Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Characteristics
2.2. Soil Characteristics
2.3. Experimental Design
2.4. Crop Management
2.5. Fertilization
2.6. Inoculation with Azospirillum brasilense
2.7. Vegetative Parameters
2.8. Cob Quality
2.9. Yield Components
2.10. Statistical Analysis
3. Results
3.1. Plant Height and Root Length
3.2. Foliar Nitrogen
3.3. Fresh and Dry Weight
3.4. Cob Proximate Analysis
3.5. Length, Diameter, and Height of Cob
3.6. Grains per Cob
3.7. Yield
3.8. Heatmap Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colombo, R.; Ferron, L.; Papetti, A. Colored Corn: An Up-Date on Metabolites Extraction, Health Implication, and Potential Use. Molecules 2021, 26, 199. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, S. The Antioxidant Power of Purple Corn: A Research Review. Altern. Complement. Ther. 2007, 13, 107–110. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, K.Y.; Kim, M.; Hong, M.; Deepa, P.; Kim, S. A Review of the Biological Properties of Purple Corn (Zea mays L.). Sci. Pharm. 2023, 91, 6. [Google Scholar] [CrossRef]
- Zhang, Q.; Gonzalez de Mejia, E.; Luna-Vital, D.; Tao, T.; Chandrasekaran, S.; Chatham, L.; Juvik, J.; Singh, V.; Kumar, D. Relationship of Phenolic Composition of Selected Purple Maize (Zea mays L.) Genotypes with Their Anti-Inflammatory, Anti-Adipogenic and Anti-Diabetic Potential. Food Chem. 2019, 289, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Arlet, A.C.I.; Popa, A.; Grosu, A.; Israel-Roming, F. Anthocyanins in Purple Maize. Sci. Bull. Ser. F. Biotechnol. 2021, 15, 167–174. [Google Scholar]
- MIDAGRI. Análisis de Mercado: 2015–2021. Maíz Morado; MIDAGRI: Lima, Peru, 2022. [Google Scholar]
- Romero, C.A. El Maíz Morado Peruano. Un Producto Con Alto Valor Contenido de Antocianina, Poderoso Antioxidante Natural, 1st ed.; Ministerio de Desarrollo Agrario y Riego: Lima, Peru, 2021; Volume 1. [Google Scholar]
- Sihuas, A.; Rojas, J. Anuario Estadístico. Insumos y Servicios Agropecuarios 2022; Ministerio de Desarrollo Agrario y Riego: Lima, Peru, 2023. [Google Scholar]
- Sun, R.; Li, W.; Hu, C.; Liu, B. Long-Term Urea Fertilization Alters the Composition and Increases the Abundance of Soil Ureolytic Bacterial Communities in an Upland Soil. FEMS Microbiol. Ecol. 2019, 95, fiz044. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Domingues Duarte, C.F.; Cecato, U.; Biserra, T.T.; Mamédio, D.; Galbeiro, S. Azospirillum Spp. in Grasses and Forages. Review. Rev. Mex. Cienc. Pecu. 2020, 11, 223–240. [Google Scholar] [CrossRef]
- Wen, A.; Havens, K.L.; Bloch, S.E.; Shah, N.; Higgins, D.A.; Davis-Richardson, A.G.; Sharon, J.; Rezaei, F.; Mohiti-Asli, M.; Johnson, A.; et al. Enabling Biological Nitrogen Fixation for Cereal Crops in Fertilized Fields. ACS Synth. Biol. 2021, 10, 3264–3277. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, A.; Rives-Rodríguez, N.; Acebo-Guerrero, Y.; Díaz-de la Osa, A.; Heydrich-Pérez, M.; Baldani, V.L.D. Potencialidades de Las Bacterias Diazotróficas Asociativas En La Promoción Del Crecimiento Vegetal y El Control de Pyricularia oryzae (Sacc.) En El Cultivo Del Arroz (Oryz sativa L.). Rev. Prot. Veg. 2014, 29, 1–10. [Google Scholar]
- Caires, E.F.; Bini, A.R.; Barão, L.F.C.; Haliski, A.; Duart, V.M.; Ricardo, K.d.S. Seed Inoculation with Azospirillum brasilense and Nitrogen Fertilization for No-till Cereal Production. Agron. J. 2021, 113, 560–576. [Google Scholar] [CrossRef]
