Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery
Abstract
:Highlights
- Two Aspergillus isolates from bitumen grow well on extra-heavy crude oil.
- Extracellular enzymes of both fungi efficiently degrade extra-heavy oil fractions.
- Hydrocarbon redistribution co-occurs with biogas and organic acid formation.
- Oil properties are enzymatically improved by viscosity reduction and demetallization.
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Oil Sample
2.2. Oil Biodegradation and Medium Optimization
2.3. Enzymatic Degradation Test
2.4. Optimization of Enzymatic Degradation Conditions
2.4.1. Enzyme Concentration Optimization
2.4.2. Enzymatic Complex Optimization
2.4.3. Optimized Enzymatic Degradation Test
2.5. Data Analysis
3. Results and Discussion
3.1. Fungal Degradation of Extra-Heavy Oil
3.2. Medium Optimization for Oil Biodegradation
3.3. Oil Degradation Capacity of Fungal Enzymes
3.4. Optimization of Enzyme Concentration and Combination
3.5. Optimized Enzymatic Degradation of Extra-Heavy Oil
3.5.1. Distribution of SARA Fractions
3.5.2. Composition of Gasifiable n-Alkanes
3.5.3. Formation of Biogases and Organic Acids
3.5.4. Demetallization of Extra-Heavy Oil
3.5.5. Enzymatic Reduction in Oil Viscosity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Du, L.; Zou, X.F.; Liu, T.; Wu, X.D.; Wang, Y.H.; Dong, J. Experimental study on the enhanced ultra-heavy oil recovery using an oil-soluble viscosity reducer and CO2 assisted steam flooding. Geoenergy Sci. Eng. 2022, 222, 211409. [Google Scholar] [CrossRef]
- Lavania, M.; Cheema, S.; Sarma, P.M.; Mandal, A.K.; Lal, B. Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 2012, 23, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; He, D.B.; Fan, H.M.; Ma, D.S.; Zhou, T.Y.; Ji, Z.M.; Sun, Y.Y. Oil displacement performance and mechanism of interfacially active polymer (IAP)-emulsifying viscosity reducer (EVR) supramolecular compound system in heterogenous heavy oil reservoirs. J. Mol. Liq. 2023, 385, 122356. [Google Scholar] [CrossRef]
- Elahi, S.M.; Khoshooei, M.A.; Scott, C.E.; Chen, Z.X.; Almao, P.P. In-situ upgrading of heavy oil using nano-catalysts: A computational fluid dynamics study of hydrogen and vacuum residue injection. Can. J. Chem. Eng. 2018, 9999, 1–9. [Google Scholar] [CrossRef]
- Haddad, H.; Khaz’ali, A.R.; Mehrabani-Zeinabad, A.; Jazini, M. Investigating the potential of microbial enhanced oil recovery in carbonate reservoirs using Bacillus persicus. Fuel 2023, 334, 126757. [Google Scholar] [CrossRef]
- Bian, Z.W.; Zhi, Z.N.; Zhang, X.C.; Qu, Y.Q.; Wei, L.S.; Wu, H.N.; Wu, Y.F. Performance evaluation of bacterial consortia from low permeability reservoir in Ordos Basin. Int. J. Energ. Res. 2023, 2023, 4728717. [Google Scholar] [CrossRef]
- Cui, K.; Li, H.; Chen, P.; Li, Y.; Jiang, W.; Guo, K. New technique for enhancing residual oil recovery from low-permeability reservoirs: The cooperation of petroleum hydrocarbon-degrading bacteria and SiO2 nanoparticles. Microorganisms 2022, 10, 2104. [Google Scholar] [CrossRef]
- Ke, C.Y.; Lu, G.M.; Wei, Y.L.; Sun, W.J.; Hui, J.F.; Zheng, X.Y.; Zhang, Q.Z.; Zhang, X.L. Biodegradation of crude oil by Chelatococcus daeguensis HB-4 and its potential for microbial enhanced oil recovery (MEOR) in heavy oil reservoirs. Bioresour. Technol. 2019, 287, 121442. [Google Scholar] [CrossRef]
