In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extracts
2.2. Extraction of Phytophenols
2.3. Measurement of Total Phenolic Contents
2.4. Bacterial Strains
2.5. Preparation of Bacterial Inoculums
2.6. Broth Macro-Dilution Method
2.7. Broth Micro-Dilution Method
2.8. Statistical Analysis
3. Results
3.1. Total Phenolic Content
3.2. Broth Macro-Dilution Method
3.2.1. Grape Seed Phenolic Extract
3.2.2. Green Tea Phenolic Extract
3.2.3. Rosemary Phenolic Extract
3.3. Broth Micro-Dilution Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amachawadi, R.G.; Nagaraja, T.G. Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle. J. Anim. Sci. 2016, 94, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Batista, L.F.; Holland, B.P. Liver Abnormalities in Cattle. Effect of Liver Abscessation on Growth and Productivity of Cattle. Vet. Clin. Food Anim. 2022, 38, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, C.D.; Hubbert, M.E. Review: Control of liver abscesses in feedlot cattle. Prof. Anim. Sci. 2015, 31, 101–108. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Nagaraja, T.G. First report of anaerobic isolation of Salmonella enterica from liver abscesses of feedlot cattle. J. Clin. Microbiol. 2015, 53, 3100–3101. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Annual Report 2022. Advancing Public Health Through Therapeutic Individualization. Available online: https://www.fda.gov/media/155771/download (accessed on 15 July 2024).
- Davedow, T.; Narvaez-Bravo, C.; Zaheer, R.; Sanderson, H.; Rodas-Gonzalez, A.; Klima, C.; Booker, C.W.; Hannon, S.J.; Bras, A.L.; Gow, S.; et al. Investigation of a Reduction in Tylosin on the Prevalence of Liver Abscesses and Antimicrobial Resistance in Enterococci in Feedlot Cattle. Front. Vet. Sci. 2020, 7, 90. [Google Scholar] [CrossRef]
- Brown, T.R.; Lawrence, T.E. Association of liver abnormalities with carcass grading performance and value. J. Anim. Sci. 2010, 88, 4037–4043. [Google Scholar] [CrossRef]
- Galyean, M.; Hales, K. Non-Antimicrobial Methods to Control Liver Abscesses. Vet. Clin. Food Anim. 2022, 38, 395–404. [Google Scholar] [CrossRef]
- Pereira, I.C.; Costa, C.F.; Martins, C.L.; Pereira, M.C.S.; Squizatti, M.M.; Owens, F.N.; Cruz, G.D.; Millen, D.D.; Arrigoni, M.D.B. Voluntary daily fluctuation in dry matter intake is associated to feedlot performance, feeding behavior and rumen morphometrics in beef cattle. Livest. Sci. 2021, 250, 104565. [Google Scholar] [CrossRef]
- He, Z.X.; He, M.L.; Walker, N.D.; McAllister, T.A.; Yang, W.Z. Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers’ grains with soluble: Ruminal fermentation, digestibility, and growth performance of feedlot steers. J. Anim. Sci. 2014, 92, 3978–3987. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- López, N.A.; Salazar, J.A.G.; Santos, E.M.; Campagnol, P.C.B.; Teixeira, A.; Lorenzo, J.M.; Morales, M.E.S.; Domínguez, R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022, 11, 2613. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.I.; Negut, I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics 2024, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, L.; Prusova, B.; Cebova, M.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Nedomova, S.; Baron, M.; Sochor, J. Health Effects of Grape Seed and Skin Extracts and Their Influence on Biochemical Markers. Molecules 2020, 25, 5311. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2016, 174, 1244–1262. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Shahzad, T.; Malik, A.; Ajmal Shah, M.; Iqbal, S.; Rauf, A.; Zengin, G.; Bouyahya, A.; et al. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S. Afr. J. Bot. 2022, 151, 3–18. [Google Scholar] [CrossRef]
