Fungal Apoptosis-Related Proteins
Abstract
:1. Introduction
2. Apoptosis-Inducing Factor
3. Metacaspase
3.1. Structural and Functional Features of the C14 Family Proteinases
3.2. Regulation of Fungal Apoptosis by Metacaspase
4. Inhibitors of Apoptosis Proteins
4.1. Structural Characteristics of Inhibitors of Apoptosis Proteins
4.2. The Function of Fungal Inhibitors of Apoptosis Proteins
5. Inhibitors of Apoptosis Proteins Antagonists
6. Cytochrome C
7. Glutathione
8. Other Apoptosis Related Proteins
9. Summary and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Galluzzi, L.; Bravo-San Pedro, J.M.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Alnemri, E.S.; Altucci, L.; Andrews, D.; Annicchiarico-Petruzzelli, M.; et al. Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ. 2015, 22, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhong, K.; Lv, R.; Zheng, X.; Zhang, Z.; Zhang, H. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus. Appl. Microbiol. Biotechnol. 2019, 103, 6617–6627. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, J.M. Do fungi undergo apoptosis-like programmed cell death? Mbio 2018, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Madeo, F.; Frohlich, E.; Frohlich, K.U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 1997, 139, 729–734. [Google Scholar] [CrossRef]
- Mousavi, S.A.A.; Robson, G.D. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology 2004, 150, 1937–1945. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl. Environ. Microbiol. 2018, 84, e00445-18. [Google Scholar] [CrossRef]
- Ramesh, S.; Roy, U.; Roy, S.; Rudramurthy, S.M. A promising antifungal lipopeptide from Bacillus subtilis: Its characterization and insight into the mode of action. Appl. Microbiol. Biotechnol. 2024, 108, 161. [Google Scholar] [CrossRef]
- Schuster, M.; Kilaru, S.; Steinberg, G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat. Commun. 2024, 15, 4357. [Google Scholar] [CrossRef]
- Leiter, E.; Csernoch, L.; Pocsi, I. Programmed cell death in human pathogenic fungi—A possible therapeutic target. Expert Opin. Ther. Targets 2018, 22, 1039–1048. [Google Scholar] [CrossRef]
- Lastauskiene, E.; Zinkeviciene, A.; Girkontaite, I.; Kaunietis, A.; Kvedariene, V. Formic acid and acetic acid induce a programmed cell death in pathogenic Candida species. Curr. Microbiol. 2014, 69, 303–310. [Google Scholar] [CrossRef]
- Rico-Ramirez, A.M.; Goncalves, A.P.; Glass, N.L. Fungal cell death: The beginning of the end. Fungal Genet. Biol. 2022, 159, 103671. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Stolp, Z.D.; Hardwick, J.M. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem. Pharmacol. 2019, 162, 71–78. [Google Scholar] [CrossRef]
- Shlezinger, N.; Goldfinger, N.; Sharon, A. Apoptotic-like programed cell death in fungi: The benefits in filamentous species. Front. Oncol. 2012, 2, 97. [Google Scholar] [CrossRef]
- Gebreegziabher Amare, M.; Westrick, N.M.; Keller, N.P.; Kabbage, M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet. Biol. 2022, 162, 103730. [Google Scholar] [CrossRef] [PubMed]
- Sharon, A.; Finkelstein, A.; Shlezinger, N.; Hatam, I. Fungal apoptosis: Function, genes and gene function. Fems Microbiol. Rev. 2009, 33, 833–854. [Google Scholar] [CrossRef] [PubMed]
- Haecker, G. Apoptosis in infection. Microbes Infect. 2018, 20, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.P.; Heller, J.; Daskalov, A.; Videira, A.; Glass, N.L. Regulated forms of cell death in fungi. Front. Microbiol. 2017, 8, 1837. [Google Scholar] [CrossRef]
