The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Description and Soil Sampling
2.3. Soil Edaphic Property Measurements
2.4. Measurement of Soil Microbial Variables
2.5. Water-Extractable DOM
2.6. Statistical Analysis
3. Results
3.1. pH, EC, Water-Soluble Anions and Cations, Soil Texture, and Mineral Characteristics
3.2. Microbial Community Structure Diversity
3.3. SOC, SIC, DOM Characteristics, and Carbon-Oxygen Isotope Characteristics
3.4. Composition of DOM in Soil
3.5. Relationships Between SOC, SIC, Microorganisms, and Minerals in Soil
4. Discussion
4.1. Influence of Soil Microbial Communities on SIC Formation and Analysis of SIC Sources
4.2. Relationships Among SOC, SIC, Microbes, and Minerals in Different Ecological Zones
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plaza, C.; Zaccone, C.; Sawicka, K.; Méndez, A.M.; Tarquis, A.; Gascó, G.; Heuvelink, G.B.M.; Schuur, E.A.G.; Maestre, F.T. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 2018, 8, 13788. [Google Scholar] [CrossRef] [PubMed]
- Pütz, S.; Groeneveld, J.; Henle, K.; Knogge, C.; Martensen, A.C.; Metz, M.; Metzger, J.P.; Ribeiro, M.C.; de Paula, M.D.; Huth, A. Long-term carbon loss in fragmented Neotropical forests. Nat. Commun. 2014, 5, 5037. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon Cycling in Global Drylands. Curr. Clim. Change Rep. 2019, 5, 221–232. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, J.; Luo, S.; Ma, M.; Tang, X. Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Sci. Total Environ. 2018, 645, 796–805. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Liu, D.; Wu, H.; Lü, X.; Fang, Y.; Cheng, W.; Luo, W.; Jiang, P.; Shi, J.; et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 2014, 5, 4799. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration in Dryland Ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef]
- Lal, R. Potential of Desertification Control to Sequester Carbon and Mitigate the Greenhouse Effect. Clim. Change 2001, 51, 35–72. [Google Scholar] [CrossRef]
- Ojima, D.; Smith, M.; Beardsley, M. Factors affecting carbon storage in semiarid and arid ecosystems. In Combating Global Climate Change by Combating Land Degradation; UNEP: Nairobi, Kenya, 1995; pp. 93–115. [Google Scholar]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Hu, W.; Ran, J.; Dong, L.; Du, Q.; Ji, M.; Yao, S.; Sun, Y.; Gong, C.; Hou, Q.; Gong, H.; et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 2021, 12, 5350. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Song, X.; Wang, M.; Ma, J.; Zhang, Y.; Xu, H.-J.; Hu, Z.; Zhu, X.; Liu, H.; Ma, J.; et al. Aridity influences root versus shoot contributions to steppe grassland soil carbon stock and its stability. Geoderma 2022, 413, 115744. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Zhou, W.; Ren, Z.; Hu, M.; Zhang, Y.; Rodriguez-Caballero, E.; Weber, B.; et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat. Sustain. 2023, 6, 1363–1372. [Google Scholar] [CrossRef]
- Mi, N.; Wang, S.; Liu, J.; Yu, G.; Zhang, W.; Jobbagy, E. Soil inorganic carbon storage pattern in China. Glob. Change Biol. 2008, 14, 2380–2387. [Google Scholar] [CrossRef]
- Tan, W.-F.; Zhang, R.; Cao, H.; Huang, C.-Q.; Yang, Q.-K.; Wang, M.-k.; Koopal, L.K. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 2014, 121, 22–30. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dalal, R.C.; Patra, A.; Rao, C.S.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture 2022, 12, 1256. [Google Scholar] [CrossRef]
- Bayat, O.; Karimi, A.; Khademi, H. Stable isotope geochemistry of pedogenic carbonates in loess-derived soils of northeastern Iran: Paleoenvironmental implications and correlation across Eurasia. Quat. Int. 2017, 429, 52–61. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.-G.; Houghton, R.A.; Tang, L.-S. Hidden carbon sink beneath desert. Geophys. Res. Lett. 2015, 42, 5880–5887. [Google Scholar] [CrossRef]
