Randomized Clinical Trials Demonstrate the Safety Assessment of Alkalihalobacillus clausii AO1125 for Use as a Probiotic in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Isolation of Strain
2.2. Bacterial Characterization
2.3. Culture Conditions of Bacterial Strain
2.4. Phenotypic Characterization of the Organism
2.5. Genotypic Characterization of the Organism
2.5.1. Hybrid Sequencing
2.5.2. Assembly and Annotation
2.6. Genotypic Identification of the Organism
2.6.1. Screening the Annotated Genome for Probiotic-Associated Genes
2.6.2. Antimicrobial Resistance Genes
2.6.3. Bacteriocin Gene Clusters
2.6.4. Virulence Factor Genes
2.6.5. Biogenetic Amine-Producing Genes
2.7. Hemolytic Activity
2.8. Cytotoxicity in Vero Cells
2.9. Human Safety Assessment
2.9.1. Study Design
2.9.2. Safety Assessment
2.10. Sample Collection, Processing, and Data Management
2.11. Clinical Determinations
2.12. Occurrence of Adverse Events Determination
2.13. Statistical Analyses
3. Results
3.1. Genome Characteristics
3.2. Species and Strain Identification
3.3. Putative Probiotic Traits
3.4. Antimicrobial Susceptibility Profile
3.5. Antimicrobial Resistance Genes
3.6. Biogenic Amines: Candidates of Amino Acid Decarboxylases
3.7. Virulence Factors
3.8. Hemolytic Activity and Cytotoxicity
3.9. Clinical and Hematological Determinations
3.10. Adverse Effect Determination
3.11. Health Questionnaire Analysis
4. Discussion
4.1. Probiotic Characteristics of A. clausii AO1125
4.2. Antimicrobial Resistance Genes in A. clausii AO1125
4.3. Virulence Genes of A. clausii AO1125
4.4. Hemolysis and Cytotoxicity of A. clausii AO1125
4.5. Clinical Study
4.6. Probiotic Viability Through the Digestive Tract
4.7. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, P.; Fritze, D.; Priest, F.G. Phenetic diversity of alkaliphilic Bacillus strains: Proposal for nine new species. Microbiology 1995, 141, 1745–1761. [Google Scholar] [CrossRef]
- Joshi, A.; Thite, S.; Karodi, P.; Joseph, N.; Lodha, T. Alkalihalobacterium elongatum gen. nov. sp. nov.: An antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus into seven novel genera. Front. Microbiol. 2021, 12, 722369. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar] [PubMed]
- Pirozzi, C.; Opallo, N.; Coretti, L.; Lama, A.; Annunziata, C.; Comella, F.; Melini, S.; Buommino, E.; Mollica, M.; Aviello, G. Alkalihalobacillus clausii (formerly Bacillus clausii) spores lessen antibiotic-induced intestinal injury and reshape gut microbiota composition in mice. Biomed. Pharmacother. 2023, 163, 114860. [Google Scholar] [CrossRef]
- Munson, E.; Carella, A.; Carroll, K.C. Valid and accepted novel bacterial taxa derived from human clinical specimens and taxonomic revisions published in 2022. J. Clin. Microbiol. 2023, 61, e00838-23. [Google Scholar] [CrossRef]
- Soares, M.B.; Almada, C.N.; Pereira, E.P.; Ferreira, B.M.; Balthazar, C.F.; Khorshidian, N.; Rocha, R.S.; Xavier-Santos, D.; Cruz, A.G.; Ranadheera, C.S. Sporeforming probiotic bacteria: Characteristics, health benefits, and technological aspects for their applications in foods and beverages. Trends Food Sci. Technol. 2023, 138, 453–469. [Google Scholar] [CrossRef]
- Werdi, C.M.; Al-Hadidy, Y.I. (Eds.) Effectiveness of Bacillus clausii and Bacillus megaterium on some Physiological and Biochemical Parameters in Rats That Induced Diarrhea. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023. [Google Scholar]
- Sadrimovahed, M.; Ulusoy, B.H. Bacillus clausii: A Review into Story of Its Probiotic Success and Potential Food Applications. Fermentation 2024, 10, 522. [Google Scholar] [CrossRef]
- Ghelardi, E.; Abreu y Abreu, A.T.; Marzet, C.B.; Álvarez Calatayud, G.; Perez, M., III; Moschione Castro, A.P. Current progress and future perspectives on the use of Bacillus clausii. Microorganisms 2022, 10, 1246. [Google Scholar] [CrossRef]
- Golnari, M.; Bahrami, N.; Milanian, Z.; Rabbani Khorasgani, M.; Asadollahi, M.A.; Shafiei, R.; Fatemi, S.S.-A. Isolation and characterization of novel Bacillus strains with superior probiotic potential: Comparative analysis and safety evaluation. Sci. Rep. 2024, 14, 1457. [Google Scholar] [CrossRef]
- Chelliah, R.; Kim, N.H.; Rubab, M.; Yeon, S.-J.; Barathikannan, K.; Vijayalakshmi, S.; Hirad, A.H.; Oh, D.-H. Robust and Safe: Unveiling Bacillus clausii OHRC1’s Potential as a Versatile Probiotic for Enhanced Food Quality and Safety. LWT 2024, 203, 116291. [Google Scholar] [CrossRef]