- Saladi, S.; Boos, F.; Poglitsch, M.; Meyer, H.; Sommer, F.; Muehlhaus, T.; Schroda, M.; Schuldiner, M.; Madeo, F.; Herrmann, J.M. The NADH dehydrogenase Nde1 executes cell death after integrating signals from metabolism and proteostasis on the mitochondrial surface. Mol. Cell 2020, 77, 189–202.e6. [Google Scholar] [CrossRef]
- Hamann, A.; Brust, D.; Osiewacz, H.D. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol. 2008, 16, 276–283. [Google Scholar] [CrossRef]
- Kalkavan, H.; Green, D.R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018, 25, 46–55. [Google Scholar] [CrossRef]
- Deng, H.; Chen, W.; Zhang, B.; Zhang, Y.; Han, L.; Zhang, Q.; Yao, S.; Wang, H.; Shen, X.L. Excessive ER-phagy contributes to ochratoxin A-induced apoptosis. Food Chem. Toxicol. 2023, 176, 113793. [Google Scholar] [CrossRef] [PubMed]
- Khoi, C.-S.; Lin, Y.-W.; Chen, J.-H.; Liu, B.-H.; Lin, T.-Y.; Hung, K.-Y.; Chiang, C.-K. Selective activation of endoplasmic reticulum stress by reactive-oxygen-species-mediated ochratoxin A-induced apoptosis in tubular epithelial cells. Int. J. Mol. Sci. 2021, 22, 10951. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Novo, N.; Ferreira, P.; Medina, M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. Iubmb Life 2021, 73, 568–581. [Google Scholar] [CrossRef]
- Brust, D.; Hamann, A.; Osiewacz, H.D. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension. Curr. Genet. 2010, 56, 225–235. [Google Scholar] [CrossRef]
- Mukherjee, D.; Gupta, S.; Saran, N.; Datta, R.; Ghosh, A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: Dual roles for Ustilago maydis metacaspase Mca1. Mol. Microbiol. 2017, 106, 815–831. [Google Scholar] [CrossRef]
- Azzopardi, M.; Farrugia, G.; Balzan, R. Cell-cycle involvement in autophagy and apoptosis in yeast. Mech. Ageing Dev. 2017, 161, 211–224. [Google Scholar] [CrossRef]
- Berthelet, J.; Dubrez, L. Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2013, 2, 163–187. [Google Scholar] [CrossRef]
- Nagamine, T. Apoptotic arms races in insect-baculovirus coevolution. Physiol. Entomol. 2021, 47, 1–10. [Google Scholar] [CrossRef]
- Zhu, J.; Krom, B.P.; Sanglard, D.; Intapa, C.; Dawson, C.C.; Peters, B.M.; Shirtliff, M.E.; Jabra-Rizk, M.A. Farnesol-induced apoptosis in Candida albicans Is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. PLoS ONE 2011, 6, e28830. [Google Scholar] [CrossRef]
- Ramsdale, M. Programmed cell death in pathogenic fungi. Biochim. Biophys. Acta-Mol. Cell Res. 2008, 1783, 1369–1380. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Luo, L.; Guo, J.; Liu, H.; Wang, B.; Deng, B.; Long, C.-a.; Cheng, Y. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia 2010, 102, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F. Apoptosis-inducing factor: Structure, function, and redox regulation. Antioxid. Redox Signal. 2011, 14, 2545–2578. [Google Scholar] [CrossRef]
- Elguindy, M.M.; Nakamaru-Ogiso, E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: Ubiquinone oxidoreductases (NDH-2). J. Biol. Chem. 2015, 290, 20815–20826. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.M.; Riemer, J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: Redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol. Chem. 2021, 402, 289–297. [Google Scholar] [CrossRef]
- Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762. [Google Scholar] [CrossRef]
- Joza, N.; Pospisilik, J.A.; Hangen, E.; Hanada, T.; Modjtahedi, N.; Penninger, J.M.; Kroemer, G. AIF: Not just an apoptosis-inducing factor. In Natural Compounds and Their Role in Apoptotic Cell Signaling Pathways; Diederich, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 1171, pp. 2–11. [Google Scholar]