- García-Olivares, J.G.; Mendoza-Herrera, A.; Mayek-Pérez, N. Efecto de Azospirillum Brasilense En El Rendimiento Del Maíz En El Norte de Tamaulipas, México. Univ. Cienc. Trópico Húmedo 2012, 28, 79–84. [Google Scholar]
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with Selected Strains of Azospirillum brasilense and A. lipoferum Improves Yields of Maize and Wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Hungria, M.; Barbosa, J.Z.; Rondina, A.B.L.; Nogueira, M.A. Improving Maize Sustainability with Partial Replacement of N Fertilizers by Inoculation with Azospirillum brasilense. Agron. J. 2022, 114, 2969–2980. [Google Scholar] [CrossRef]
- Contreras-Liza, S.; Villadeza, C.Y.; Rodriguez-Grados, P.M.; Palomares, E.G.; Arbizu, C.I. Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions. Int. J. Plant Biol. 2024, 15, 683–691. [Google Scholar] [CrossRef]
- Damasceno, L.J.; Amaral, V.M.; Mariano, D.d.C.; Maciel, R.P.; Oliveira Neto, C.F.; Franco, A.A.N.; Viégas, I.d.J.M.; Pedroso, A.J.S.; Simões, P.H.O.; Okumura, R.S. Economic Analysis of Azospirillum brasilense Inoculation Associated with Enhanced-Efficiency Nitrogen Fertilizers in Corn Production in the Brazilian Amazon. Nitrogen 2024, 5, 36. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Rodrigues, W.L.; Santini, J.M.K.; Alves, C.J. Nitrogen fertilisation efficiency and wheat grain yield affected by nitrogen doses and sources associated with Azospirillum brasilense. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2019, 69, 606–617. [Google Scholar] [CrossRef]
- NOM-021-RECNAT-2000; Norma Oficial Mexicana Que Establece Las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis: México, Mexico, 2002.
- USEPA METHOD 9045D; Soil and Waste pH 2004. U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO 11261:1995; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- Bazán, R. Manual de Procedimientos de Los Análisis de Suelos y Agua Con Fines de Riego; Repositorio INIA: Lima, Peru, 2017; Volume 1. [Google Scholar]
- Palomino-Malpartida, J.R.; Esquivel-Quispe, R.; Huamancusi-Morales, J.L.; Alarcón-Romani, S.M.; Blásquez-Morote, C.G. Azospirillum brasilense and Indol-3-Butyric Acid in Rooting of Avocado Stems (Persea americana Mill.). Bioagro 2023, 35, 69–74. [Google Scholar] [CrossRef]
- Naqqash, T.; Malik, K.A.; Imran, A.; Hameed, S.; Shahid, M.; Hanif, M.K.; Majeed, A.; Iqbal, M.J.; Qaisrani, M.M.; van Elsas, J.D. Inoculation with Azospirillum spp. Acts as the Liming Source for Improving Growth and Nitrogen Use Efficiency of Potato. Front. Plant Sci. 2022, 13, 929114. [Google Scholar] [CrossRef]
- Licea-Herrera, J.I.; Quiroz-Velásquez, J.; Hernández-Mendoza, J.L. Impact of Azospirillum brasilense, a Rhizobacterium Stimulating the Production of Indole-3-Acetic Acid as the Mechanism of Improving Plants’ Grow in Agricultural Crops. Boliv. J. Chem. 2020, 37, 34–39. [Google Scholar] [CrossRef]
- Restrepo-Franco, G.M.; Marulanda-Moreno, S.; de la Fe-Pérez, Y.; Díaz-de la Osa, A.; Lucia-Baldani, V.; Hernandez-Rodriguez, A. Bacterias Solubilizadoras de Fosfato y Sus Potencialidades de Uso En La Promoción Del Crecimiento de Cultivos de Importancia Económica. Rev. CENIEC CIenc. Biol. 2015, 46, 63–76. [Google Scholar]
- Marques, D.M.; Magalhães, P.C.; Marriel, I.E.; Gomes Júnior, C.C.; da Silva, A.B.; de Souza, T.C. Gas Exchange, Root Morphology and Nutrients in Maize Plants Inoculated with Azospirillum brasilense Cultivated under Two Water Conditions. Braz. Arch. Biol. Technol. 2021, 64, e21190580. [Google Scholar] [CrossRef]