- Rea, K.; Colom, J.; Simon, E.; Khokhlova, E.; Mazhar, S.; Barrena, M.; Enrique, M.; Martorell, P.; Perez, B.A.; Tortajada, M. Evaluation of Bacillus clausii CSI08, Bacillus megaterium MIT411 and a Bacillus cocktail on gastrointestinal health: A randomised, double-blind, placebo-controlled pilot study. Benef. Microbes 2023, 14, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Guleria, J.; Khan, M.A. Mechanistic Insight into the Role of Peptides Secreted from Bacillus clausii and Future Opportunities. Curr. Rev. Clin. Exp. Pharmacol. Former. Curr. Clin. Pharmacol. 2024, 19, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.-H.; Holzapfel, W.H.; Todorov, S.D. Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens. Crit. Rev. Microbiol. 2023, 49, 578–597. [Google Scholar] [CrossRef] [PubMed]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Dixit, Y.; Kanojiya, K.; Bhingardeve, N.; Ahire, J.J.; Saroj, D. Identification and characterisation of antimicrobial compound produced by probiotic Alkalihalobacillus clausii 088AE. Braz. J. Microbiol. 2023, 54, 1737–1743. [Google Scholar] [CrossRef]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef]
- Eldeib, S.; Banur, D.; Damodaran, J.; Tahoun, A.; Chaudhary, W. Analysis of Different Probiotic Strains from Emerg-ing Concept to Application and Antimicrobial and Immunomodulatory Activity of Bacillus clausii Strain in Gastrointestinal Disorders in Children. Int. J. Clin. Stud. Med. Case Rep. 2024, 39, 5. [Google Scholar]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Vázquez-Frias, R.; Consuelo-Sánchez, A.; Acosta-Rodríguez-Bueno, C.P.; Blanco-Montero, A.; Robles, D.C.; Cohen, V.; Márquez, D.; Perez, M., 3rd. Efficacy and Safety of the Adjuvant Use of Probiotic Bacillus clausii Strains in Pediatric Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study. Paediatr. Drugs 2023, 25, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Dhakephalkar, T.; Pisu, V.; Margale, P.; Chandras, S.; Shetty, D.; Wagh, S.; Dagar, S.S.; Kapse, N.; Dhakephalkar, P.K. Strain-Dependent Adhesion Variations of Shouchella clausii Isolated from Healthy Human Volunteers: A Study on Cell Surface Properties and Potential Probiotic Benefits. Microorganisms 2024, 12, 1771. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ha, S.-M.; Kim, C.K.; Roh, J.; Byun, J.-H.; Yang, S.-J.; Choi, S.-B.; Chun, J.; Yong, D. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann. Lab. Med. 2019, 39, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Oulebsir-Mohandkaci, H.; Benzina-Tihar, F.; Hadjouti, R. Exploring biofertilizer potential of plant growth-promoting rhizobacteria Bacillus clausii strain B8 (MT305787) on Brassica napus and Medicago sativa. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12484. [Google Scholar] [CrossRef]
- García-Ruiz, A.; de Llano, D.G.; Esteban-Fernández, A.; Requena, T.; Bartolomé, B.; Moreno-Arribas, M.V. Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol. 2014, 44, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Charteris, K.; Morelli, C. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 1998, 84, 759–768. [Google Scholar] [CrossRef]
- Gilliland, S.; Staley, T.; Bush, L. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 1984, 67, 3045–3051. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 2021, 7, 000685. [Google Scholar] [PubMed]
- Allen, B.; Drake, M.; Harris, N.; Sullivan, T. Using KBase to assemble and annotate prokaryotic genomes. Curr. Protoc. Microbiol. 2017, 46, 1E. 13.11–11E. 13.18. [Google Scholar] [CrossRef] [PubMed]
- Na, S.-I.; Kim, Y.O.; Yoon, S.-H.; Ha, S.-m.; Baek, I.; Chun, J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018, 56, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Zheng, J.; Ge, Q.; Yan, Y.; Zhang, X.; Huang, L.; Yin, Y. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 2023, 51, W115–W121. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Carattoli, A.; Hasman, H. PlasmidFinder and in silico pMLST: Identification and typing of plasmid replicons in whole-genome sequencing (WGS). In Horizontal Gene Transfer: Methods and Protocols; Humana: New York, NY, USA, 2020; pp. 285–294. [Google Scholar]
- Kapse, N.; Engineer, A.; Gowdaman, V.; Wagh, S.; Dhakephalkar, P.K. Genome profiling for health promoting and disease preventing traits unraveled probiotic potential of Bacillus clausii B106. Microbiol. Biotechnol. Lett. 2018, 46, 334–345. [Google Scholar] [CrossRef]