- Urbano, A.; Lakshmanan, U.; Choo, P.H.; Kwan, J.C.; Ng, P.Y.; Guo, K.; Dhakshinamoorthy, S.; Porter, A. AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells. EMBO J. 2005, 24, 2815–2826. [Google Scholar] [CrossRef]
- Su, C.-H.; Ho, Y.-C.; Lee, M.-W.; Tseng, C.-C.; Lee, S.-S.; Hsieh, M.K.; Chen, H.-H.; Lee, C.-Y.; Wu, S.-W.; Kuan, Y.-H. 1-nitropyrene induced reactive oxygen species-mediated apoptosis in macrophages through AIF nuclear translocation and AMPK/Nrf-2/HO-1 pathway activation. Oxidative Med. Cell. Longev. 2021, 2021, 9314342. [Google Scholar] [CrossRef]
- Norberg, E.; Gogvadze, V.; Vakifahmetoglu, H.; Orrenius, S.; Zhivotovsky, B. Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radic. Biol. Med. 2010, 48, 791–797. [Google Scholar] [CrossRef]
- Hangen, E.; Blomgren, K.; Benit, P.; Kroemer, G.; Modjtahedi, N. Life with or without AIF. Trends Biochem. Sci. 2010, 35, 278–287. [Google Scholar] [CrossRef]
- Wissing, S.; Ludovico, P.; Herker, E.; Buttner, S.; Engelhardt, S.M.; Decker, T.; Link, A.; Proksch, A.; Rodrigues, F.; Corte-Real, M.; et al. An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 2004, 166, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Delavallee, L.; Cabon, L.; Galan-Malo, P.; Lorenzo, H.K.; Susin, S.A. AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics. Iubmb Life 2011, 63, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Dinamarco, T.M.; Figueiredo Pimentel, B.d.C.; Savoldi, M.; Malavazi, I.; Soriani, F.M.; Uyemura, S.A.; Ludovico, P.; Goldman, M.H.S.; Goldman, G.H. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet. Biol. 2010, 47, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, L.; Liang, Q.; Wang, J.; Mo, W.; Zhou, B. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol. Biol. Cell 2006, 17, 1802–1811. [Google Scholar] [CrossRef]
- Semighini, C.P.; Averette, A.F.; Perfect, J.R.; Heitman, J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner. PLoS Pathog. 2011, 7, e1002364. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhang, Y.; Wang, Y.; Wan, Y.; Miao, Y.; Ma, T.; Yu, Q.; Li, M. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans. Yeast 2016, 33, 493–506. [Google Scholar] [CrossRef]
- Carneiro, P.; Duarte, M.; Videira, A. Characterization of apoptosis-related oxidoreductases from Neurospora crassa. PLoS ONE 2012, 7, e34270. [Google Scholar] [CrossRef]
- Savoldi, M.; Malavazi, I.; Soriani, F.M.; Capellaro, J.L.; Kitamoto, K.; da Silva Ferreira, M.E.; Goldman, M.H.S.; Goldman, G.H. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. Mol. Microbiol. 2008, 70, 44–59. [Google Scholar] [CrossRef]
- Muzaffar, S.; Bose, C.; Banerji, A.; Nair, B.G.; Chattoo, B.B. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl. Microbiol. Biotechnol. 2016, 100, 323–335. [Google Scholar] [CrossRef]
- Liu, J.; Peng, C.; Han, Q.; Wang, M.; Zhou, G.; Ye, B.; Xiao, Y.; Fang, Z.; Kuees, U. Coprinopsis cinerea uses laccase Lcc9 as a defense strategy to eliminate oxidative stress during fungal-fungal interactions. Appl. Environ. Microbiol. 2022, 88, e0176021. [Google Scholar] [CrossRef]
- Castro, A.; Lemos, C.; Falcao, A.; Glass, N.L.; Videira, A. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death. J. Biol. Chem. 2008, 283, 19314–19321. [Google Scholar] [CrossRef] [PubMed]
- Videira, A.; Kasuga, T.; Tian, C.; Lemos, C.; Castro, A.; Glass, N.L. Transcriptional analysis of the response of Neurospora crassa to phytosphingosine reveals links to mitochondrial function. Microbiology 2009, 155, 3134–3141. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ren, Q.; Zhang, Z. Cleavage of Mcd1 by caspase-like protease Esp1 promotes apoptosis in budding yeast. Mol. Biol. Cell 2008, 19, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Cho, U.H.; Hetzer, M.W. Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress. eLife 2023, 12, RP89066. [Google Scholar] [CrossRef] [PubMed]