- Liu, J.; Feng, W.; Zhang, Y.; Jia, X.; Wu, B.; Qin, S.; Fa, K.; Lai, Z. Abiotic CO2 exchange between soil and atmosphere and its response to temperature. Environ. Earth Sci. 2015, 73, 2463–2471. [Google Scholar] [CrossRef]
- Monger, H.C.; Kraimer, R.A.; Khresat, S.e.; Cole, D.R.; Wang, X.; Wang, J. Sequestration of inorganic carbon in soil and groundwater. Geology 2015, 43, 375–378. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 65, 151–163. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Carbon Storage in the Caliche of Arid Soils: A Case Study from Arizona. Soil Sci. 1982, 133, 247–255. [Google Scholar] [CrossRef]
- Monger, C.; Gallegos, R.A. Biotic and Abiotic Processes and Rates of Pedogenic Carbonate Accumulation in the Southwestern United States—Relationship to Atmospheric CO2 Sequestration. In Global Climate Change and Pedogenic Carbonates; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 273–289. [Google Scholar]
- Magaritz, M.; Amiel, A.J. Calcium carbonate in a calcareous soil from the Jordan Valley, Israel; its origin as revealed by the stable carbon isotope method. Soil Sci. Soc. Am. J. 1980, 44, 1059–1062. [Google Scholar] [CrossRef]
- Nordt, L.C.; Hallmark, C.T.; Wilding, L.P.; Boutton, T.W. Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 1998, 82, 115–136. [Google Scholar] [CrossRef]
- Ryskov, Y.G.; Demkin, V.A.; Oleynik, S.A.; Ryskova, E.A. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia. Glob. Planet. Change 2008, 61, 63–69. [Google Scholar] [CrossRef]
- Salomons, W.; Goudie, A.; Mook, W. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surf. Process. 1978, 3, 43–57. [Google Scholar] [CrossRef]
- Marion, G.M.; Introne, D.S.; Van Cleve, K. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U.S.A.: Composition and mechanisms of formation. Chem. Geol. Isot. Geosci. Sect. 1991, 86, 97–110. [Google Scholar] [CrossRef]
- QuadE, J.; Cerling, T.E.; Bowman, J.R. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. GSA Bull. 1989, 101, 464–475. [Google Scholar] [CrossRef]
- Meng, X.; Liu, L.; Balsam, W.; Li, S.; He, T.; Chen, J.; Ji, J. Dolomite abundance in Chinese loess deposits: A new proxy of monsoon precipitation intensity. Geophys. Res. Lett. 2015, 42, 10391–10398. [Google Scholar] [CrossRef]
- Meng, X.; Liu, L.; Wang, X.T.; Balsam, W.; Chen, J.; Ji, J. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials. Earth Planet. Sci. Lett. 2018, 486, 61–69. [Google Scholar] [CrossRef]
- von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Chapter One—Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 172, pp. 1–66. [Google Scholar]
- Herndon, E.; AlBashaireh, A.; Singer, D.; Roy Chowdhury, T.; Gu, B.; Graham, D. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil. Geochim. Cosmochim. Acta 2017, 207, 210–231. [Google Scholar] [CrossRef]
- Haddix, M.L.; Paul, E.A.; Cotrufo, M.F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Glob. Change Biol. 2016, 22, 2301–2312. [Google Scholar] [CrossRef] [PubMed]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef]
- Accornero, A.; Picon, P.; de Bovée, F. Biogeochemical transformations of dissolved organic matter at the sediment–water interface: Results from in situ incubations within benthic chambers. Oceanol. Acta 2002, 25, 171–178. [Google Scholar] [CrossRef]
- Aufdenkampe, A.K.; Hedges, J.I.; Richey, J.E.; Krusche, A.V.; Llerena, C.A. Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol. Oceanogr. 2001, 46, 1921–1935. [Google Scholar] [CrossRef]
- Kang, S.; Xing, B. Humic Acid Fractionation upon Sequential Adsorption onto Goethite. Langmuir 2008, 24, 2525–2531. [Google Scholar] [CrossRef]
