Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl–DNA Phosphodiesterase in Dinoflagellates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strains and Cultivation
2.2. NAP50 Gene Structure
2.3. Phylogenetic Analysis
2.4. Western Blotting
2.5. NAP50 Protein Structure and Function Prediction
3. Results
3.1. NAP50 Is a Novel Dinoflagellate Protein Similar to TDP Family of Proteins
3.2. Distribution of NAP50 in Dinoflagellates Using Western Blotting
3.3. The Predicted NAP50 Protein Structure and Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taylor, F.J.R.; Hoppenrath, M.; Saldarriaga, J.F. Dinoflagellate diversity and distribution. Biodivers. Conserv. 2007, 17, 407–418. [Google Scholar] [CrossRef]
- Dagenais-Bellefeuille, S.; Morse, D. Putting the N in dinoflagellates. Front. Microbiol. 2013, 4, 369. [Google Scholar] [CrossRef] [PubMed]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 2018, 28, 2570–2580.e6. [Google Scholar] [CrossRef]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G., Jr. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef]
- LaJeunesse, T.C.; Lambert, G.; Andersen, R.A.; Coffroth, M.A.; Galbraith, D.W. Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates1. J. Phycol. 2005, 41, 880–886. [Google Scholar] [CrossRef]
- Wisecaver, J.H.; Hackett, J.D. Dinoflagellate genome evolution. Annu. Rev. Microbiol. 2011, 65, 369–387. [Google Scholar] [CrossRef]
- Gonzalez-Pech, R.A.; Stephens, T.G.; Chen, Y.; Mohamed, A.R.; Cheng, Y.; Shah, S.; Dougan, K.E.; Fortuin, M.D.A.; Lagorce, R.; Burt, D.W.; et al. Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol. 2021, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Stephens, T.G.; Ragan, M.A.; Bhattacharya, D.; Chan, C.X. Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci. Rep. 2018, 8, 17175. [Google Scholar] [CrossRef]
- Waller, R.F.; Kořený, L. Plastid complexity in dinoflagellates: A picture of gains, losses, replacements and revisions. Adv. Bot. Res. 2017, 84, 105–143. [Google Scholar] [CrossRef]
- Lee, F.W.; Morse, D.; Lo, S.C. Identification of two plastid proteins in the dinoflagellate Alexandrium affine that are substantially down-regulated by nitrogen-depletion. J. Proteome Res. 2009, 8, 5080–5092. [Google Scholar] [CrossRef]
- Zheng, W.; Wuyun, Q.; Freddolino, P.L.; Zhang, Y. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15. Proteins 2023, 91, 1684–1703. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Xie, Z.X.; He, Z.P.; Lin, L.; Wang, D.Z. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae). J. Proteom. 2013, 86, 85–96. [Google Scholar] [CrossRef]
- Bachvaroff, T.R.; Place, A.R. From stop to start: Tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS ONE 2008, 3, e2929. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Huang, S.Y.; Gao, R.; Das, B.B.; Murai, J.; Marchand, C. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 2014, 19, 114–129. [Google Scholar] [CrossRef]
- Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation. Nucleic Acids Res. 2018, 46, 520–537. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.W.F. Proteomic Study of Harmful Algal Blooming Causative Agents: Nitrogen-Induced Growth and Identification of Dinoflagellates. Ph.D. Dissertation, The Hong Kong Polytechnic University, Hong Kong, China, 2008. [Google Scholar]
- Peng, Z.; Wang, W.; Han, R.; Zhang, F.; Yang, J. Protein structure prediction in the deep learning era. Curr. Opin. Struct. Biol. 2022, 77, 102495. [Google Scholar] [CrossRef]
- Lovejoy, C.A.; Cortez, D. Common mechanisms of PIKK regulation. DNA Repair 2009, 8, 1004–1008. [Google Scholar] [CrossRef]
- Das, B.B.; Antony, S.; Gupta, S.; Dexheimer, T.S.; Redon, C.E.; Garfield, S.; Shiloh, Y.; Pommier, Y. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 2009, 28, 3667–3680. [Google Scholar] [CrossRef]
- Katyal, S.; Lee, Y.; Nitiss, K.C.; Downing, S.M.; Li, Y.; Shimada, M.; Zhao, J.; Russell, H.R.; Petrini, J.H.; Nitiss, J.L.; et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 2014, 17, 813–821. [Google Scholar] [CrossRef]
- Chiang, S.C.; Meagher, M.; Kassouf, N.; Hafezparast, M.; McKinnon, P.J.; Haywood, R.; El-Khamisy, S.F. Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage. Sci. Adv. 2017, 3, e1602506. [Google Scholar] [CrossRef]
- Huang, S.N.; Dalla Rosa, I.; Michaels, S.A.; Tulumello, D.V.; Agama, K.; Khiati, S.; Jean, S.R.; Baechler, S.A.; Factor, V.M.; Varma, S.; et al. Mitochondrial tyrosyl-DNA phosphodiesterase 2 and its TDP2(S) short isoform. EMBO Rep. 2018, 19, e42139. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.J.; Nisbet, R.E.; Barbrook, A.C. The remarkable chloroplast genome of dinoflagellates. J. Exp. Bot. 2008, 59, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, R.G.; Howe, C.J. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J. Cell. Sci. 2012, 125, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Tam, N.F.-Y.; Lam, W.; Lee, T.C.-H.; Xu, S.J.-L.; Lee, F.W.-F. Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl–DNA Phosphodiesterase in Dinoflagellates. Microorganisms 2024, 12, 2286. https://doi.org/10.3390/microorganisms12112286
Tang L, Tam NF-Y, Lam W, Lee TC-H, Xu SJ-L, Lee FW-F. Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl–DNA Phosphodiesterase in Dinoflagellates. Microorganisms. 2024; 12(11):2286. https://doi.org/10.3390/microorganisms12112286
Chicago/Turabian StyleTang, Lu, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, and Fred Wang-Fat Lee. 2024. "Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl–DNA Phosphodiesterase in Dinoflagellates" Microorganisms 12, no. 11: 2286. https://doi.org/10.3390/microorganisms12112286
APA StyleTang, L., Tam, N. F. -Y., Lam, W., Lee, T. C. -H., Xu, S. J. -L., & Lee, F. W. -F. (2024). Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl–DNA Phosphodiesterase in Dinoflagellates. Microorganisms, 12(11), 2286. https://doi.org/10.3390/microorganisms12112286