Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Subunit Vaccines
3.1.1. Post-Fusion F Vaccines
Study Design | Study Population | Year of Publication | Vaccine | Dose | Data Analyis | Immunogenicity (anti-F igG Response) | Microneutralization Titers | Competition with Palivizumab | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Phase Ia | n = 144 (24 per cohort) | 2016 | RSV sF post-fusion | 80 μg + GLA-SE | 29 days | More than 1000 unit/mL | VSR A | VSR B | More than 100 µg/mL (mean) | [24] |
n = 144 (24 per cohort) | Between 640 and 2560 GMT | |||||||||
Phase Ib | n = 264 | 2017 | RSV sF post-fusion | 120 μg + 1 μg GLA-SE | 29 days | More than 1000 unit/mL (mean) | VSR A | VSR B | Less than 100 µg/mL (mean) | [25] |
Healhy adults aged 60 | Between 1024 and 2048 GMT | |||||||||
Phase Ib | n = 1894 | 2017 | RSF sF post-fusion | 120 μg + 1 μg GLA-SE | 29 days | More than 1000 unit/mL (mean) | VSR A | VSR B | Less than 100 µg/mL (mean) | [26] |
Healthy volunteers aged 60 years and older | Between 1024 and 2048 GMT | |||||||||
Phase I | n = 150 | 2013 | RSV F post-fusion | 60 μg | 30 days | 5652 GMT | VSR A | VSR B | [30] | [27] |
Healthy adults aged 18 to 49 year | 985 GMT | 782 GMT | ||||||||
Phase II | n = 300 | 2015 | RSV F post-fusion | 90 µg + Al | 28 days | 1 dose: 11,109 GMT 2 doses: 9577 GMT | VSR A | VSR B | 1 dose: 275 GMC 2 doses: 252 GMC | [29] |
Women (18–35 years) | 1 dose: 1482 GMT 2 doses: 1226 GMT | 1 dose: 362 GMT 2 doses: 200 GMT | ||||||||
Phase II | n = 761 | 2017 | RSV F post-fusion | 120 μg + 0.2 Al | 28 days | 10,000 GMEU | VSR A | VSR B | Less than 400 GMC | [30] |
Women (18–35 years) | Less than 800 GMT | Between 400 and 800 GMT | ||||||||
Phase I | n = 220 | 2017 | RSV F post-fusion | 90 µg | 28 days | More than 6000 GMEU | VSR A | VSR B | More than 160 GMC | [31] |
Healthy volunteers aged 60 years and older | Increase of more than 1.4 times in GMT parameters compared to baseline levels | Increase of more than 1.3 times in GMT parameters compared to baseline levels | ||||||||
Phase II | n = 50 | 2019 | RSV F post-fusion | 120 µg + 0.4 Al | On the day of delivery in newborns | 7243.6 GMEU | VSR A | VSR B | 182 GMC | [32] |
Healthy pregnant women (18–40 years) | 759.1 GMT | 480.7 GMT | ||||||||
Phase I | n = 288 | 2019 | RSV F post-fusion | 135 µg + Al | 29 days | 13,514 GMT | VSR A | [34] | ||
Non-pregnant women and men aged 18–45 years | More than 1500 GMT |
3.1.2. Pre-Fusion F Vaccines
Study Design | Study Population | Year of Publication | Vaccine | Dose | Data Analyis | Immunogenicity (Anti-F igG Response) | Microneutralization Titers | Competition with Palivizumab | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
Phase I | n = 244 | 2021 | DS-Cav1 pre-fusion | 500 mcg | 28 days | VSR A | VSR B | [37] | ||