- Pedraza, R.O.; Motok, J.; Salazar, S.M.; Ragout, A.L.; Mentel, M.I.; Tortora, M.L.; Guerrero-Molina, M.F.; Winik, B.C.; Díaz-Ricci, J.C. Growth-Promotion of Strawberry Plants Inoculated with Azospirillum brasilense. World J. Microbiol. Biotechnol. 2010, 26, 265–272. [Google Scholar] [CrossRef]
- Levanony, H.; Bashan’, Y. Enhancement of Cell Division in Wheat Root Tips and Growth of Root Elongation Zone Induced by Azospirillum brasilense Cd. Can. J. Bot. 1989, 67, 2213–2216. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 108. [Google Scholar]
- Oliveira, I.J.; Fontes, J.R.A.; Pereira, B.F.F.; Muniz, A.W. Inoculation with Azospirillum Brasiliense Increases Maize Yield. Chem. Biol. Technol. Agric. 2018, 5, 6. [Google Scholar] [CrossRef]
- Fu, S.F.; Wei, J.Y.; Chen, H.W.; Liu, Y.Y.; Lu, H.Y.; Chou, J.Y. Indole-3-Acetic Acid: A Widespread Physiological Code in Interactions of Fungi with Other Organisms. Plant Signal. Behav. 2015, 10, e1048052. [Google Scholar] [CrossRef] [PubMed]
- Zeffa, D.M.; Perini, L.; Silva, M.B.; de Sousa, N.V.; Scapim, C.A.; De Oliveira, A.L.M.; Do Amaral, A.T.; Gonçalves, L.S.A. Azospirillum brasilense Promotes Increases in Growth and Nitrogen Use Efficiency of Maize Genotypes. PLoS ONE 2019, 14, e0215332. [Google Scholar] [CrossRef]
- Calzavara, A.K.; Paiva, P.H.G.; Gabriel, L.C.; Oliveira, A.L.M.; Milani, K.; Oliveira, H.C.; Bianchini, E.; Pimenta, J.A.; de Oliveira, M.C.N.; Dias-Pereira, J.; et al. Associative Bacteria Influence Maize (Zea mays L.) Growth, Physiology and Root Anatomy under Different Nitrogen Levels. Plant Biol. 2018, 20, 870–878. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Santini, J.M.K.; Alves, C.J.; Nogueira, L.M.; Ludkiewicz, M.G.Z.; Andreotti, M.; Bellotte, J.L.M. Corn Yield and Foliar Diagnosis Affected by Nitrogen Fertilization and Inoculation with Azospirillum brasilense. Rev. Bras. Cienc. Solo 2016, 40, e0150364. [Google Scholar] [CrossRef]
- Garzón, G.A. Las Antocianinas Como Colorantes Naturales y Compuestos Bioactivos: Una Revisión. Acta Biol. Colomb. 2008, 13, 27–36. [Google Scholar]
- Rabanal-Atalaya, M.; Medina-Hoyos, A. Análisis de Antocianinas En El Maíz Morado (Zea mays L.) Del Perú y Sus Propiedades Antioxidantes Analysis of Anthocyanins in the Purple Corn (Zea mays L.) from Peru and Its Antioxidant Properties. Terra Latinoam. 2021, 39, e808. [Google Scholar] [CrossRef]
- Medina-Hoyos, A.; Narro-León, L.A.; Chávez-Cabrera, A. Purple Corn (Zea mays L.) Crop in the Peruvian Highlands: Adaptation and Identification of High-Yield and High Anthocyanin Content Cultivars. Sci. Agropecu. 2020, 11, 291–299. [Google Scholar] [CrossRef]
- Martínez Reyes, L.; Aguilar Jiménez, C.E.; Carcaño Montiel, M.G.; Galdámez Galdámez, J.; Morales Cabrera, J.A.; Martínez Aguilar, F.B.; Llaven Martínez, J.; Gómez Padilla, E. Biofertilización y Fertilización Química En Maíz (Zea mays L.) En Villaflores, Chiapas, México. Siembra 2018, 5, 26–37. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Croonenborghs, A.; Thys, A.; Ptacek, D.; Vanderleyden, J.; Dutto, P.; Labandera-Gonzalez, C.; Caballero-Mellado, J.; Aguirre, J.F.; Kapulnik, Y.; et al. Responses of Agronomically Important Crops to Inoculation with Azospirillum. Funct. Plant Biol. 2001, 28, 871–879. [Google Scholar] [CrossRef]
- Marini, D.; Francisco Guimarães, V.; Dartora, J.; do Carmo Lana, M.; Soares Pinto Júnior, A. Growth and Yield of Corn Hybrids in Response to Association with Azospirillum brasilense and Nitrogen Fertilization. Rev. Ceres 2015, 62, 117–123. [Google Scholar] [CrossRef]