- Saroj, D.B.; Gupta, A.K. Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application. Int. J. Food. Microbiol. 2020, 318, 108523. [Google Scholar] [CrossRef] [PubMed]
- Saroj, D.B.; Ahire, J.J.; Shukla, R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- Feddern, V.; Mazzuco, H.; Fonseca, F.; De Lima, G. A review on biogenic amines in food and feed: Toxicological aspects, impact on health and control measures. Anim. Prod. Sci. 2019, 59, 608–618. [Google Scholar] [CrossRef]
- Omer, A.K.; Mohammed, R.R.; Ameen, P.S.M.; Abas, Z.A.; Ekici, K. Presence of biogenic amines in food and their public health implications: A review. J. Food Prot. 2021, 84, 1539–1548. [Google Scholar] [CrossRef]
- Lefevre, M.; Racedo, S.M.; Denayrolles, M.; Ripert, G.; Desfougères, T.; Lobach, A.R.; Simon, R.; Pélerin, F.; Jüsten, P.; Urdaci, M.C. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul. Toxicol. Pharmacol. 2017, 83, 54–65. [Google Scholar] [CrossRef]
- Soto, C.; Bergado, G.; Blanco, R.; Griñán, T.; Rodríguez, H.; Ros, U.; Pazos, F.; Lanio, M.E.; Hernández, A.M.; Álvarez, C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018, 148, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Dunn, L. The declaration of Helsinki on medical research involving human subjects: A review of seventh revision. J. Nepal Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Pollard, P.; Richardson, J. On the probability of making Type I errors. Psychol. Bull. 1987, 102, 159. [Google Scholar] [CrossRef]
- Banerjee, A.; Chitnis, U.; Jadhav, S.; Bhawalkar, J.; Chaudhury, S. Hypothesis testing, type I and type II errors. Ind. Psychiatry J. 2009, 18, 127–131. [Google Scholar] [CrossRef]
- Christiansen, T.; Lauritsen, J. EpiData-Comprehensive Data Management and Basic Statistical Analysis System; EpiData Association: Odense, Denmark, 2010. [Google Scholar]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 2012, 10, 28–55. [Google Scholar] [CrossRef]
- Lowe, G.; Stike, R.; Pollack, M.; Bosley, J.; O’Brien, P.; Hake, A.; Landis, G.; Billings, N.; Gordon, P.; Manzella, S. Nursing blood specimen collection techniques and hemolysis rates in an emergency department: Analysis of venipuncture versus intravenous catheter collection techniques. J. Emerg. Nurs. 2008, 34, 26–32. [Google Scholar] [CrossRef]
- Wager, K.A.; Lee, F.W.; Glaser, J.P. Health Care Information Systems: A Practical Approach for Health Care Management; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Washington, I.M.; Van Hoosier, G. Clinical biochemistry and hematology. In The laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Elsevier: Amsterdam, The Netherlands, 2012; pp. 57–116. [Google Scholar]
- Menéndez, G.G.; Soto, J.; Barreto, J.; Gutiérez, Á.; Soto, C.; Pérez, A.B.; Peña, Y.; de Jesus Cano, R. Randomized Clinical Trial Demonstrate the Safety Assessment of Dietzia natronolimnaea C79793-74 for Use as a Probiotic in Humans. J. Probiotics Health 2023, 11, 336. [Google Scholar]
- Surface Modifications of Upconverting. W-b068 manual technologist time required for integrated clincial chemistry/immunoassay preventive maintenance. Clin. Chem. Lab. Med. (CCLM) 2009, 47, S1–S409. [Google Scholar]
- Vincent, C. Understanding and responding to adverse events. N. Engl. J. Med. 2003, 348, 1051–1056. [Google Scholar] [CrossRef]
- Thomas, V.; Clark, J.; Dore, J. Fecal microbiota analysis: An overview of sample collection methods and sequencing strategies. Futur. Microbiol. 2015, 10, 1485–1504. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Bauer, A.t. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Rohlf, F. Biometry the Principles and Practice of Statistics in Biological Research, 2nd ed.; W.H. Freeman and Company: New York, NY, USA, 1981. [Google Scholar]
- Khokhlova, E.; Colom, J.; Simon, A.; Mazhar, S.; García-Lainez, G.; Llopis, S.; Gonzalez, N.; Enrique-López, M.; Álvarez, B.; Martorell, P. Immunomodulatory and antioxidant properties of a novel potential probiotic Bacillus clausii CSI08. Microorganisms 2023, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.T.; Tran, D.M.; Phung, T.T.B.; Bui, A.T.P.; Vu, Y.H.; Luong, M.T.; Nguyen, H.M.; Trinh, H.T.; Nguyen, T.T.; Nguyen, A.H. Promising clinical and immunological efficacy of Bacillus clausii spore probiotics for supportive treatment of persistent diarrhea in children. Sci. Rep. 2024, 14, 6422. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rodríguez-Bueno, C.P.; Abreu y Abreu, A.T.; Guarner, F.; Guno, M.J.V.; Pehlivanoğlu, E.; Perez III, M. Bacillus clausii for gastrointestinal disorders: A narrative literature review. Adv. Ther. 2022, 39, 4854–4874. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef]