- Duprez, L.; Wirawan, E.; Vanden Berghe, T.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect. 2009, 11, 1050–1062. [Google Scholar] [CrossRef]
- Minina, E.A.; Coll, N.S.; Tuominen, H.; Bozhkov, P.V. Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ. 2017, 24, 1314–1325. [Google Scholar] [CrossRef]
- Escamez, S.; Andre, D.; Zhang, B.; Bollhoner, B.; Pesquet, E.; Tuominen, H. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation. Biol. Open 2016, 5, 122–129. [Google Scholar] [CrossRef]
- Minina, E.A.; Filonova, L.H.; Fukada, K.; Savenkov, E.I.; Gogvadze, V.; Clapham, D.; Sanchez-Vera, V.; Suarez, M.F.; Zhivotovsky, B.; Daniel, G.; et al. Autophagy and metacaspase determine the mode of cell death in plants. J. Cell Biol. 2013, 203, 917–927. [Google Scholar] [CrossRef]
- Fernandez, J.; Lopez, V.; Kinch, L.; Pfeifer, M.A.; Gray, H.; Garcia, N.; Grishin, N.V.; Khang, C.-H.; Orth, K. Role of two metacaspases in development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Mbio 2021, 12, e03471-20. [Google Scholar] [CrossRef]
- Bugeda, A.; Garrigues, S.; Gandia, M.; Manzanares, P.; Marcos, J.F.; Coca, M. The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum. Msphere 2020, 5, e00595-20. [Google Scholar] [CrossRef]
- Hutchison, E.A.; Bueche, J.A.; Glass, N.L. Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa. Genetics 2012, 192, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Hamann, A.; Brust, D.; Osiewacz, H.D. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol. Microbiol. 2007, 65, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Richie, D.L.; Miley, M.D.; Bhabhra, R.; Robson, G.D.; Rhodes, J.C.; Askew, D.S. The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol. Microbiol. 2007, 63, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, K.; Nakagawa, D.; Nakamura, M.; Okamoto, T.; Tsurugi, K. Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett. 2005, 579, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Agus, H.H.; Sarp, C.; Cemiloglu, M. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicol. Res. 2018, 7, 848–858. [Google Scholar] [CrossRef]
- Lim, H.-W.; Kim, S.-J.; Park, E.-H.; Lim, C.-J. Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can. J. Microbiol. 2007, 53, 1016–1023. [Google Scholar] [CrossRef]
- Uren, A.G.; O’Rourke, K.; Aravind, L.A.; Pisabarro, M.T.; Seshagiri, S.; Koonin, E.V.; Dixit, V.M. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 2000, 6, 961–967. [Google Scholar] [CrossRef]
- Watanabe, N.; Lam, E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J. Biol. Chem. 2005, 280, 14691–14699. [Google Scholar] [CrossRef]
- McLuskey, K.; Mottram, J.C. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem. J. 2015, 466, 219–232. [Google Scholar] [CrossRef]
- Tsiatsiani, L.; Van Breusegem, F.; Gallois, P.; Zavialov, A.; Lam, E.; Bozhkov, P.V. Metacaspases. Cell Death Differ. 2011, 18, 1279–1288. [Google Scholar] [CrossRef]
- Coll, N.S.; Vercammen, D.; Smidler, A.; Clover, C.; Van Breusegem, F.; Dangl, J.L.; Epple, P. Arabidopsis type I metacaspases control cell death. Science 2010, 330, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.S.; Chock, P.B.; Stadtman, E.R. Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2005, 102, 17326–17331. [Google Scholar] [CrossRef]