- Xia, W.J.; Tong, L.L.; Jin, T.Z.; Hu, C.X.; Zhang, L.; Shi, L.; Zhang, J.Q.; Yu, W.C.; Wang, F.Y.; Ma, T. N,S-Heterocycles biodegradation and biosurfactant production under CO2/N2 conditions by Pseudomonas and its application on heavy oil recovery. Chem. Eng. J. 2021, 413, 128771. [Google Scholar] [CrossRef]
- Yin, J.; Wei, X.X.; Hu, F.T.; Cheng, C.K.; Zhuang, X.L.; Song, M.Y.; Zhuang, G.Q.; Wang, F.; Ma, A.Z. Halotolerant Bacillus velezensis sustainably enhanced oil recovery of low permeability oil reservoirs by producing biosurfactant and modulating the oil microbiome. Chem. Eng. J. 2023, 453, 139912. [Google Scholar] [CrossRef]
- Li, L.; Wan, Y.Y.; Mu, H.M.; Shi, S.B.; Chen, J.F. Interaction between illite and a Pseudomonas stutzeri-heavy oil biodegradation consortia. Microorganisms 2023, 11, 330. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Tosi, S.; Daccò, C.; Wang, X.; Xu, S.H.; Marchisio, M.A.; Gao, W.Y.; Jonathan, S.G.; Pecoraro, L. Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms 2020, 8, 1912. [Google Scholar] [CrossRef] [PubMed]
- Medaura, M.C.; Guivernau, M.; Ventas, X.M.; Boldú, F.X.P.; Viñas, M. Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Front. Microbiol. 2021, 12, 626436. [Google Scholar] [CrossRef] [PubMed]
- Daccò, C.; Girometta, C.; Asemoloye, M.D.; Carpani, G.; Picco, A.M.; Tosi, S. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int. Biodeter. Biodegr. 2020, 147, 104866. [Google Scholar] [CrossRef]
- Ortega-González, D.K.; Cristiani-Urbina, E.; Flores-Ortíz, C.M.; Cruz-Maya, J.A.; Cancino-Díaz, J.C.; Jan-Roblero, J. Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Appl. Biochem. Biotechnol. 2015, 175, 1123–1138. [Google Scholar] [CrossRef]
- Kong, J.; Li, H.B.; Zhou, M.L.; Gai, H.F. Enzyme base reservoir blockage removing agent SUN and its uses in Shengli offshore oil fields. Oilfield Chem. 2005, 22, 23–24. [Google Scholar] [CrossRef]
- Ayala, M.; Verdin, J.; Vazquez-Duhalt, R. The prospects for peroxidase-based biorefining of petroleum fuels. Biocatal. Biotransfor. 2007, 25, 114–129. [Google Scholar] [CrossRef]
- Naranjo-Briceño, L.; Pernía, B.; Guerra, M.; Demey, J.R.; De Sisto, A.; Inojosa, Y.; González, M.; Fusella, E.; Freites, M.; Yegres, F. Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb. Biotechnol. 2013, 6, 720–730. [Google Scholar] [CrossRef]
- Zhang, J.H.; Gao, H.; Lai, H.X.; Hu, S.B.; Xue, Q.H. Biodegradation of heavy oil by fungal extracellular enzymes from Aspergillus spp. shows potential to enhance oil recovery. AIChE J. 2021, 67, e17222. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Zhang, J.L.; Li, S.; Liu, J.S.; Ghalib, H.B.; Zhang, X.Y. Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. Ecotox. Environ. Safe. 2018, 164, 398–408. [Google Scholar] [CrossRef]