- Ahire, J.; Kashikar, M.; Madempudi, R. Comparative accounts of probiotic properties of spore and vegetative cells of Bacillus clausii UBBC07 and in silico analysis of probiotic function. 3 Biotech 2021, 11, 116. [Google Scholar] [CrossRef]
- Mojgani, N.; Hussaini, F.; Vaseji, N. Characterization of indigenous Lactobacillus strains for probiotic properties. Jundishapur J. Microbiol. 2015, 8, e17523. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Gueye, S.; Lupetti, A.; Senesi, S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J. Appl. Microbiol. 2015, 119, 552–559. [Google Scholar] [CrossRef]
- Bozdogan, B.l.; Galopin, S.; Leclercq, R. Characterization of a new erm-related macrolide resistance gene present in probiotic strains of Bacillus clausii. Appl. Environ. Microbiol. 2004, 70, 280–284. [Google Scholar] [CrossRef]
- Lakshmi, S.G.; Jayanthi, N.; Saravanan, M.; Ratna, M.S. Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol. Rep. 2017, 4, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.H.; Planellas, M.H.; Long, K.S.; Vester, B. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob. Agents Chemother. 2012, 56, 3563–3567. [Google Scholar] [CrossRef] [PubMed]
- Nüse, B.; Holland, T.; Rauh, M.; Gerlach, R.G.; Mattner, J. L-arginine metabolism as pivotal interface of mutual host–microbe interactions in the gut. Gut Microbes 2023, 15, 2222961. [Google Scholar] [CrossRef] [PubMed]
- Shivani, T.M.; Sathiavelu, M. Probiotic evaluation, adherence capability and safety assessment of Lactococcus lactis strain isolated from an important herb “Murraya koenigii”. Sci. Rep. 2024, 14, 15565. [Google Scholar] [CrossRef] [PubMed]
- Cruz Neto, J.P.R.; de Oliveira, A.M.; de Oliveira, K.Á.R.; Sampaio, K.B.; da Veiga Dutra, M.L.; de Luna Freire, M.O.; de Souza, E.L.; de Brito Alves, J.L. Safety evaluation of a novel potentially probiotic Limosilactobacillus fermentum in rats. Probiotics Antimicrob. Proteins 2024, 16, 752–762. [Google Scholar] [CrossRef]
- Fochesato, A.S.; Martínez, M.; Escobar, F.; García, G.; Dogi, C.A.; Cavaglieri, L.R. Cytotoxicity in Vero cells and cytokines analyses in Balb/c mice as safety assessments of the probiotic mixture Saccharomyces cerevisiae RC016 and Lactobacillus rhamnosus RC007 for use as a feed additive. Lett. Appl. Microbiol. 2020, 71, 400–404. [Google Scholar] [CrossRef]
- Haranahalli Nataraj, B.; Behare, P.V.; Yadav, H.; Srivastava, A.K. Emerging pre-clinical safety assessments for potential probiotic strains: A review. Crit. Rev. Food Sci. Nutr. 2023, 64, 8155–8183. [Google Scholar] [CrossRef]
- Mazhar, S.; Simon, A.; Khokhlova, E.; Colom, J.; Leeuwendaal, N.; Deaton, J.; Rea, K. In vitro safety and functional characterization of the novel Bacillus coagulans strain CGI314. Front. Microbiol. 2024, 14, 1302480. [Google Scholar] [CrossRef]
- Celandroni, F.; Vecchione, A.; Cara, A.; Mazzantini, D.; Lupetti, A.; Ghelardi, E.J.P.o. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS ONE 2019, 14, e0217021. [Google Scholar] [CrossRef]
- Enciso-Huerta, H.A.; Ruiz-Cabrera, M.A.; Lopez-Martinez, L.A.; Gonzalez-Garcia, R.; Martinez-Gutierrez, F.; Saavedra-Leos, M.Z.J.P. Evaluation of Two Active System Encapsulant Matrices with Quercetin and Bacillus clausii for Functional Foods. Polymers 2022, 14, 5225. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Whetstone, J.M.; Patterson, A.M.; Mosier, E.M.; Cabarkapa, D.V.; Fry, A.C. Relationship between Health-Related Physical Fitness Parameters and Functional Movement Screening Scores Acquired from a Three-Dimensional Markerless Motion Capture System. Int. J. Environ. Res Public Health 2022, 19, 4551. [Google Scholar] [CrossRef] [PubMed]
- Wong-Chew, R.M.; de Castro, J.A.A.; Morelli, L.; Perez, M., III; Ozen, M. Gut immune homeostasis: The immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev. Clin. Immunol. 2022, 18, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, K.R.; Singh, R.; Apte, M.; Patil, M.; Taksande, A.; Varona, R.; Chatterjee, G.; Verma, M.; Brette, S.; Perez, M.J.T.d., III. Efficacy and safety of Bacillus clausii (O/C, N/R, SIN, T) probiotic combined with oral rehydration therapy (ORT) and zinc in acute diarrhea in children: A randomized, double-blind, placebo-controlled study in India. Trop. Dis. Travel Med. Vaccines 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.; Zhong, F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863–2878. [Google Scholar] [CrossRef]