- Madeo, F.; Herker, E.; Wissing, S.; Jungwirth, H.; Eisenberg, T.; Frohlich, K.-U. Apoptosis in yeast. Curr. Opin. Microbiol. 2004, 7, 655–660. [Google Scholar] [CrossRef]
- Madeo, F.; Herker, E.; Maldener, C.; Wissing, S.; Lachelt, S.; Herlan, M.; Fehr, M.; Lauber, K.; Sigrist, S.J.; Wesselborg, S.; et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 2002, 9, 911–917. [Google Scholar] [CrossRef]
- Weinberger, M.; Ramachandran, L.; Feng, L.; Sharma, K.; Sun, X.; Marchetti, M.; Huberman, J.A.; Burhans, W.C. Apoptosis in budding yeast caused by defects in initiation of DNA replication. J. Cell Sci. 2005, 118, 3543–3553. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.M.; Hao, X.; Liu, B.; Nystrom, T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 2014, 344, 1389–1392. [Google Scholar] [CrossRef]
- Hill, S.M.; Nystrom, T. The dual role of a yeast metacaspase: What doesn’t kill you makes you stronger. Bioessays 2015, 37, 525–531. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, C.; Jiang, S.; Wang, Q.; Kuerban, K.; Luo, M.; Dong, M.; Zhou, X.; Wu, L.; Jiang, B.; et al. S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum. Biosci. Rep. 2019, 39, BSR20190167. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, E.; Brown, S.; Tian, C.; Glass, N.L. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death. Microbiology 2009, 155, 3957–3970. [Google Scholar] [CrossRef]
- Fedorova, N.D.; Badger, J.H.; Robson, G.D.; Wortman, J.R.; Nierman, W.C. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genom. 2005, 6, 177. [Google Scholar] [CrossRef]
- Shlezinger, N.; Irmer, H.; Dhingra, S.; Beattie, S.R.; Cramer, R.A.; Braus, G.H.; Sharon, A.; Hohl, T.M. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 2017, 357, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Guirao-Abad, J.P.; Weichert, M.; Askew, D.S. Cell death induction in Aspergillus fumigatus: Accentuating drug toxicity through inhibition of the unfolded protein response (UPR). Curr. Res. Microb. Sci. 2022, 3, 100119. [Google Scholar] [CrossRef]
- Roisin-Bouffay, C.; Luciani, M.-F.; Klein, G.; Levraud, J.-P.; Adam, M.; Golstein, P. Developmental cell death in dictyostelium does not require paracaspase. J. Biol. Chem. 2004, 279, 11489–11494. [Google Scholar] [CrossRef]
- Kumar, S.; Fairmichael, C.; Longley, D.B.; Turkington, R.C. The multiple roles of the IAP super-family in cancer. Pharmacol. Ther. 2020, 214, 107610. [Google Scholar] [CrossRef]
- Uren, A.G.; Beilharz, T.; O’Connell, M.J.; Bugg, S.J.; van Driel, R.; Vaux, D.L.; Lithgow, T. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc. Natl. Acad. Sci. USA 1999, 96, 10170–10175. [Google Scholar] [CrossRef] [PubMed]
- Uren, A.G.; Coulson, E.J.; Vaux, D.L. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem. Sci. 1998, 23, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Larisch, S. Killing by degradation: Regulation of apoptosis by the ubiquitin-proteasome-system. Cells 2021, 10, 3465. [Google Scholar] [CrossRef]
- Lalaoui, N.; Vaux, D.L. Recent advances in understanding inhibitor of apoptosis proteins. F1000Research 2018, 7, 1889. [Google Scholar] [CrossRef]
- Hrdinka, M.; Yabal, M. Inhibitor of apoptosis proteins in human health and disease. Genes Immun. 2019, 20, 641–650. [Google Scholar] [CrossRef]
- Gao, T.; Magnano, S.; Rynne, A.; O’Kane, L.; Barroeta, P.H.; Zisterer, D.M. Targeting inhibitor of apoptosis proteins (IAPs) enhances susceptibility of oral squamous carcinoma cells to cisplatin. Exp. Cell Res. 2024, 437, 113995. [Google Scholar] [CrossRef]