Healthy adults aged 18–50 years | 7495 GMT | 9281 GMT | ||||||||
Phase I | n = 128 | 2016 | RSV-PreF pre-fusion | 30 µg + Alum | 30 days | 12/14–85.7% (proportion of subjects with response) | VSR A | VSR B | More than 128 GMC | [39] |
18–44-year-old healthy men | More than 1024 and less than 4096 GMT | More than 1024 and less than 4096 GMT | ||||||||
Phase II | n = 500 (RSV F-020) n = 100 (RSV F-024) | 2018 | RSV-PreF pre-fusion | 60 µg + Al | 30 days | 69,653.9 GMT | VSR A | VSR B | 98.6 GMT/C (geometric mean titer/antibody concentration) | [40] |
Healthy non-pregnant women 18–45 years of age | 1371.5 GMT/C | |||||||||
Phase II | n = 400 | 2019 | RSV-PreF pre-fusion | 120 µg | 30 days | VSR A | VSR B | More than 64 and less than 128 GMC | [41] | |
Healthy non-pregnant women aged 18–45 years | More than 1024 and less than 2048 GMT | More than 1024 and less than 2048 GMT | ||||||||
Phase I/II | n = 502 | 2021 | RSVPreF3 pre-fusion | 120 µg | 31 days | 89,760.38 GMC | VSR A | VSR B | [42] | |
Healthy non-pregnant women 18–45 years of age | 7932.35 GMT | |||||||||
Phase I/II | n = 48 young adults n = 1005 older adults | 2022 | RSVPreF3 pre-fusion | 120 µg + AS01E | 31 days | Almost 100,000 CMG | VSR A | VSR B | [43] | |
Young adults (18–40 years) and older adults (60–80 years) | Around 10,000 GMT | More than 10,000 GMT | ||||||||
Phase I | n = 400 | 2023 | RSVPreF3 pre-fusion | 120 µg + AS01B | 31 days | 85,282.4 GMC | VSR A | VSR B | [44] | |
Japanese adults aged 60–80 years | 5315.0 GMT | 9349.1 GMT | ||||||||
Phase II | n = 213 | 2023 | RSVPreF3 pre-fusion | 120 µg | 31 days | 105,138 GMC | VSR A | VSR B | [47] | |
Healthy pregnant women 18–45 years old | 10,781 GMT | 15,849 GMT | ||||||||
Phase I/II | n = 617 | 2022 | RSVpreF pre-fusion | 240 μg (cohort 18–49 years) | 30 days | VSR A | VSR B | [51] | ||
Adults 18–85 years old (cohort: 18–49 and 65–85 years old) | More than 10,000 and less than 100,000 GMT | More than 10,000 and less than 100,000 GMT | ||||||||
Phase I/II | n = 618 | 2022 | RSVpreF pre-fusion | 240 μg | 1 month | VSR A | VSR B | [52] | ||
Adults 18–85 years old (cohort: 18–49 and 50–85 years old) | More than 10,000 and less than 100,000 GMT | More than 10,000 and less than 100,000 GMT | ||||||||
Phase I/II | n = 317 | 2021 | RSVpreF pre-fusion | 240 μg + CpG/A | 1 month | VSR A | VSR B | [53] | ||
Adults aged 65–85 years | More than 10,000 and less than 100,000 GMT | More than 10,000 and less than 100,000 GMT | ||||||||
Phase IIA | n = 70 | 2022 | RSVpreF pre-fusion | 120 μg | 28 days | VSR A | VSR B | [54] | ||
Healthy adults 18–50 years of age | 8795.7 GMT | 8783.5 GMT | ||||||||
Phase IIb | n = 327 (women) n = 403 (infants) | 2022 | RSVpreF pre-fusion | 120 μg + Al(OH)3 | On the day of delivery in newborns | VSR A | VSR B | [57] | ||