- Bouammali, B.; Zraibi, L.; Ziani, I.; Merzouki, M.; Bourassi, L.; Fraj, E.; Challioui, A.; Azzaoui, K.; Sabbahi, R.; Hammouti, B.; et al. Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study. Plants 2024, 13, 89. [Google Scholar] [CrossRef]
- Olivas-Méndez, P.; Chávez-Martínez, A.; Santellano-Estrada, E.; Asorey, L.G.; Sánchez-Vega, R.; Rentería-Monterrubio, A.L.; Chávez-Flores, D.; Tirado-Gallegos, J.M.; Méndez-Zamora, G. Antioxidant and Antimicrobial Activity of Rosemary (Rosmarinus officinalis) and Garlic (Allium sativum) Essential Oils and Chipotle Pepper Oleoresin (Capsicum annum) on Beef Hamburgers. Foods 2022, 11, 2018. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Nagaraja, T.G. Pathogenesis of Liver Abscesses in Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 335–346. [Google Scholar] [CrossRef]
- Callaway, T.R.; Lillehoj, H.; Chuanchuen, R.; Gay, C.G. Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics 2021, 10, 471. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Tian, W.; Li, Y. Phenolic acid composition an antioxidant activity of hard red winter wheat varieties. Food Biochem. 2018, 42, e12682. [Google Scholar] [CrossRef]
- Tian, W.; Chen, G.; Zhang, G.; Wang, D.; Tilley, M.; Li, Y. Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Food Chem. 2021, 344, 128633. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Purvis, T.J.; Lubbers, B.V.; Homm, J.W.; Maxwell, C.L.; Nagaraja, T.G. Bacterial flora of liver abscesses in crossbred beef cattle and Holstein steers fed finishing diets with or without tylosin. J. Anim. Sci. 2017, 95, 3425–3434. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standard for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; CLSI Supplement VET01S: Wayne, PA, USA, 2023. [Google Scholar]
- Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Chavada, J.; Muneshwar, K.N.; Ghulaxe, Y.; Wani, M.; Sarda, P.P.; Huse, S. Antibiotic Resistance: Challenges and Strategies in Combating Infections. Cureus 2023, 15, e46013. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, S. Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian J. Med. Res. 2022, 156, 464–477. [Google Scholar] [CrossRef]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Miyakawa, M.E.F.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Rio, D.D.; Mateos, A.R.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly) phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Krasteva, D.; Ivanov, Y.; Chengolova, Z.; Godjevargova, T. Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms 2023, 11, 395. [Google Scholar] [CrossRef]
- Kara, Z.; Baykan, M.; Dogan, M.; Ege, D. Effectiveness of Grape (Vitis vinifera L.) Seed Extracts on Fungi and Bacteria Management. Selcuk J. Agric. Food 2018, 32, 366–372. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal microbiota–host interaction and its effect on nutrient metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Zokti, J.A.; Baharin, B.S.; Mohammed, A.S.; Abas, F. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study. Molecules 2016, 21, 940. [Google Scholar] [CrossRef]
- Labbé, D.; Tetu, B.; Trudel, D.; Bazinet, L. Catechin stability of EGC- and EGCG-enriched tea drinks produced by a two-step extraction procedure. Food Chem. 2008, 111, 139–143. [Google Scholar] [CrossRef]
- Bazinet, L.; Desai, K.G.H.; Park, H.J. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2007, 23, 1361–1394. [Google Scholar] [CrossRef]
- Hameed, I.H.; Ibraheam, I.A.; Kadhim, H.J. Gas chromatography mass spectrum and fouriertransform infrared spectroscopy analysis of methanolic extract of Rosmarinus oficinalis leaves. J. Pharmacogn. Phytother. 2015, 7, 90–106. [Google Scholar] [CrossRef]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef]
