Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sequence Identification by 18S rDNA Phylogeny
3.2. Partial LSU rDNA Analysis and Phylogeny
3.3. ITS Analysis and Phylogeny
3.4. ITS-2 Structure
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Stothard, D.R.; Schroeder-Diedrich, J.M.; Awwad, M.H.; Gast, R.J.; Ledee, D.R.; Rodriguez-Zaragoza, S.; Dean, C.L.; Fuerst, P.A.; Byers, T.J. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J. Eukaryot. Microbiol. 1998, 45, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, D. Update on Acanthamoeba phylogeny. Parasitol. Res. 2020, 119, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, D.; Venditti, D. Molecular evidence for a new lineage within the Acanthamoeba T4 genotype. Parasitol. Res. 2023, 122, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Pussard, M.; Pons, R. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 1977, 13, 557–598. [Google Scholar]
- Page, F.C. A New Key to Freshwater and Soil Gymnamoebae; Freshwater Biological Association: Ambleside, UK, 1988; pp. 92–97. [Google Scholar]
- Corsaro, D.; Mrva, M.; Colson, P.; Walochnik, J. Validation and redescription of Acanthamoeba terricola Pussard, 1964 (Amoebozoa: Acanthamoebidae). Eur. J. Protistol. 2024, 94, 126091. [Google Scholar] [CrossRef]
- Sonnenberg, R.; Nolte, A.W.; Tautz, D. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front. Zool. 2007, 4, 6. [Google Scholar] [CrossRef]
- Heeger, F.; Wurzbacher, C.; Bourne, E.C.; Mazzoni, C.J.; Monaghan, M.T. Combining the 5.8S and ITS2 to improve classification of fungi. Methods Ecol. Evol. 2019, 10, 1702–1711. [Google Scholar] [CrossRef]
- Corsaro, D. Exploring LSU and ITS rDNA sequences for Acanthamoeba identification and phylogeny. Microorganisms 2022, 10, 1776. [Google Scholar] [CrossRef]
- Page, F.C. Re-definition of the genus Acanthamoeba with description of three species. J. Protozool. 1967, 14, 709–724. [Google Scholar] [CrossRef]
- De Jonckheere, J.F. Isoenzyme and total protein analysis by agarose isoelectric focusing, and taxonomy of the genus Acanthamoeba. J. Protozool. 1983, 30, 701–706. [Google Scholar] [CrossRef]
- Corsaro, D.; Venditti, D. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol. Res. 2010, 107, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, T.K. The influence of seawater media on growth and encystment of Acanthamoeba polyphaga. Proc. Helminthol. Soc. Wash. 1970, 37, 182–188. [Google Scholar]
- Liu, H.; Ha, Y.-R.; Lee, S.-T.; Hong, Y.-C.; Kong, H.-H.; Chung, D.-I. Genetic diversity of Acanthamoeba isolated from ocean sediments. Korean J. Parasitol. 2006, 44, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, J.; Haller-Schober, E.; Kölli, H.; Picher, O.; Obwaller, A.; Aspöck, H. Discrimination between clinically relevant and nonrelevant Acanthamoeba strains isolated from contact lens-wearing keratitis patients in Austria. J. Clin. Microbiol. 2000, 38, 3932–3936. [Google Scholar] [CrossRef]
- Breiman, R.F.; Fields, B.S.; Sanden, G.N.; Volmer, L.; Meier, A.; Spika, J.S. Association of shower use with Legionnaires’ disease. Possible role of amoebae. JAMA 1990, 263, 2924–2926. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; Anderson, O.R.; Nerad, T.A.; Sogin, M.L. The phylogenetic position of Comandonia operculata and its implications for the taxonomy of the genus Acanthamoeba. In Proceedings of the IXth International Meeting on the Biology and Pathogenicity of Free-Living Amoebae Proceedings, Paris, France, 8–14 July 2001; Billot-Bonef, S., Cabanes, P.A., Marciano-Cabral, F., Pernin, P., Pringuez, E., Eds.; John Libbey Eurotext: Paris, France, 2001; pp. 235–242. [Google Scholar]
- Pernin, P.; Pussard, M. Étude en microscopie photonique et électronique d’une amibe voisine du genre Acanthamoeba: Comandonia operculata n. gen., n. sp. (Amoebida, Acanthamoebidae). Protistologica 1979, 15, 87–102. [Google Scholar]
- Kudryavtsev, A.; Wylezich, C.; Schlegel, M.; Walochnik, J.; Michel, R. Ultrastructure, SSU rRNA gene sequences and phylogenetic relationships of Flamella Schaeffer, 1926 (Amoebozoa), with description of three new species. Protist 2009, 160, 21–40. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic 369 Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Corsaro, D.; Walochnik, J.; Köhsler, M.; Rott, M.B. Acanthamoeba misidentification and multiple labels: Redefining genotypes T16, T19 and T20, and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitol. Res. 2015, 114, 2481–2490. [Google Scholar] [CrossRef]