- Yang, S.Q.; Zhang, J.H.; Liu, Y.; Feng, W.D. Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soils. Int. Biodeter. Biodegr. 2023, 178, 105566. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, H.; Cheng, H.; Wang, Y.R.; Liu, Q.Y.; Zhao, C.C.; Gu, Y.Y.; Wang, J.G. New insights of crude oil biodegradation construction by microbial consortia B10: Responded substrates, genomics, biodegradation mechanism and pathways. Chem. Eng. J. 2023, 478, 147143. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xue, Q.H.; Gao, H.; Ma, X.; Wang, P. Biodegradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J. Chem. Technol. Biotechnol. 2016, 91, 865–875. [Google Scholar] [CrossRef]
- Suganthi, S.H.; Murshid, S.; Sriram, S.; Ramani, K. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. J. Environ. Manag. 2018, 220, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.M.; Tourova, T.P.; Babich, T.L.; Logvinova, E.Y.; Sokolova, D.S.; Loiko, N.G.; Myazin, V.A.; Korneykova, M.V.; Mardanov, A.V.; Nazina, T.N. Crude oil degradation in temperatures below the freezing point by bacteria from hydrocarbon-contaminated arctic soils and the genome analysis of Sphingomonas sp. AR_OL41. Microorganisms 2024, 12, 79. [Google Scholar] [CrossRef]
- Romero-Hernández, L.; Velez, P.; Betanzo-Gutiérrez, I.; Camacho-López, M.D.; Vázquez-Duhalt, R.; Riquelme, M. Extra-heavy crude oil degradation by Alternaria sp. isolated from deep-sea sediments of the Gulf of Mexico. Appl. Sci. 2021, 11, 6090. [Google Scholar] [CrossRef]
- Benguenab, A.; Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol. Sin. 2021, 41, 416–423. [Google Scholar] [CrossRef]
- Wei, F.D.; Xu, R.; Rao, Q.Y.; Zhang, S.Q.; Ma, Z.W.; Ma, Y.L. Biodegradation of asphaltenes by an indigenous bioemulsifier-producing Pseudomonas stutzeri YWX-1 from shale oil in the Ordos Basin: Biochemical characterization and complete genome analysis. Ecotox. Environ. Saf. 2023, 251, 114551. [Google Scholar] [CrossRef]
- Raheem, A.S.A.; Hentati, D.; Bahzad, D.; Abed, R.M.M.; Ismail, W. Biocatalytic upgrading of unconventional crude oil using oilfield-inhabiting bacterial consortia. Int. Biodeter. Biodegr. 2022, 174, 105468. [Google Scholar] [CrossRef]
- Kraemer, J.T.; Bagley, D.M. Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ. Sci. Technol. 2005, 39, 3819–3825. [Google Scholar] [CrossRef]
- Tran, D.B.; To, T.H.; Tran, P.D. Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coordin. Chem. Rev. 2022, 457, 214400. [Google Scholar] [CrossRef]
- Ji, H.S.; Wan, L.; Gao, Y.X.; Du, P.; Li, W.J.; Luo, H.; Ning, J.R.; Zhao, Y.Y.; Wang, H.W.; Zhang, L.X.; et al. Hydrogenase as the basis for green hydrogen production and utilization. J. Energy Chem. 2023, 85, 348–362. [Google Scholar] [CrossRef]
- Kögler, F.; Mahler, E.; Dopffel, N.; Schulze-Makuch, D.; Borovina, A.; Visser, F.; Herold, A.; Alkan, H. The microbial enhanced oil recovery (MEOR) potential of Halanaerobiales under dynamic conditions in different porous media. J. Petrol. Sci. Eng. 2020, 196, 107578. [Google Scholar] [CrossRef]
- Lourdes, R.S.; Cheng, S.Y.; Chew, K.W.; Ma, Z.L.; Show, P.L. Prospects of microbial enhanced oil recovery: Mechanisms and environmental sustainability. Sustain. Energy Technol. 2022, 53, 102527. [Google Scholar] [CrossRef]
- Xia, W.J.; Shen, W.J.; Yu, L.; Zheng, C.G.; Yu, W.C.; Tang, Y.C. Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir. Appl. Energy 2016, 171, 646–655. [Google Scholar] [CrossRef]