- Fung, D.Y.C.; Tayler, S.; Khan, J. Effects of butylated hydroxyanisole (BHA) and buyulated hydroxytoluene (BHT) on growth and aflatoxin production of Aspergillus flavus. Food Saf. 1977, 1, 39–51. [Google Scholar] [CrossRef]
- Bouloumpasi, E.; Hatzikamari, M.; Christaki, S.; Lazaridou, A.; Chatzopou, P.; Biliaderis, C.G.; Irakli, M. Assessment of Antioxidant and Antibacterial Potential of Phenolic Extracts from Post-Distillation Solid Residues of Oregano, Rosemary, Sage, Lemon Balm, and Spearmint. Processes 2024, 12, 140. [Google Scholar] [CrossRef]
- Manilal, A.; Sabu, K.R.; Woldemariam, M.; Aklilu, A.; Biresaw, G.; Yohanes, T.; Seid, M.; Merdekios, B. Antibacterial Activity of Rosmarinus officinalis against Multidrug-Resistant Clinical Isolates and Meat-Borne Pathogens. Evid. Based Complement. Altern. Med. 2021, 14, 17–26. [Google Scholar] [CrossRef]
Bacteria | Phenolic Extracts | Concentration Tested (mg/mL) | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Replication | Strain | Growth Condition | Strain * Growth Condition (2-Way Interaction) | Time | Strain * Time (2-Way Interaction) | Growth Condition * Time (2-Way Interaction) | Strain * Growth Condition * Time (3-Way Interaction) | |||
Fusobacterium necrophorum subsp. necrophorum | Grape seed | 1 | - | 0.9928 | 0.0003 | 0.9992 | <0.0001 | 0.8995 | <0.0001 | 0.9909 |
Fusobacterium necrophorum subsp. funduliforme | Grape seed | 1 | - | 0.9143 | 0.0023 | 0.8008 | <0.0001 | 0.3004 | <0.0001 | 0.5370 |
Fusobacterium necrophorum subsp. necrophorum | Grape seed | 2 | 0.0201 | 0.9754 | 0.0022 | 0.6221 | <0.0001 | 0.1228 | <0.0001 | 0.6699 |
Fusobacterium necrophorum subsp. funduliforme | Grape seed | 2 | 0.0176 | 0.6959 | 0.0051 | 0.5194 | <0.0001 | 0.4498 | <0.0001 | 0.4845 |
Fusobacterium necrophorum subsp. necrophorum | Green tea | 0.1 | - | 0.1063 | <0.0001 | 0.0169 | <0.0001 | 0.0009 | <0.0001 | 0.0001 |
Fusobacterium necrophorum subsp. funduliforme | Green tea | 0.1 | - | 0.0042 | <0.0001 | 0.0024 | <0.0001 | <.0001 | <0.0001 | <0.0001 |
Fusobacterium necrophorum subsp. necrophorum | Green tea | 1 | 0.9151 | 0.8256 | 0.0374 | 0.9311 | <0.0001 | 0.0162 | <0.0001 | 0.1001 |
Fusobacterium necrophorum subsp. funduliforme | Green tea | 1 | 0.5745 | 0.6105 | 0.0309 | 0.7263 | <0.0001 | 0.6430 | <0.0001 | 0.4465 |
Salmonella enterica serotype Lubbock | Green tea | 1 | - | 0.0089 | <0.0001 | 0.3375 | <0.0001 | 0.4992 | <0.0001 | 0.1494 |
Salmonella enterica serotype Lubbock | Green tea | 2 | - | 0.2230 | <0.0001 | 0.6609 | <0.0001 | 0.9963 | <0.0001 | 0.9998 |
Fusobacterium necrophorum subsp. necrophorum | Rosemary | 1 | - | 0.4324 | <0.0001 | 0.5407 | <0.0001 | 0.0997 | <0.0001 | 0.0002 |
Fusobacterium necrophorum subsp. funduliforme | Rosemary | 1 | - | 0.2968 | <0.0001 | 0.1652 | <0.0001 | 0.0982 | <0.0001 | 0.1070 |
Salmonella enterica serotype Lubbock | Rosemary | 1 | - | 0.9990 | 0.0001 | 1.0000 | <0.0001 | 1.0000 | <0.0001 | 1.0000 |
Fusobacterium necrophorum subsp. necrophorum | Rosemary | 2 | - | 0.0143 | <0.0001 | 0.0551 | <0.0001 | 0.3012 | <0.0001 | 0.0092 |
Fusobacterium necrophorum subsp. funduliforme | Rosemary | 2 | - | 0.0082 | <0.0001 | 0.0014 | <0.0001 | 0.0268 | <0.0001 | 0.0110 |
Alpha = 0.05 |
Bacteria | Phenolic Extracts | Concentration (mg/mL) | p-values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Replication | Strain | Growth Condition | Strain * Growth Condition (2-Way Interaction) | Time | Strain * Time (2-Way Interaction) | Growth Condition * Time (2-Way Interaction) | Strain * Growth Condition * Time (3-Way Interaction) | |||