- Xu, C.; Guo, J.; Chang, B.; Zhang, Y.; Tan, Z.; Tian, Z.; Duan, X.; Ma, J.; Jiang, Z.; Hou, J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J. Control. Release 2024, 375, 20–46. [Google Scholar] [CrossRef]
- Wang, A.; Zhong, Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13287. [Google Scholar] [CrossRef]
- Yuan, Y.; Yin, M.; Zhai, Q.; Chen, M. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation. Crit. Rev. Food Sci. Nutr. 2024, 64, 2794–2810. [Google Scholar] [CrossRef]
- Semenov, G.V.; Krasnova, I.S.; Mujumdar, A.S.; Zhang, M. Experimental study of preservation of probiotic lactic acid bacteria in freeze-dried yogurts. Dry. Technol. 2024, 21, 1–10. [Google Scholar] [CrossRef]
- Sogut, I.; Kar, F.; Tanrikulu-Kucuk, S.; Gozden, T.T.; Asena Can, S.; Kandil, A. The Comparative Effects of Inulin and Bacillus clausii on LPS-Induced Endotoxemic Rat Liver. J. Investig. Surg. 2022, 35, 1322–1328. [Google Scholar] [CrossRef]
- Pariza, M.W.; Gillies, K.O.; Kraak-Ripple, S.F.; Leyer, G.; Smith, A.B. Determining the safety of microbial cultures for consumption by humans and animals. Regul. Toxicol. Pharmacol. 2015, 73, 164–171. [Google Scholar] [CrossRef]
Demographic Variables | A. clausii AO1125 Cohort (n = 50) | Placebo Cohort (n = 49) | p Value | |||
---|---|---|---|---|---|---|
Number | % | Number | % | |||
Sex | Female | 29 | 58 | 31 | 63.3 | 0.896 a |
Male | 21 | 42 | 18 | 36.7 | ||
Age (years) Median ± SD | 50.06 ± 12.87 | 44.43 ± 14.74 | 0.185 b | |||
BMI Median ± SD | 24.01 ± 3.65 | 23.63 ± 4.17 | 0.44 b |
Enzyme | Result * | Enzyme | Result * |
---|---|---|---|
Control | − | Acid phosphatase | + |
Alkaline phosphatase | + | Naphthol-AS-BI-phosphohydrolase | + |
Esterase (C 4) | + | alpha-Galactosidase | − |
Esterase Lipase (C 8) | + | beta-Galactosidase | + |
Lipase (C 14) | − | beta-Glucuronidase | − |
Leucine arylamidase | − | alpha-Glucosidase | + |
Valine arylamidase | − | beta-Glucosidase | + |
Cystine arylamidase | − | N-acetyl-beta-glucosaminidase | − |
Trypsin | − | alpha-Mannosidase | − |
alpha-Chymotrypsin | − | alpha-Fucosidase | − |
Gene | Encoded Protein |
---|---|
Acid tolerance | |
atpA | ATP synthase subunit alpha |
atpB | ATP synthase subunit beta |
ldh1 | L-lactate dehydrogenase 1 |
ldhD | D-lactate dehydrogenase |
pgi | Glucose-6-phosphate isomerase |
groL | 60 kDa chaperonin |
cspAB | Cold shock protein |
teaD | TRAP-T-associated universal stress protein |
ald | Alanine dehydrogenase |
gabD | Succinate-semialdehyde dehydrogenase |
fdhD | Formate dehydrogenase |
pgi | Glucose-6-phosphate isomerase |
atpF | ATP synthase subunit B |
arcD1 | Arginine/ornithine antiporter ArcD1 |
iPGM | bisphosphoglycerate-independent phosphoglycerate mutase |
argF | Ornithine carbamoyltransferase |
gpmI | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase |
argR | Arginine repressor |
Adhesion and aggregation | |
eno | Enolase |
mntH | Manganese transferase/Divalent metal cation transporter |
ywgD | Tyrosine-protein kinase |
tpiA | Triosephosphate isomerase |
cpsA | Capsular polysaccharide synthesis protein A |
tuf | Elongation factor Tu |
spaCBA | Pilin |
Antioxidant defense | |
trxA | Thioredoxin |
katE | Catalase |
hemE | Ferrochelatase |
gsiB | Glutathione-binding protein GsiB |
sodA | Superoxide dismutase |
Detoxification | |
arsC | Arsenate reductase |
bshA | Bile salt hydrolase |
cadA | Cadmium-transporting ATPase |
hsp18 | 18 kDa heat shock protein |
Bile tolerance | |
nagB | Glucosamine-6-phosphate deaminase |
pyrG | CTP (cytidine triphosphate synthetase) synthase |
nagB | Glucosamine-6-phosphate deaminase |
bshB | Bile salt hydrolase |
Biofilm formation/Adhesion/Chemotaxis | |
luxS | Lyase |
cheA | Chemotaxis protein CheA |
srtA | Sortase |
hag | Flagellin |
motB | Motility protein |
gtfA | Glycosyltransferase |
Carbohydrate metabolism | |
galT | UDP-glucose--hexose-1-phosphate uridylyl transferase |
nagA | Glucosamine-6-phosphate deaminase |
bgaB | Beta-galactosidase |
araC | Arabinose operon regulatory protein |
xylA | Xylose isomerase |
galE | UDP-glucose 4-epimerase |
Carbohydrate metabolism | |
dapA | Dihydropicolinate synthase |
ftsZ | Cell division protein FtsZ |
ddlA | D-alanine ligase A |
sigE | RNA polymerase sigma-E factor |