- Sun, S.S.; Luo, Y.J.; Zhou, Y.; Xiao, M.; Zhang, Z.Y.; Hou, J.R.; Wei, X.F.; Xu, Q.S.; Sha, T.; Dong, H.; et al. Application of Bacillus spp. in pilot test of microbial huff and puff to improve heavy oil recovery. Energy Fuel. 2017, 31, 13724–13732. [Google Scholar] [CrossRef]
- Khanpour-Alikelayeh, E.; Partovinia, A.; Talebi, A.; Kermanian, H. Investigation of Bacillus licheniformis in the biodegradation of Iranian heavy crude oil: A two-stage sequential approach containing factor-screening and optimization. Ecotox. Environ. Saf. 2020, 205, 111103. [Google Scholar] [CrossRef]
- Lladó, S.; Solanas, A.M.; de Lapuente, J.; Borràs, M.; Viñas, M. A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil contaminated soil. Sci. Total Environ. 2012, 435–436, 262–269. [Google Scholar] [CrossRef]
- Folayan, A.J.; Dosunmu, A.; Oriji, B. Aerobic and anaerobic biodegradation of synthetic drilling fluids in marine deep-water offshore environments: Process variables and empirical investigations. Energy Rep. 2023, 9, 2153–2168. [Google Scholar] [CrossRef]
- Kudapa, K.; Krishna, K.A.S. Heavy oil recovery using gas injection methods and its challenges and opportunities. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Gao, C.H.; Zhang, Y.Y.; Wang, X.M.; Lin, J.Z.; Li, Y.Y. Geochemical characteristics and geological significance of the anaerobic biodegradation products of crude oil. Energ. Fuel. 2019, 33, 8588–8595. [Google Scholar] [CrossRef]
- Pereira, E.; Napp, A.P.; Allebrandt, S.; Barbosa, R.; Reuwsaat, J.; Lopes, W.; Kmetzsch, L.; Staats, C.C.; Schrank, A.; Dallegrave, A.; et al. Biodegradation of aliphatic and polycyclic aromatic hydrocarbons in seawater by autochthonous microorganisms. Int. Biodeter. Biodegr. 2019, 145, 104789. [Google Scholar] [CrossRef]
- Hillman, E.T.; Caceres-Martinez, L.E.; Kilaz, G.; Solomon, K.V. Top-down enrichment of oil field microbiomes to limit souring and control oil composition during extraction operations. AIChE J. 2022, 68, e17927. [Google Scholar] [CrossRef]
- Madirisha, M.; Hack, R.; van der Meer, F. The role of organic acid metabolites in geo-energy pipeline corrosion in a sulfate reducing bacteria environment. Heliyon 2022, 8, e09420. [Google Scholar] [CrossRef]
- Leòn, V.; Kumar, M. Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 2005, 10, 471–481. [Google Scholar] [CrossRef]
- Ali, M.F.; Abbas, S. A review of methods for the demetallization of residual fuel oils. Fuel Process. Technol. 2006, 87, 573–584. [Google Scholar] [CrossRef]
- Alade, O.S.; Ogunlaja, A.S.; Mohamed, A.H.; Mahmoud, M.; Al-Shehri, D.; Al-Nakhli, A.; Nguele, R.; Mohammed, I. Prospects of co-injecting ionic liquid and thermochemical fluid for recovery of extra-heavy oil. Fuel 2023, 331, 125947. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Teixeira, J.A. HC-0C-03: Biological treatments to improve the quality of heavy crude oils. In Biodegradation and Bioconversion of Hydrocarbons. Environmental Footprints and Eco-Design of Products and Processes; Heimann, K., Karthikeyan, O., Muthu, S., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Nzila, A.; Musa, M.M. Current knowledge and future challenges on bacterial degradation of the highly complex petroleum products asphaltenes and resins. Front. Environ. Sci. 2021, 9, 779644. [Google Scholar] [CrossRef]