- Manavalan, J.S.; Pal, I.; Pursley, A.; Ward, G.A.; Smyth, T.; Sims, M.; Taylor, J.A.; Feith, D.J.; Loughran, T.P.; O’Connor, O.A.; et al. Tolinapant, a non-peptidomimetic antagonist of inhibitors of apoptosis proteins, cIAP1/2 and XIAP, in combination with the hypomethylating agents, azacytidine and decitabine are highly synergistic in in vitro models of T cell Lymphoma. Blood 2022, 140, 11552–11553. [Google Scholar] [CrossRef]
- Dumetier, B.; Zadoroznyj, A.; Dubrez, L. IAP-mediated protein ubiquitination in regulating cell signaling. Cells 2020, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Webster, J.D.; Dugger, D.L.; Goncharov, T.; Roose-Girma, M.; Hung, J.; Kwon, Y.C.; Vucic, D.; Newton, K.; Dixit, V.M. Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Rep. 2019, 27, 2679–2689.e3. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; Kim, S.H.; Kim, J. CaBir1 functions as an inhibitor-of-apoptosis and affects caspase-like activitiy in Candida albicans. Fungal Genet. Biol. 2021, 154, 103600. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y.; Peng, M.; Chen, W.; Xia, H.; Zhao, J.; Zhang, Y.; Fan, Z.; Xing, X.; Li, H. Analysis of apoptosis-related genes reveals that apoptosis functions in conidiation and pathogenesis of Fusarium pseudograminearum. Msphere 2021, 6, e01140-20. [Google Scholar] [CrossRef]
- Dremel, S.E.; DeLuca, N.A. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. Elife 2019, 8, e51109. [Google Scholar] [CrossRef]
- Gibeault, R.L.; Conn, K.L.; Bildersheim, M.D.; Schang, L.M. An essential viral transcription activator modulates chromatin dynamics. PLoS Pathog. 2016, 12, e1005842. [Google Scholar] [CrossRef] [PubMed]
- Walter, D.; Wissing, S.; Madeo, F.; Fahrenkrog, B. The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J. Cell Sci. 2006, 119, 1843–1851. [Google Scholar] [CrossRef]
- Gao, K.; Xiong, Q.; Xu, J.; Wang, K.; Wang, K. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet. Biol. 2013, 51, 60–71. [Google Scholar] [CrossRef]
- Shlezinger, N.; Minz, A.; Gur, Y.; Hatam, I.; Dagdas, Y.F.; Talbot, N.J.; Sharon, A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog. 2011, 7, e1002185. [Google Scholar] [CrossRef]
- Yoon, H.J.; Carbon, J. Participation of Bir1p, a member of the inhibitor of apoptosis family, in yeast chromosome segregation events. Proc. Natl. Acad. Sci. USA 1999, 96, 13208–13213. [Google Scholar] [CrossRef] [PubMed]
- Cong, H.; Xu, L.; Wu, Y.; Qu, Z.; Bian, T.; Zhang, W.; Xing, C.; Zhuang, C. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: Current status and perspectives. J. Med. Chem. 2019, 62, 5750–5772. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Teixeira, F.; Konstantinides, N.; Desplan, C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. Febs Lett. 2016, 590, 2435–2453. [Google Scholar] [CrossRef] [PubMed]
- Finkelshtein, A.; Shlezinger, N.; Bunis, O.; Sharon, A. Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation. Fungal Genet. Biol. 2011, 48, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkrog, B.; Sauder, U.; Aebi, U. The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J. Cell Sci. 2004, 117, 115–126. [Google Scholar] [CrossRef]
- Wani, M.Y.; Alghamidi, M.S.S.; Srivastava, V.; Ahmad, A.; Aqlan, F.M.; Al-Bogami, A.S. Click synthesis of pyrrolidine-based 1,2,3-triazole derivatives as antifungal agents causing cell cycle arrest and apoptosis in Candida auris. Bioorganic Chem. 2023, 136, 106562. [Google Scholar] [CrossRef]
- Trompier, D.; Chang, X.-B.; Barattin, R.; du Moulinet D’Hardemare, A.; Di Pietro, A.; Baubichon-Cortay, H. Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Res. 2004, 64, 4950–4956. [Google Scholar] [CrossRef]