- Komada, T.; Reimers, C.E. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river–ocean transition. Mar. Chem. 2001, 76, 155–174. [Google Scholar] [CrossRef]
- von Wachenfeldt, E.; Tranvik, L.J. Sedimentation in Boreal Lakes—The Role of Flocculation of Allochthonous Dissolved Organic Matter in the Water Column. Ecosystems 2008, 11, 803–814. [Google Scholar] [CrossRef]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- McDowell, W.H. Dissolved organic matter in soils—Future directions and unanswered questions. Geoderma 2003, 113, 179–186. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Chen, X.; Cai, R.; Zhuo, X.; Chen, Q.; He, C.; Sun, J.; Zhang, Y.; Zheng, Q.; Shi, Q.; Jiao, N. Niche differentiation of microbial community shapes vertical distribution of recalcitrant dissolved organic matter in deep-sea sediments. Environ. Int. 2023, 178, 108080. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Pracht, L.E.; Tfaily, M.M.; Ardissono, R.J.; Neumann, R.B. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: Tracking carbon compositional change during microbial utilization. Biogeosciences 2018, 15, 1733–1747. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, S.; Niu, B.; Pei, Y.; Song, S.; Lei, T.; Yun, H. Soil texture influences soil bacterial biomass in the permafrost-affected alpine desert of the Tibetan plateau. Front. Microbiol. 2022, 13, 1007194. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, S.; Pei, Y.; Song, S.; Lei, T.; Yun, H. Soil texture and microorganisms dominantly determine the subsoil carbonate content in the permafrost-affected area of the Tibetan Plateau. Front. Microbiol. 2023, 14, 1125832. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhong, J.; Hao, B.; Ge, Y.; Swennen, R. Sedimentological and diagenetic control on the reservoir quality of deep-lacustrine sedimentary gravity flow sand reservoirs of the Upper Triassic Yanchang Formation in Southern Ordos Basin, China. Mar. Pet. Geol. 2020, 112, 104050. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Bahram, M.; Bro, R.; Stedmon, C.; Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemom. J. Chemom. Soc. 2006, 20, 99–105. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Wenig, P.; Bro, R. OpenFluor–an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 2014, 6, 658–661. [Google Scholar] [CrossRef]
- D’Andrilli, J.; Foreman, C.M.; Sigl, M.; Priscu, J.C.; McConnell, J.R. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core. Clim. Past 2017, 13, 533–544. [Google Scholar] [CrossRef]
- Cawley, K.M.; Ding, Y.; Fourqurean, J.; Jaffé, R. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: A preliminary study using optical properties and stable carbon isotopes. Mar. Freshw. Res. 2012, 63, 1098–1107. [Google Scholar] [CrossRef]
- Hong, H.; Wu, S.; Wang, Q.; Dai, M.; Qian, L.; Zhu, H.; Li, J.; Zhang, J.; Liu, J.; Li, J.; et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography. Sci. Total Environ. 2021, 790, 147855. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, M.; Stedmon, C.A.; Borch, N.H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability. Ophelia 2003, 57, 161–176. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, C.; Ma, W.; Wang, S.; Wang, S.; Han, W.; Mohammat, A.; Robinson, D.; Smith, P. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Glob. Change Biol. 2012, 18, 2292–2300. [Google Scholar] [CrossRef]
- Rey, A. Mind the gap: Non-biological processes contributing to soil CO2 efflux. Glob. Change Biol. 2015, 21, 1752–1761. [Google Scholar] [CrossRef]
- Gleeson, D.B.; Kennedy, N.M.; Clipson, N.; Melville, K.; Gadd, G.M.; McDermott, F.P. Characterization of bacterial community structure on a weathered pegmatitic granite. Microb. Ecol. 2006, 51, 526–534. [Google Scholar] [CrossRef]