- Hernández-López, E.L.; Perezgasga, L.; Huerta-Saquero, A.; Mouriño-Pérez, R.; Vazquez-Duhaltet, R. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environ. Sci. Pollut. Res. 2016, 23, 10773–10784. [Google Scholar] [CrossRef]
- Chen, M.F.; Wang, Y.F.; Chen, W.H.; Ding, M.C.; Zhang, Z.Y.; Zhang, C.H.; Cui, S.Z. Synthesis and evaluation of multi-aromatic ring copolymer as viscosity reducer for enhancing heavy oil recovery. Chem. Eng. J. 2023, 470, 144220. [Google Scholar] [CrossRef]
Enzymatic Complex | E2 (mL) | E4 (mL) | Total Gas Yield (mL 100 mL−1) |
---|---|---|---|
E2 | 40 | 0 | 115.0 ± 1.4 cd |
E4 | 0 | 40 | 112.6 ± 0.8 d |
E241 | 30 | 10 | 123.8 ± 3.1 b |
E242 | 25 | 15 | 132.0 ± 1.1 a |
E243 | 20 | 20 | 122.2 ± 0.3 b |
E244 | 15 | 25 | 115.0 ± 1.4 cd |
E245 | 10 | 30 | 117.8 ± 0.3 c |
Fungus | Control | Mannitol | Sucrose | Glucose | Soluble Starch | Hexadecane |
---|---|---|---|---|---|---|
HJ2 | 74.5 ± 0.7 bc | 74.0 ± 0.0 c | 77.5 ± 0.7 bc | 76.0 ± 1.4 bc | 82.0 ± 2.8 a | 78.5 ± 2.1 ab |
HJ4 | 75.5 ± 0.7 c | 78.5 ± 2.1 b | 78.5 ± 0.7 b | 77.5 ± 0.7 bc | 83.5 ± 0.7 a | 77.8 ± 1.1 bc |
Fungus | Urea | NH4Cl | (NH4)2SO4 | Yeast Extract | Peptone | |
HJ2 | 32.5 ± 0.7 b | 33.5 ± 2.1 b | 37.5 ± 3.5 b | 59.0 ± 2.8 a | 55.0 ± 1.4 a | |
HJ4 | 43.0 ± 1.4 c | 48 ± 2.8 bc | 48.5 ± 0.7 b | 73.5 ± 2.1 a | 70.5 ± 2.1 a | |
Fungus | Soluble Starch Concentration (mg L−1) | |||||
100 | 200 | 300 | 400 | 500 | ||
HJ2 | 44.5 ± 0.7 b | 47.0 ± 0.0 b | 44.5 ± 2.1 b | 54.0 ± 2.8 a | 42.0 ± 2.8 b | |
HJ4 | 67.0 ± 4.2 b | 63.5 ± 3.5 b | 75.5 ± 0.7 a | 78.0 ± 0.0 a | 76.0 ± 1.4 a |
Enzyme | Saturates | Aromatics | Resins | Asphaltenes | Gas Yield (mL 100mL−1) | ||||
---|---|---|---|---|---|---|---|---|---|
Content (g kg−1) | VR% | Content (g kg−1) | VR% | Content (g kg−1) | VRm% | Content (g kg−1) | VR% | ||
Ctrl | 25.0 ± 3.0 b | – | 377.0 ± 9.8 a | – | 31.0 ± 11.5 a | – | 276.3 ± 6.4 a | – | 0.0 ± 0.0 c |
E2 | 30.8 ± 3.6 ab | 23.2 | 387.7 ± 4.0 a | 2.8 | 14.3 ± 4.0 a | −53.9 | 260.3 ± 4.5 b | −5.8 | 34.8 ± 0.6 a |
E4 | 40.0 ± 8.7 a | 60.0 | 341.3 ± 4.2 b | −9.5 | 21.0 ± 7.9 a | −32.3 | 218.7 ± 9.3 c | −20.8 | 27.2 ± 0.6 b |
Enzyme | Saturates | Aromatics | Resins | Asphaltenes | Gas Yield (mL 100 mL−1) | pH | Viscosity (mPa·s, 50 °C) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Content (g kg−1) | VR% | Content (g kg−1) | VR% | Content (g kg−1) | VR% | Content (g kg−1) | VR% | ||||
Ctrl | 24.0 ± 2.8 bc | – | 414.5 ± 14.8 c | – | 36.1 ± 1.1 a | – | 525.5 ± 14.8 a | – | 0.0 ± 0.0 c | 7.3 ± 0.2 a | 219,917 ± 265 a |
E2 | 30.0 ± 4.2 ab | 25.0 | 567.5 ± 17.7 ab | 36.9 | 17.2 ± 0.3 b | −52.4 | 349.5 ± 3.5 b | −33.5 | 113.6 ± 5.6 b | 5.7 ± 0.2 bc | 208,634 ± 310 c |
E4 | 34.5 ± 3.5 a | 43.8 | 536.5 ± 13.4 b | 29.4 | 16.0 ± 1.3 b | −55.7 | 300.5 ± 13.4 c | −42.8 | 109.2 ± 2.8 b | 5.9 ± 0.2 b | 209,916 ± 246 b |
E242 | 19.5 ± 0.7 c | −18.8 | 601.5 ± 16.3 a | 45.1 | 13.8 ± 2.1 b | −61.8 | 273.5 ± 4.9 c | −48.0 | 135.6 ± 0.6 a | 5.5 ± 0.1 c | 191,982 ± 276 c |
10 | Molecular Formula | Peak Area Control | Peak Area E2 | VR% | Peak Area E4 | VR% | Peak Area E242 | VR% |