Fusobacterium necrophorum subsp. necrophorum | Grape seed | 1 | - | 0.3603 | <0.0001 | 0.2315 | 0.4216 | 0.3093 | 0.1574 | 0.4378 |
Fusobacterium necrophorum subsp. funduliforme | Grape seed | 1 | - | 0.0131 | <0.0001 | 0.0109 | <0.0001 | 0.0002 | <0.0001 | 0.0002 |
Fusobacterium necrophorum subsp. necrophorum | Green tea | 1 | 0.4278 | 0.8984 | 0.0004 | 0.8158 | 0.7739 | 0.5887 | 0.8503 | 0.9274 |
Fusobacterium necrophorum subsp. necrophorum | Rosemary | 1 | - | 0.5622 | <0.0001 | 0.3149 | 0.1592 | 0.9817 | 0.2339 | 0.9812 |
Fusobacterium necrophorum subsp. funduliforme | Rosemary | 1 | - | 0.3531 | <0.0001 | 0.5415 | 0.0021 | 0.1215 | 0.0063 | 0.1021 |
Alpha = 0.05 |
Bacteria | Phenolic Extracts | Concentration Tested (mg/mL) | Bacterial Concentration (Log Values) | ||||
---|---|---|---|---|---|---|---|
Time | Growth Condition | LSM | SEM | * | |||
Fusobacterium necrophorum subsp. necrophorum | Grape seed | 1 | 24 h | Bacteria control | 9.62 | 0.21 | A |
DMSO + Bacteria | 9.72 | 0.21 | A | ||||
Phenolic extract + Bacteria | 4.78 | 0.15 | B | ||||
48 h | Bacteria control | 9.50 | 0.21 | A | |||
DMSO + Bacteria | 9.57 | 0.21 | A | ||||
Phenolic extract + Bacteria | 4.90 | 0.15 | B | ||||
Fusobacterium necrophorum subsp. funduliforme | Grape seed | 1 | 24 h | Bacteria control | 9.91 | 0.13 | A |
DMSO + Bacteria | 9.11 | 0.13 | B | ||||
Phenolic extract + Bacteria | 4.61 | 0.09 | C | ||||
48 h | Bacteria control | 9.97 | 0.13 | A | |||
DMSO + Bacteria | 5.82 | 0.13 | B | ||||
Phenolic extract + Bacteria | 4.99 | 0.09 | C | ||||
Fusobacterium necrophorum subsp. necrophorum | Green tea | 1 | 24 h | Bacteria control | 8.12 | 0.68 | A |
DMSO + Bacteria | 9.15 | 0.64 | A | ||||
Phenolic extract + Bacteria | 1.23 | 0.22 | B | ||||
48 h | Bacteria control | 7.22 | 0.68 | A | |||
DMSO + Bacteria | 9.10 | 0.64 | A | ||||
Phenolic extract + Bacteria | 1.75 | 0.22 | B | ||||
Fusobacterium necrophorum subsp. necrophorum | Rosemary | 1 | 24 h | Bacteria control | 10.72 | 0.43 | A |
DMSO + Bacteria | 7.31 | 0.43 | B | ||||
Phenolic extract + Bacteria | 3.51 | 0.30 | C | ||||
48 h | Bacteria control | 10.87 | 0.43 | A | |||
DMSO + Bacteria | 7.37 | 0.43 | B | ||||
Phenolic extract + Bacteria | 4.60 | 0.30 | C | ||||
Fusobacterium necrophorum subsp. funduliforme | Rosemary | 1 | 24 h | Bacteria control | 10.40 | 0.38 | A |
DMSO + Bacteria | 8.59 | 0.38 | B | ||||
Phenolic extract + Bacteria | 2.81 | 0.27 | C | ||||
48 h | Bacteria control | 8.75 | 0.38 | A | |||
DMSO + Bacteria | 8.27 | 0.38 | A | ||||
Phenolic extract + Bacteria | 2.70 | 0.27 | B | ||||
Alpha = 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, H.M.; Amachawadi, R.G.; Kang, Q.; Li, Y.; Nagaraja, T.G. In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle. Microorganisms 2024, 12, 2291. https://doi.org/10.3390/microorganisms12112291
Salih HM, Amachawadi RG, Kang Q, Li Y, Nagaraja TG. In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle. Microorganisms. 2024; 12(11):2291. https://doi.org/10.3390/microorganisms12112291
Chicago/Turabian StyleSalih, Harith M., Raghavendra G. Amachawadi, Qing Kang, Yonghui Li, and Tiruvoor G. Nagaraja. 2024. "In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle" Microorganisms 12, no. 11: 2291. https://doi.org/10.3390/microorganisms12112291
APA StyleSalih, H. M., Amachawadi, R. G., Kang, Q., Li, Y., & Nagaraja, T. G. (2024). In-Vitro Antimicrobial Activities of Grape Seed, Green Tea, and Rosemary Phenolic Extracts Against Liver Abscess Causing Bacterial Pathogens in Cattle. Microorganisms, 12(11), 2291. https://doi.org/10.3390/microorganisms12112291