- Perito, B.; Biagiotti, L.; Daly, S.; Galizzi, A.; Tiano, P.; Mastromei, G. Bacterial genes involved in calcite crystal precipitation. In Proceedings of the International Conference on Microbiology and Conservation (ICMC), Florence, Italy, 17–19 June 1999; pp. 219–230. [Google Scholar]
- Blyth, A.J.; Frisia, S. Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiol. J. 2008, 25, 101–111. [Google Scholar] [CrossRef]
- Song, W.; Ogawa, N.; Oguchi, C.; Hatta, T.; Matsukura, Y. Laboratory experiments on bacterial weathering of granite and its constituent minerals. Geomorphol. Relief Process. Environ. 2010, 16, 327–336. [Google Scholar] [CrossRef]
- Uroz, S.; Turpault, M.P.; Delaruelle, C.; Mareschal, L.; Pierrat, J.C.; Frey-Klett, P. Minerals Affect the Specific Diversity of Forest Soil Bacterial Communities. Geomicrobiol. J. 2012, 29, 88–98. [Google Scholar] [CrossRef]
- Da, J.; Zhang, Y.G.; Li, G.; Meng, X.; Ji, J. Low CO2 levels of the entire Pleistocene epoch. Nat. Commun. 2019, 10, 4342. [Google Scholar] [CrossRef]
- Da, J.; Zhang, Y.G.; Li, G.; Ji, J. Aridity-driven decoupling of δ13C between pedogenic carbonate and soil organic matter. Geology 2020, 48, 981–985. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Sci. Rev. 2003, 60, 261–298. [Google Scholar] [CrossRef]
- Garzione, C.N.; Dettman, D.L.; Horton, B.K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 212, 119–140. [Google Scholar] [CrossRef]
- Wolela, A.M.; Gierlowski-Kordesch, E.H. Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic-Jurassic), Newark Supergroup, USA. Sediment. Geol. 2007, 197, 99–126. [Google Scholar] [CrossRef]
- Bai, X.; Guo, Z.; Huang, Y.; An, S. Root cellulose drives soil fulvic acid carbon sequestration in the grassland restoration process. CATENA 2020, 191, 104575. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Jia, L.; Liu, X.; Hussain, Q.; Song, X.; Cui, L.; Wang, C.; Cui, D. Organic material additions have stronger effects on humic substances and enzyme activities than soil types. Land Degrad. Dev. 2022, 33, 2783–2794. [Google Scholar] [CrossRef]
- Carson, J.K.; Campbell, L.; Rooney, D.; Clipson, N.; Gleeson, D.B. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol. 2009, 67, 381–388. [Google Scholar] [CrossRef]
- Coward, E.K.; Thompson, A.T.; Plante, A.F. Iron-mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma 2017, 306, 206–216. [Google Scholar] [CrossRef]
- Niu, B.; Lei, T.; Chen, Q.; Shao, M.; Yang, X.; Jiao, H.; Yang, Y.; Guggenberger, G.; Zhang, G. pH: A core node of interaction networks among soil organo-mineral fractions. Environ. Int. 2023, 178, 108058. [Google Scholar] [CrossRef]
- McKeague, J.A. An Evaluation of 0.1 M Pyrophosphate and Pyrophosphate-Dithionite in Comparison with Oxalate as Extractants of the Accumulation Products in Podzols and Some Other Soils. Can. J. Soil Sci. 1967, 47, 95–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, S.; Zhang, S.; Shao, M.; Ding, Z.; Zhou, Y.; Su, C. The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China. Microorganisms 2024, 12, 2122. https://doi.org/10.3390/microorganisms12112122
Wang T, Zhang S, Zhang S, Shao M, Ding Z, Zhou Y, Su C. The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China. Microorganisms. 2024; 12(11):2122. https://doi.org/10.3390/microorganisms12112122
Chicago/Turabian StyleWang, Tao, Shengyin Zhang, Shuncun Zhang, Ming Shao, Zhaoyun Ding, Yanfang Zhou, and Cuicui Su. 2024. "The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China" Microorganisms 12, no. 11: 2122. https://doi.org/10.3390/microorganisms12112122
APA StyleWang, T., Zhang, S., Zhang, S., Shao, M., Ding, Z., Zhou, Y., & Su, C. (2024). The Process of Soil Carbon Sequestration in Different Ecological Zones of Qingtu Lake in the Arid–Semi-Arid Region of Western China. Microorganisms, 12(11), 2122. https://doi.org/10.3390/microorganisms12112122