---|---|---|---|---|---|---|---|---|
666.9 | C8H18 | 20521877 | 60677294 | 195.7 | 70622559 | 244.1 | 31914129 | 55.5 |
930.9 | C9H20 | 41639690 | 83232858 | 99.9 | 89184939 | 114.2 | 50432318 | 21.1 |
1228.2 | C10H22 | 77025332 | 96604881 | 25.4 | 96771714 | 25.6 | 67523231 | −12.3 |
1532.3 | C11H24 | 124826154 | 118741107 | −4.9 | 118016663 | −5.5 | 94388129 | −24.4 |
1828.6 | C12H26 | 149939343 | 142988803 | −4.6 | 127503319 | −15.0 | 119400393 | −20.4 |
2110.9 | C13H28 | 81834307 | 162874095 | 99.0 | 134310401 | 64.1 | 131344208 | 60.5 |
2378.1 | C14H30 | 91025810 | 96708274 | 6.2 | 74494546 | −18.2 | 138187801 | 51.8 |
2630.6 | C15H32 | 93209279 | 109261802 | 17.2 | 82077634 | −11.9 | 83442762 | −10.5 |
2869.1 | C16H34 | 92807001 | 113065316 | 21.8 | 148850547 | 60.4 | 85016396 | −8.4 |
3094.9 | C17H36 | 95303442 | 110495600 | 15.9 | 81427802 | −14.6 | 82632888 | −13.3 |
3309.1 | C18H38 | 81685600 | 93869710 | 14.9 | 65491676 | −19.8 | 118353162 | 44.9 |
3512.6 | C19H40 | 72847916 | 95897799 | 31.6 | 102272933 | 40.4 | 105502871 | 44.8 |
3706.5 | C20H42 | 62070413 | 73961924 | 19.2 | 51194116 | −17.5 | 91494234 | 47.4 |
3891.4 | C21H44 | 49598459 | 58845946 | 18.6 | 41151854 | −17.0 | 41616559 | −16.1 |
4068.0 | C22H46 | 40782024 | 49018759 | 20.2 | 32948861 | −19.2 | 59807620 | 46.7 |
4237.1 | C23H48 | 32319673 | 41696313 | 29.0 | 27561027 | −14.7 | 28983448 | −10.3 |
4399.1 | C24H50 | 27306509 | 32165207 | 17.8 | 20882672 | −23.5 | 23077775 | −15.5 |
4554.8 | C25H52 | 21183514 | 24235973 | 14.4 | 17221248 | −18.7 | 26780442 | 26.4 |
4704.2 | C26H54 | 16020138 | 21817694 | 36.2 | 15222046 | −5.0 | 15653326 | −2.3 |
4848.3 | C27H56 | 15112181 | 14260089 | −5.6 | 11804840 | −21.9 | 21566349 | 42.7 |
4986.9 | C28H58 | 10965407 | 10685022 | −2.6 | 9715957 | −11.4 | 8847915 | 19.3 |
5072.4 | C29H60 | 5056415 | 4501824 | −11.0 | 3471125 | −31.4 | 3447995 | −31.8 |
5122.7 | C30H62 | 8483866 | 6236466 | −26.5 | 6293331 | −25.8 | 6368784 | −24.9 |
Enzyme | Ni | Fe | V | |||
---|---|---|---|---|---|---|
Concentration (mg kg−1) | Removal Rate (%) | Concentration (mg kg−1) | Removal Rate (%) | Concentration (mg kg−1) | Removal Rate (%) | |
Ctrl | 12.7 ± 0.6 a | – | 136.5 ± 19.2 a | – | 227.5 ± 0.7 a | – |
E2 | 11.5 ± 0.4 a | −9.4 | 74.8 ± 6.5 bc | −45.2 | 181.0 ± 1.4 bc | −20.4 |
E4 | 11.0 ± 1.4 ab | −13.4 | 99.5 ± 11.3 b | −27.1 | 203.5 ± 17.7 ab | −10.5 |
E242 | 7.1 ± 2.5 b | −44.1 | 62.8 ± 5.1 c | −54.0 | 155.5 ± 6.4 c | −31.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, W.; Ren, L. Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery. Microorganisms 2024, 12, 2248. https://doi.org/10.3390/microorganisms12112248
Zhang J, Feng W, Ren L. Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery. Microorganisms. 2024; 12(11):2248. https://doi.org/10.3390/microorganisms12112248
Chicago/Turabian StyleZhang, Junhui, Wendi Feng, and Lu Ren. 2024. "Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery" Microorganisms 12, no. 11: 2248. https://doi.org/10.3390/microorganisms12112248
APA StyleZhang, J., Feng, W., & Ren, L. (2024). Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery. Microorganisms, 12(11), 2248. https://doi.org/10.3390/microorganisms12112248