murA | DP-N-acetylmuramoyl-L-alanine—D-glutamate ligase |
Immune modulation | |
hemA | Glutamyl-tRNA reductase |
groEL | Chaperonin GroEL |
magl | Monoacylglycerol lipase |
Hag | Flagellin |
trpAB | Tryptophan synthase |
Metabolism and Nutrition | |
amyA | Alpha-amylase |
ldh | L-lactate dehydrogenase |
lacA | Beta-galactosidase |
glnA | Glutamine synthetase |
trpAB | Tryptophan synthase |
hemL | Glutamate-1-semialdehyde aminotransferase |
methH | Methionine synthase |
phoB | Phosphate regulon protein |
pstS | Phosphate-binding protein |
lacZ | Beta-galactosidase |
narG | Nitrate reductase |
fepA | Ferrienterobactin receptor |
purA | Adenylosuccinate synthetase |
SCFA (acetate) production | |
ackA | Acetate kinase |
fabZ | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase |
fabG-1 | 3-oxoacyl-[acyl-carrier-protein] reductase |
fabF | 3-oxoacyl-[acyl-carrier-protein] synthase 2 |
Stress tolerance/Response | |
phoPR | Two-component response regulator |
treA | Trehalase |
clpL/yhaX | Stress response protein |
msrABC | Methionine sulfoxide reductase |
acoA/yceM | Oxidoreductase |
yvbW/yhdG | Amino acid permease |
dnaK | Chaperone protein DnaK |
GrpE | Heat shock protein GrpE |
uvrB | UvrABC system protein B |
msrB | 3-oxoacyl-[acyl-carrier-protein] synthase 2 |
fosB | Metallothiol transferase FosB |
copA | Copper-exporting P-type ATPase |
emrY | Multidrug resistance protein |
phoP/Q | Two-component regulatory system |
Vitamin biosynthesis | |
fadD_1 | Long-chain-fatty-acid--CoA ligase |
hpt | Hypoxanthine-guanine phosphoribosyltransferase |
dfrA | Dihydrofolate reductase |
thyA2 | Thymidylate synthase |
serA | D-3-phosphoglycerate dehydrogenase |
dagK | Diacylglycerol kinase |
Bacteriocins | |
gdmA | Lantibiotic gallidermin |
nisBC | Nisin biosynthesis protein |
LanKC | Lanthionine synthetase LanKC |
LanC | Lantobiotic biosynthesis protein |
S. aureus ATCC 29213 | A. clausii A01125 | |||
---|---|---|---|---|
Diameter (mm) 1 | Interpretation | Diameter (mm) | Interpretation | |
Ampicillin | 41.8 | S 2 | 20.4 | R 4 |
Chloramphenicol | 24.5 | S | 32.4 | S |
Clindamycin | 29 | S | 6.9 | R |
Erythromycin | 28.4 | S | 6.9 | R |
Gentamicin | 24,2 | S | 29.1 | S |
Kanamycin | 24 | S | 28.1 | S |
Streptomycin | 17.1 | NA 3 | 20.2 | NA |
Tetracycline | 31.9 | S | 21.9 | S |
Vancomycin | 18.7 | NA | 22.9 | NA |
RGI Criterium | ARO Term | AMR Gene Family | Drug Class | Resistance Mechanism | % Identity Matching Region |
---|---|---|---|---|---|
Perfect | Erm(34) | Erm 23S ribosomal RNA methyltransferase | Macrolide antibiotic, lincosamide antibiotic, streptogramin antibiotic, streptogramin A antibiotic, streptogramin B antibiotic | Antibiotic target alteration | 100 |
Strict | vanT gene in vanG cluster | glycopeptide resistance gene cluster, vanT | Glycopeptide antibiotic | Antibiotic target alteration | 34.32 |
Strict | vanY gene in vanM cluster | vanY, glycopeptide resistance gene cluster | Glycopeptide antibiotic | Antibiotic target alteration | 40.67 |
Strict | ANT(4′)-Ib | ANT(4′) | Aminoglycoside antibiotic | Antibiotic inactivation | 94.14 |
Strict | BcIII | class A Bacillus cereus Bc beta-lactamase | Cephalosporin, penem | Antibiotic inactivation | 60.33 |
Strict | tetB(P) | tetracycline-resistant ribosomal protection protein | Tetracycline antibiotic | Antibiotic target protection | 38.39 |
Strict | vanW gene in vanI cluster | vanW, glycopeptide resistance gene cluster | Glycopeptide antibiotic | Antibiotic target alteration | 38.43 |
Strict | vanG | glycopeptide resistance gene cluster, Van ligase | Glycopeptide antibiotic | Antibiotic target alteration | 40.17 |
Strict | clbC | Cfr 23S ribosomal RNA methyltransferase | Lincosamide antibiotic, streptogramin antibiotic, streptogramin A antibiotic, oxazolidinone antibiotic, phenicol antibiotic, pleuromutilin antibiotic | Antibiotic target alteration | 97.14 |
VF Factor | VF Gene Name | VF Category | % Identity | Query Cover |
---|---|---|---|---|
VFG048830 | gnd | Immune Modulation; Antiphagocytosis | 66.41 | 100.0 |
VFG001855 | htpB | Adherence; Non-fimbrial adhesin; Cell wall anchored protein | 66.35 | 100.0 |
VFG002182 | cpsI | Immune Modulation; Antiphagocytosis | 66.13 | 98.92 |
VFG000079 | clpC | Stress survival | 69.58 | 95.36 |
VFG000077 | clpP | Stress survival | 74.07 | 95.24 |
VFG013286 | galE | Immune Modulation; Inflammatory signaling pathway | 63.99 | 81.91 |
VFG002158 | lplA1 | Nutritional/Metabolic factor | 64.95 | 76.94 |