- Nassimi, Z.; Taheri, P.; Tarighi, S. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA. Mycologia 2019, 111, 359–370. [Google Scholar] [CrossRef]
- Nargund, A.M.; Avery, S.V.; Houghton, J.E. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis 2008, 13, 811–821. [Google Scholar] [CrossRef]
- Bettiga, M.; Calzari, L.; Orlandi, I.; Alberghina, L.; Vai, M. Involvement of the yeast metacaspase Yca1 in ubp10Δ-programmed cell death. FEMS Yeast Res. 2004, 5, 141–147. [Google Scholar] [CrossRef]
- Strobel, I.; Osiewacz, H.D. Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserina. Eukaryot. Cell 2013, 12, 900–912. [Google Scholar] [CrossRef]
- Branco, P.; Francisco, D.; Chambon, C.; Hebraud, M.; Arneborg, N.; Almeida, M.G.; Caldeira, J.; Albergaria, H. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl. Microbiol. Biotechnol. 2014, 98, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Copeland, C.; Woloshen, V.; Huang, Y.; Li, X. AtCDC48A is involved in the turnover of an NLR immune receptor. Plant J. 2016, 88, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Leger, T.; Garcia, C.; Ounissi, M.; Lelandais, G.; Camadro, J.-M. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol. Cell. Proteom. 2015, 14, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Kurschner, C.; Morgan, J.I. Modulation of cell death in yeast by the Bcl-2 family of proteins. J. Biol. Chem. 1997, 272, 15547–15552. [Google Scholar] [CrossRef] [PubMed]
- Jurgensmeier, J.M.; Krajewski, S.; Armstrong, R.C.; Wilson, G.M.; Oltersdorf, T.; Fritz, L.C.; Reed, J.C.; Ottilie, S. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 1997, 8, 325–339. [Google Scholar] [CrossRef] [PubMed]
- De Smet, K.; Eberhardt, I.; Reekmans, R.; Contreras, R. Bax-induced cell death in Candida albicans. Yeast 2004, 21, 1325–1334. [Google Scholar] [CrossRef]
- Amador-Garcia, A.; Zapico, I.; Borrajo, A.; Malmstrom, J.; Monteoliva, L.; Gil, C. Extending the proteomic characterization of Candida albicans exposed to stress and apoptotic inducers through data-independent acquisition mass spectrometry. Msystems 2021, 6, e0094621. [Google Scholar] [CrossRef]
Fungi | Metacaspase/Paracaspase | Reference |
---|---|---|
Magnaporthe oryzae | MoMca1, MoMca2 | [60] |
Penicillium digitatum | CasA, CasB | [61] |
Ustilago maydis | Mca1 | [26] |
Neurospora crassa | IME-2 | [62] |
Podospora anserina | PaMCA1, PaMCA2 | [25,63] |
Aspergillus fumigatus | CasA, CasB | [64] |
Saccharomyces cerevisiae | Mca1/YCA1, Esp1 (caspase-1 like protease) | [54,65] |
Schizosaccharomyces pombe | PCA1 | [66,67] |
Fungi | IAP | Gene Knockout or Knockdown | Gene Overexpression | Reference |
---|---|---|---|---|
Fusarium pseudograminearum | FpBIR1 |
| [96] | |
Saccharomyces pombe | BIR1 |
| [95] | |
Cryphonectria parasitica | CpBIR1 |
|
| [96] |
Magnaporthe oryzae | MoBIR1 |
|
| [2,94] |
Aspergillus fumigatus | AfBIR1 |
|
| [82] |
Botrytis cinerea | BcBIR1 |
|
| [100,101] |
Saccharomyces cerevisiae | BIR1 |
|
| [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Du, C. Fungal Apoptosis-Related Proteins. Microorganisms 2024, 12, 2289. https://doi.org/10.3390/microorganisms12112289
Li L, Du C. Fungal Apoptosis-Related Proteins. Microorganisms. 2024; 12(11):2289. https://doi.org/10.3390/microorganisms12112289
Chicago/Turabian StyleLi, Longjie, and Chunmei Du. 2024. "Fungal Apoptosis-Related Proteins" Microorganisms 12, no. 11: 2289. https://doi.org/10.3390/microorganisms12112289
APA StyleLi, L., & Du, C. (2024). Fungal Apoptosis-Related Proteins. Microorganisms, 12(11), 2289. https://doi.org/10.3390/microorganisms12112289