Variable | Units | Result |
---|---|---|
Sand | % | 48 |
Silt | % | 40 |
Clay | % | 12 |
Texture | - | Sandy loam soil |
pH | - | 7.9 |
Electrical conductivity | mS∙m−1 | 10.1 |
Organic matter | % | 2.1 |
N | % | 0.11 |
P | Ppm | 27.84 |
K | Ppm | 359.86 |
Ca | Cmol(+)∙kg−1 | 18.3 |
Mg | Cmol(+)∙kg−1 | 2.52 |
K | Cmol(+)∙kg−1 | 0.37 |
Na | Cmol(+)∙kg−1 | 0.12 |
CEC | Cmol(+)∙kg−1 | 21.3 |
Factor 1. Inoculation | Factor 2. N Fertilization (kg N∙ha−1) |
---|---|
Not inoculated (Ino−) | 0 (F0) |
30 (F30) | |
60 (F60) | |
90 (F90) | |
120 (F120) | |
Inoculated with Azospirillum brasilense (Ino+) | 0 (F0) |
30 (F30) | |
60 (F60) | |
90 (F90) | |
120 (F120) |
Level | Urea | N from Urea * | N from Base Fertilization | Total N |
---|---|---|---|---|
kg∙ha−1 | kg∙ha−1 | kg∙ha−1 | kg∙ha−1 | |
F0 | 0 | 0 | 186.6 | 186.6 |
F30 | 65.22 | 30 | 186.6 | 216.6 |
F60 | 130.43 | 60 | 186.6 | 246.6 |
F90 | 195.65 | 90 | 186.6 | 276.6 |
F120 | 260.86 | 120 | 186.6 | 306.6 |
Treatment | Fresh Weight | Dry Weight | ||
---|---|---|---|---|
Aerial | Root | Aerial | Root | |
Interaction | n.s. | n.s. | n.s. | n.s. |
Factor 1. Inoculation | ||||
Ino− | 613 ± 181 b | 63 ± 19 b | 142 ± 41 b | 18 ± 6 b |
Ino+ | 745 ± 143 a | 82 ± 22 a | 166 ± 41 a | 23 ± 7 a |
Factor 2. N fertilization | ||||
F0 | 492 ± 125 e | 50 ± 9 d | 96 ± 19 e | 12 ± 3 e |
F30 | 563 ± 113 d | 58 ± 13 d | 131 ± 13 d | 16 ± 3 d |
F60 | 660 ± 99 c | 71 ± 14 c | 160 ± 19 c | 21 ± 4 c |
F90 | 795 ± 53 b | 84 ± 17 b | 180 ± 14 b | 25 ± 5 b |
F120 | 887 ± 72 a | 101 ± 15 a | 201 ± 19 a | 29 ± 5 a |
Treatment | Anthocyanins | Proteins | Ash | Moisture Content |
---|---|---|---|---|
g∙100 g−1 | g∙100 g−1 N × 6.25 | g∙100 g−1 b.s. | g∙100 g−1 | |
Interaction | n.s. | n.s. | n.s. | n.s. |
Factor 1. Inoculation | ||||
Ino– | 0.092 ± 0.03 n.s. | 8.91 ± 0.95 n.s. | 1.91 ± 0.12 n.s. | 11.64 ± 0.68 n.s. |
Ino+ | 0.086 ± 0.04 | 8.94 ± 0.66 | 1.98 ± 0.11 | 11.74 ± 0.45 |
Factor 2. N fertilization | ||||
F0 | 0.071 ± 0.02 b | 8.82 ± 0.84 n.s. | 1.92 ± 0.10 n.s. | 11.41 ± 0.49 n.s. |
F30 | 0.106 ± 0.03 a | 8.99 ± 0.81 | 1.94 ± 0.12 | 11.50 ± 0.37 |
F60 | 0.083 ± 0.02 ab | 8.58 ± 0.58 | 1.93 ± 0.13 | 11.74 ± 0.51 |
F90 | 0.107 ± 0.04 a | 9.13 ± 1.06 | 1.95 ± 0.15 | 11.75 ± 0.53 |
F120 | 0.081 ± 0.03 ab | 9.12 ± 0.69 | 1.99 ± 0.11 | 12.03 ± 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condori, T.; Alarcón, S.; Huasasquiche, L.; García-Blásquez, C.; Padilla-Castro, C.; Velásquez, J.; Solórzano, R. Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru. Microorganisms 2024, 12, 2107. https://doi.org/10.3390/microorganisms12102107
Condori T, Alarcón S, Huasasquiche L, García-Blásquez C, Padilla-Castro C, Velásquez J, Solórzano R. Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru. Microorganisms. 2024; 12(10):2107. https://doi.org/10.3390/microorganisms12102107
Chicago/Turabian StyleCondori, Tatiana, Susan Alarcón, Lucero Huasasquiche, Cayo García-Blásquez, César Padilla-Castro, José Velásquez, and Richard Solórzano. 2024. "Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru" Microorganisms 12, no. 10: 2107. https://doi.org/10.3390/microorganisms12102107
APA StyleCondori, T., Alarcón, S., Huasasquiche, L., García-Blásquez, C., Padilla-Castro, C., Velásquez, J., & Solórzano, R. (2024). Inoculation with Azospirillum brasilense as a Strategy to Reduce Nitrogen Fertilization in Cultivating Purple Maize (Zea mays L.) in the Inter-Andean Valleys of Peru. Microorganisms, 12(10), 2107. https://doi.org/10.3390/microorganisms12102107