VFG002190 | cpsA | Immune Modulation; | 65.24 | 75.71 |
VFG000077 | clpP | Stress survival | 64.39 | 69.59 |
VFG001867 | sodB | Stress survival | 65.9 | 55.01 |
VFG037100 | msrA/B(pilB | Stress survival | 68.7 | 54.48 |
VFG001300 | cap8D | Immune Modulation | 66.91 | 52.33 |
Clinical Chemistry and Hematology | Normal Range | A. clausii Cohort n = 50 | Placebo Cohort n = 49 | p Value | |||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Day 60 | Baseline | Day 60 | p1 | p2 | p3 | p4 | ||
Creatinine | 47.6–113.4 µmol/L | 82.92 ± 16.73 | 76.35 ± 15.57 | 73.10 ± 21.59 | 76.167 ± 17.84 | NS | NS | <0.01 | NS |
Urea | <8.3 mmol/L | 4.51 ± 1.34 | 4.43 ± 1.27 | 4.02 ± 1.16 | 4.47 ± 1.12 | NS | NS | 0.016 | 0.012 |
ALAT | <45 U/L | 14.28 ± 7.67 | 16.54 ± 9.37 | 19.44 ± 9.45 | 16.26 ± 6.71 | NS | NS | 0.02 | 0.002 |
ASAT | 40 U/L | 18.33 ± 5.06 | 21.31 ± 5.91 | 18.13 ± 4.78 | 13.35 ± 5.01 | NS | NS | <0.01 | <0.01 |
GGT | <50 U/L | 15.74 ± 9.02 | 16.71 ± 8.01 | 22.57 ± 16.62 | 24.80 ± 20.21 | 0.02 | 0.03 | NS | 0.026 |
Total Protein | 60–80 g/L | 70.54 ± 3.87 | 70.35 ± 8.54 | 70.59 ± 6.22 | 70.77 ± 4.00 | <0.01 | NS | NS | NS |
Albumin | 35–52 g/L | 44.07 ± 2.51 | 40.12 ± 5.26 | 44.78 ± 3.38 | 44.65 ± 2.89 | 0.008 | NS | NS | NS |
Glycemia | 4.2–6.1 µmol/L | 4.83 ± 0.54 | 4.43 ± 0.49 | 4.74 ± 0.55 | 4.69 ± 0.46 | NS | NS | <0.01 | NS |
Cholesterol | 2.81–5.2 mmol/L | 4.48 ± 0.95 | 4.51 ± 0.89 | 4.95 ± 1.24 | 4.49 ± 1.11 | 0.042 | NS | NS | <0.01 |
Triglycerides | 0.46–1.8 mmol/L | 1.32 ± 0.81 | 1.22 ± 0.83 | 1.29 ±0.87 | 1.33 ± 0.69 | NS | NS | NS | NS |
Total bilirubin | <17 mmol/L | 9.09 ± 4.04 | 8.82 ± 4.04 | 9.32 ± 5.33 | 7.62 ± 4.49 | NS | NS | NS | 0.002 |
Direct bilirubin | <5.1 mmol/L | 2.89 ± 1.08 | 2.85 ± 1.44 | 4.03 ± 4.59 | 2.95 ± 1.24 | 0.01 | NS | NS | 0.001 |
WBC | (4.5–11) × 109/µL | 5.93 ± 1.62 | 5.85 ± 1.63 | 6.26 ± 1.62 | 6.52 ± 1.96 | NS | NS | NS | NS |
RBC | (F = 4.2–5.4/M = 4.7–6.1) cells/ µL | 4.50 ± 0.43 | 4.59 ± 0.49 | 4.51 ± 0.40 | 4.56 ± 0.39 | NS | NS | NS | NS |
HBG | (F = 12.3–15.3/M = 14.0–17.5) g/dL | 135.28 ± 13.60 | 138.08 ± 15.80 | 131.53 ± 15.45 | 132.51 ± 13.71 | NS | NS | NS | NS |
HTC | (F = 36–45/M = 42–50) % | 0.42 ± 0.04 | 0.42 ± 0.04 | 0.40 ± 0.04 | 0.42 ± 0.03 | NS | NS | NS | 0.001 |
MVC | 80–96.1% | 92.46 ± 4.34 | 90.75 ± 12.13 | 90.79 ± 6.15 | 92.30 ± 5.53 | NS | NS | NS | <0.01 |
MCH | 33.4–35.5 g/dL | 29.5 ± 1.53 | 29.3 ± 2.91 | 29.15± 2.36 | 29.02 ± 2.13 | 0.03 | NS | NS | NS |
PLT | (172–450) × 103/mL | 233.14 ± 51.6 | 236.41 ± 62.16 | 261.88 ± 52.73 | 259.67± 62.52 | NS | NS | NS | NS |
RDWCV | (11–14) % | 12.78 ± 0.79 | 12.62 ± 1.92 | 12.82 ± 1.90 | 13.12 ± 1.22 | NS | NS | NS | NS |
MPV | (F: 12–16/M: 14–17.4) g/dL | 11.04 ± 1.07 | 11.20 ± 1.16 | 10.34 ± 0.90 | 10.35 ± 0.80 | NS | 0.034 | NS | NS |
Neutrophil | 1.42–6.34 × 109/L | 3.60 ± 1.32 | 3.61 ± 1.27 | 3.36 ± 1.16 | 3.66 ± 1.56 | NS | NS | NS | NS |
lymphocytes | 0.71–4.53 × 109/L | 1.64 ± 0.52 | 1.68 ± 0.48 | 2.12 ± 0.63 | 2.10 ± 0.66 | NS | NS | NS | NS |
Monocytes | 0.14–0.72 × 109/L | 0.48 ± 0.16 | 0.50 ± 0.15 | 0.52 ± 0.13 | 0.52 ± 0.16 | NS | NS | NS | NS |
Eosinophils | 0–0.54 × 109/L | 0.16 ± 0.11 | 0.15 ± 0.14 | 0.20 ± 0.17 | 0.19 ± 0.13 | 0.036 | NS | NS | NS |
Basophils | 0–0.18 × 109/L | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | NS | NS | NS | NS |
Bioimpedance Variables | Baseline | Day 60 | Baseline | Day 60 | p Value | ||||
Weight | 68.49 ± 12.09 | 68.50 ± 12.44 | 66.64 ± 13.72 | 66.43 ± 13.57 | NS | NS | NS | NS | |
BMI | 24.07 ± 3.65 | 24.04 ± 3.86 | 23.63 ± 4.17 | 2.57 ± 4.15 | NS | NS | NS | NS |
Presence of AE | A. clausii Cohort (n = 50) | Placebo Cohort (n = 49) | Total | p Value | ||
---|---|---|---|---|---|---|
No | % | No | % | No (%) | ||
No AE | 37 | 74 | 46 | 93.9 | 83 (83.8) | 0.007 |
AE | 13 | 26 | 3 | 6.1 | 16 (16.16) | |
Total | 50 | 100 | 49 | 100 | 99 (100) |
Adverse Event | A. clausii Cohort (n = 50) | Placebo Cohort (n = 49) | ||||
---|---|---|---|---|---|---|
Mild | Moderate | Severe | Mild | Moderate | Severe | |
Abdominal/GI discomfort | 3 (6.0) | 0 | 0 | 0 | ||
Acne rosacea | 0 | 0 | 0 | 0 | 0 | 0 |
Anxiety Depression | 0 | 0 | 0 | 0 | 0 | 0 |
Joint pain | 0 | 0 | 0 | 0 | 0 | 0 |
Bronchitis | 0 | 0 | 0 | 0 | 0 | 0 |
Excision of birthmarks | 0 | 0 | 0 | 0 | 0 | 0 |
Bruises after a fall | 0 | 0 | 0 | 0 | 0 | 0 |
Carotid stenosis | 0 | 0 | 0 | 0 | 0 | 0 |
Cataract Surgery | 0 | 0 | 0 | 0 | 0 | 0 |
Chondrocalcinosis | 0 | 0 | 0 | 0 | 0 | 0 |
