | 1007.0 | 343.0 | 20.0 | |||
Batch-flask –12 °C 480 h | 18.3 | 30 | 11.0 | 2.0 | 626.0 | 310.0 | 18.0 | |||
Batch-bioreactor 1.8 L – 141 h | 18.3 | 30 | 11.0 | 1.7 | 553.0 | 223.0 | 15.0 | |||
Batch-bi°react°r 15.0 L – 244 h | 110.0 | 30 | 5.2 | 1.9 | 336.0 | 91.0 | 36.0 | |||
C. echinulata var. elegans MTCC 552 | Batch-flask 144 h | Glucose | 21.0 | 30 | 6.0 | 0.45 | 119.3 | 45.0 | 7.5 | [70] |
C. echinulata ATHUM 4411 | Batch-flask 120 h | Glycerol (80% w/w) | 44.0 | 100 | 8.2 | 1.6 | u.d. | u.d. | 19.5 | [47] |
C. echinulata ATHUM 4411 | Batch-flask 256 h | Glycerol (80% w/w) | 66.0 | 30 | 6.0 | 1.0 | 183.4 | 64.6 | 15.8 | [49] |
C. echinulata ATHUM 4411 | Batch-flask 144 h | Glycerol | 43.0 | 25 | 3.9 | 1.2 | 420.6 | 191.6 | 31.7 | [50] |
C. echinulata ATHUM 4411 | Batch-flask 240 h | Glycerol (80% w/w) | 146.0 | 50 | 4.3 | 1.3 | u.d. | u.d. | 30.7 | [55] |
C. echinulata LFMB 5 | Batch-flask 262 h | Glycerol | 87.0 | 12.4 | 2.9 | 1.6 | 452.8 | 120.0 | 55.6 | [45] |
C. echinulata NRRL 3655 | Batch-flask 96 h | Glycerol (90% w/w) | 44.0 | 20 | 11.7 | 2.1 | u.d. | u.d. | 17.9 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilakis, G.; Roidouli, C.; Karayannis, D.; Giannakis, N.; Rondags, E.; Chevalot, I.; Papanikolaou, S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms 2024, 12, 2097. https://doi.org/10.3390/microorganisms12102097
Vasilakis G, Roidouli C, Karayannis D, Giannakis N, Rondags E, Chevalot I, Papanikolaou S. Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms. 2024; 12(10):2097. https://doi.org/10.3390/microorganisms12102097
Chicago/Turabian StyleVasilakis, Gabriel, Christina Roidouli, Dimitris Karayannis, Nikos Giannakis, Emmanuel Rondags, Isabelle Chevalot, and Seraphim Papanikolaou. 2024. "Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors" Microorganisms 12, no. 10: 2097. https://doi.org/10.3390/microorganisms12102097
APA StyleVasilakis, G., Roidouli, C., Karayannis, D., Giannakis, N., Rondags, E., Chevalot, I., & Papanikolaou, S. (2024). Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Cunninghamella elegans Through Glycerol Conversion in Shake Flasks and Bioreactors. Microorganisms, 12(10), 2097. https://doi.org/10.3390/microorganisms12102097