- Jobb, G.; von Haeseler, A.; Strimmer, K. TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 2004, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Petrov, A.S.; Bernier, C.R.; Hershkovits, E.; Xue, Y.; Waterbury, C.C.; Hsiao, C.; Stepanov, V.G.; Gaucher, E.A.; Grover, M.A.; Harvey, S.C.; et al. Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Res. 2013, 41, 7522–7535. [Google Scholar] [CrossRef] [PubMed]
- Stevens, A.R.; Pachler, P.F. Discontinuity of 26 s rRNA in Acanthamoeba castellani. J. Mol. Biol. 1972, 66, 225–237. [Google Scholar] [CrossRef]
- D’Alessio, J.M.; Harris, G.H.; Perna, P.J.; Paule, M.R. Ribosomal ribonucleic acid repeat unit of Acanthamoeba castellanii: Cloning and restriction endonuclease map. Biochemistry 1981, 20, 3822–3827. [Google Scholar] [CrossRef]
- Köhsler, M.; Leitner, B.; Blaschitz, M.; Michel, R.; Aspöck, H.; Walochnik, J. ITS1 sequence variabilities correlate with 18S rDNA sequence types in the genus Acanthamoeba (Protozoa: Amoebozoa). Parasitol. Res. 2006, 98, 86–93. [Google Scholar] [CrossRef]
- Maghsood, A.H.; Sissons, J.; Rezaian, M.; Nolder, D.; Warhurst, D.; Khan, N.A. Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. J. Med. Microbiol. 2005, 54, 755–759. [Google Scholar] [CrossRef]
- Yera, H.; Zamfir, O.; Bourcier, T.; Ancelle, T.; Batellier, L.; Dupouy-Camet, J.; Chaumeil, C. Comparison of PCR, microscopic examination and culture for the early diagnosis and characterization of Acanthamoeba isolates from ocular infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 221–224. [Google Scholar] [CrossRef]
- Risler, A.; Coupat-Goutaland, B.; Pélandakis, M. Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitol. Res. 2013, 112, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Jercic, M.I.; Aguayo, C.; Saldarriaga-Córdoba, M.; Muiño, L.; Chenet, S.M.; Lagos, J.; Osuna, A.; Fernández, J. Genotypic diversity of Acanthamoeba strains isolated from Chilean patients with Acanthamoeba keratitis. Parasit. Vectors 2019, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Holmgaard, D.B.; Barnadas, C.; Mirbarati, S.H.; O’Brien Andersen, L.; Nielsen, H.V.; Stensvold, C.R. Detection and Identification of Acanthamoeba and other nonviral causes of infectious keratitis in corneal scrapings by Real-Time PCR and Next-Generation Sequencing-Based 16S-18S gene analysis. J. Clin. Microbiol. 2021, 59, e02224-20. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, J.; Aichelburg, A.; Assadian, O.; Steuer, A.; Visvesvara, G.; Vetter, N.; Aspöck, H. Granulomatous amoebic encephalitis caused by Acanthamoeba amoebae of genotype T2 in a human immunodeficiency virus-negative patient. J. Clin. Microbiol. 2008, 46, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ock, M.-S.; Yun, H.-C.; Hwang, M.Y.; Yu, H.-S.; Kong, H.-H.; Chung, D.-I. Close relatedness of Acanthamoeba pustulosa with Acanthamoeba palestinensis based on isoenzyme profiles and rDNA PCR-RFLP patterns. Korean J. Parasitol. 1996, 34, 259–266. [Google Scholar] [CrossRef]
- Müller, T.; Philippi, N.; Dandekar, T.; Schultz, J.; Wolf, M. Distinguishing species. RNA 2007, 13, 1469–1472. [Google Scholar] [CrossRef]
- Coleman, A.W. Pan-eukaryote ITS-2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007, 35, 3322–3329. [Google Scholar] [CrossRef]
- Coleman, A.W. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phylogenet. Evol. 2009, 50, 197–203. [Google Scholar] [CrossRef]
GT | Species | Group | ITS2 Helix Length (nt) | ||||
---|---|---|---|---|---|---|---|
I | II | IIIa | III | IV | |||
T2 | A. palestinensis | Reich | 46 | 38 | 23 | 500 | – |
OX1 | Acanthamoeba sp. | (A) | 28 | 54 | 15–25 | 370–390 | – |
T6 | Acanthamoeba sp. | long (C) | 36–46 | 50 | 16–17 | 500–505 | – |
short (B) | 37–54 | 36–41 | – | 140 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsaro, D. Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group. Microorganisms 2024, 12, 2105. https://doi.org/10.3390/microorganisms12102105
Corsaro D. Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group. Microorganisms. 2024; 12(10):2105. https://doi.org/10.3390/microorganisms12102105
Chicago/Turabian StyleCorsaro, Daniele. 2024. "Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group" Microorganisms 12, no. 10: 2105. https://doi.org/10.3390/microorganisms12102105
APA StyleCorsaro, D. (2024). Learning from the rDNA Operon: A Reanalysis of the Acanthamoeba palestinensis Group. Microorganisms, 12(10), 2105. https://doi.org/10.3390/microorganisms12102105