Colonoscopy and fibroscopy | 0 | 0 | 0 | 0 | 0 | 0 |
Cystitis | 0 | 0 | 0 | 0 | 0 | 0 |
Dental pain | 0 | 0 | 0 | 0 | 0 | 0 |
Diarrhea | 1 (2.0) | 0 | 0 | 2 (2.0) | 0 | 0 |
Dizziness and nausea | 0 | 0 | 0 | 0 | 0 | 0 |
Edema | 0 | 0 | 0 | 0 | 1 (1.0) | 0 |
Gases | 10 (20.0) | 0 | 0 | 0 | 0 | 0 |
General aches | 0 | 0 | 0 | 0 | 0 | 0 |
Genital herpes | 0 | 0 | 0 | 0 | 0 | 0 |
Headache | 1 (2.0) | 0 | 0 | 0 | 0 | 0 |
Hemorrhoids | 0 | 0 | 0 | 0 | 0 | 0 |
Infection | 0 | 0 | 0 | 0 | 0 | 0 |
Inflamed prostate | 0 | 0 | 0 | 0 | 0 | 0 |
Migraine | 0 | 0 | 0 | 0 | 0 | 0 |
Mouth ulcer | 0 | 0 | 0 | 0 | 0 | 0 |
Muscle discomfort | 0 | 0 | 0 | 0 | 0 | 0 |
Nasal obstruction | 0 | 0 | 0 | 0 | 0 | 0 |
Orthopedic pain | 0 | 0 | 0 | 0 | 0 | 0 |
Pain following capsule consumption | 0 | 0 | 0 | 0 | 0 | 0 |
Palpitations | 0 | 0 | 0 | 0 | 0 | 0 |
Radio-infiltration (shoulder) | 0 | 0 | 0 | 0 | 0 | 0 |
Rhinitis | 0 | 0 | 0 | 0 | 0 | 0 |
Sore throat | 0 | 0 | 0 | 0 | 0 | 0 |
Tracheitis | 0 | 0 | 0 | 0 | 0 | 0 |
Trouble sleeping (insomnia) | 0 | 0 | 0 | 0 | 0 | 0 |
Vaginal dryness | 0 | 0 | 0 | 0 | 0 | 0 |
Vagal seizures during or after taking a blood sample. | 0 | 0 | 0 | 0 | 0 | 0 |
Vitamin D deficiency | 0 | 0 | 0 | 0 | 0 | 0 |
Others (constipation) | 3 (6.0) | 0 | 0 | 0 | 0 | 0 |
Question | Answer Associated | Placebo (n = 49) | Cases (n = 50) | Kappa Test/p Value | |
---|---|---|---|---|---|
Before/After | Before/After | Placebo | Cases | ||
1-General, would you say your health is: | Excellent | 5/6 | 4/6 | 0.94/0.000 | 0.73/0.000 |
Very Good | 20/20 | 15/18 | |||
Good | 22/21 | 25/23 | |||
Fair | 2/2 | 6/3 | |||
6-During the past 4 weeks, to what extent have your physical health or emotional problems interfered with your normal social activities with family, friends, neighbors, or groups? | Not at all | 15/ 37 | 39/41 | 0.95/0.000 | 0.81/0.000 |
Slightly | 14/11 | 10/9 | |||
Moderately | 18/1 | 1/0 | |||
Quite a bit | 1/0 | 0/0 | |||
Extremely | 1/0 | 0/0 | |||
7-How much bodily pain have you had during the past 4 weeks? | None | 14/18 | 16/16 | 0.82/0.000 | 0.78/0.000 |
Very mild | 14/14 | 10 /16 | |||
Mild | 19/ 15 | 17/13 | |||
Moderate | 1/1 | 6/4 | |||
Severe | 1/1 | 1/ 1 | |||
11a-I seem to get sick a little easier than other people | Definitely true | 0/0 | 2/1 | 0.96/0.000 | 0.86/0.000 |
Mostly true | 3/3 | 1/0 | |||
Don’t know | 3/3 | 4/6 | |||
Mostly False | 10/9 | 6/6 | |||
Definitely False | 33/34 | 37/37 | |||
11b-I am as healthy as anybody I know | Definitely true | 19/19 | 13/14 | 0.97/0.000 | 0.94/0.000 |
Mostly true | 16/15 | 22/ 22 | |||
Don’t know | 7/7 | 10/10 | |||
Mostly False | 4/4 | 4/3 | |||
Definitely False | 3/4 | 1/1 | |||
11c-I expect my health to get worse | Definitely true | 1/1 | 2/2 | 0.96/0.000 | 0.94/0.000 |
Mostly true | 0/0 | 2/1 | |||
Don’t know | 20/19 | 14/13 | |||
Mostly False | 5/5 | 6/7 | |||
Definitely False | 23/24 | 26/27 | |||
11d-My health is excellent | Definitely true | 9/10 | 12/13 | 0.93/0.000 | 0.91/0.000 |
Mostly true | 27/25 | 24/23 | |||
Don’t know | 7/7 | 6/7 | |||
Mostly False | 3/3 | 4/5 | |||
Definitely False | 3/4 | 4/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, G.; Soto, J.; Díaz, A.; Barreto, J.; Soto, C.; Pérez, A.B.; Boffill, S.; Cano, R.D.J. Randomized Clinical Trials Demonstrate the Safety Assessment of Alkalihalobacillus clausii AO1125 for Use as a Probiotic in Humans. Microorganisms 2024, 12, 2299. https://doi.org/10.3390/microorganisms12112299
García G, Soto J, Díaz A, Barreto J, Soto C, Pérez AB, Boffill S, Cano RDJ. Randomized Clinical Trials Demonstrate the Safety Assessment of Alkalihalobacillus clausii AO1125 for Use as a Probiotic in Humans. Microorganisms. 2024; 12(11):2299. https://doi.org/10.3390/microorganisms12112299
Chicago/Turabian StyleGarcía, Gissel, Josanne Soto, Antonio Díaz, Jesús Barreto, Carmen Soto, Ana Beatriz Pérez, Suselys Boffill, and Raúl De Jesús Cano. 2024. "Randomized Clinical Trials Demonstrate the Safety Assessment of Alkalihalobacillus clausii AO1125 for Use as a Probiotic in Humans" Microorganisms 12, no. 11: 2299. https://doi.org/10.3390/microorganisms12112299
APA StyleGarcía, G., Soto, J., Díaz, A., Barreto, J., Soto, C., Pérez, A. B., Boffill, S., & Cano, R. D. J. (2024). Randomized Clinical Trials Demonstrate the Safety Assessment of Alkalihalobacillus clausii AO1125 for Use as a Probiotic in Humans. Microorganisms, 12(11), 2299. https://doi.org/10.3390/microorganisms12112299