Healthy pregnant women 18–49 years of age and their infants | 18,507 GMT | 20,669 GMT |
3.1.3. Synthetic Virus-like Particle (VLP)
3.1.4. Other RSV Proteins
3.2. Recombinant Vector Vaccines
3.2.1. Viral Vaccine Vectors
3.2.2. Bacterial Vector
3.3. Live Attenuated Virus Vaccines
3.3.1. Medi-559 Vaccine
3.3.2. Medi ΔM2-2 Vaccine
3.3.3. RSVΔG Vaccine
Vaccine | Recipents, No | Shed Vaccine Virus, No (%) *b | Serum RSV Neutralizing Ab Titer *c | Serum Anti-RSV F IgG Ab Titer *e | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Vaccination | RSV Surveillance Season | Vaccination | RSV Surveillance Season | |||||||
Before | After *d | Before | After | Before | After *d | Before | After | |||
RSVcps2 | Vaccine (n = 34) | 29 (77%) | 2.3 (2.3–4.2) | 5.3 (4.1–6.2) | 5.1 (4.0–6.1) | 7.2 (5.6–8.8) | 5.6 (4.6–9.6) | 11.6 (9.6–11.6) | 11.6 (7.6–11.6) | 13.6 (11.6–15.6) |
Placebo (n = 16) | 0 | 2.9 (2.3–4.9) | 2.3 (2.3–5.6) | 2.3 (2.3–5.2) | 6.1 (3.5–8.1) | 7.6 (4.6–10.6) | 5.6 (4.6–11.6) | 5.1 (4.6–11.6) | 11.6 (7.1–14.6) | |
LIDΔM2-2 | Vaccine (n = 20) | 19 (95%) | 2.3 (2.3, 3.4) | 7.3 (6.6, 8.5) | 7.3 (6.7, 9.3) | 5.6 (4.6–7.6) | 11.6 (10.6–13.6) | 11.6 (10.6–13.6) | ||
Placebo (n = 9) | 0 | 2.3 (2.3, 3.9) | 2.3 (2.3, 2.3) | 2.3 (2.3, 6.0) | 9.6 (7.6, 9.6) | 7.6 (5.6, 9.6) | 9.6 (5.6, 11.6) | |||
LID/ΔM2-2/1030s | Vaccine (n = 20) | 15 (85%) | 2.3 (2.3–2.3) | 6.4 (5.7–7.1) | 6.2 (5.6–7.1) | 6.6 (5.6–8.8) | 7.1 (5.9–8.9) | 14.0 (12.7–14.8) | 13.8 (12.7–14.8) | 13.7 (12.6–15.6) |
Placebo (n = 11) | 0 | 2.9 (2.3–2.3) | 2.3 (2.3, 2.3) | 2.3 (2.3–2.3) | 6.2 (5.6–7.9) | 7.2 (5.9–8.8) | 6.7 (4.6–8.9) | 6.8 (5.2–8.9) | 15.2 (14.8–15.6) | |
RSV/ΔNS2/Δ1313/I1314L *a | Vaccine dose 5 (n = 15) | 11 (73%) | 2.9 (1.0) * | 5.2 (1.7) * | 5.2 (1.6) * | 6.9 (2.4) * | 8.0 (2.9) * | 11.5 (2.2) * | ||
Placebo (n = 7) | 0 | 2.8 (0.8) * | 2.7 (0.9) * | 2.7 (0.9) * | 4.9 (2.4) * | 6.1 (2.3) * | 6.2 (2.3) * | |||
Vaccine dose 6 (n = 20) | 18 (90%) | 2.4 (0.6) * | 6.0 (1.9) * | 5.6 (1.5) * | 7.1 (2.9) * | 7.2 (2.3) * | 13.0 (2.4) * | |||
Placebo (n = 10) | 0 | 2.3 (0.0) * | 2.4 (0.4) * | 2.4 (0.4) * | 5.3 (1.7) * | 6.4 (1.6) * | 5.6 (1.4) * | |||
D46/NS2/N/ΔM2-2-HindIII | Vaccine (n = 21) | 20 (95%) | 2.3 (2.3–2.3) | 7.2 (6.1–8.3) | 6.5 (5.2–8.4) | 6.4 (5.8–10.3) | 9.4 (7.3–10.2) | 15.7 (13.9–15.7) | 13.9 (12.5–15.7) | 13.9 (13.0–15.7) |
Placebo (n = 11) | 0 | 2.3 (2.3–2.3) | 2.3 (2.3–2.3) | 2.3 (2.3–2.3) | 2.3 (2.3–6.0) | 8.5 (7.2–10.1) | 8.1 (6.0–9.1) | 7.6 (6.0–8.5) | 8.6 (6.2–15.7) | |
RSV/276 | Vaccine (n = 24) | 22 (92%) | 2.3 (2.3–2.3) | 6.7 (6.0–7.8) | 6.7 (6.1–8.3) | 6.4 (5.8–7.5) | 7.2 (6.1–8.6) | 12.6 (11.3–13.3) | 12.3 (11.3–12.6) | 12.3 (11.5–12.9) |
Placebo (n = 12) | 0 | 2.3 (2.3–2.9) | 2.3 (2.3, 2.3) | 2.3 (2.3–2.3) | 2.3 (2.3–5.8) | 6.8 (5.4–9.5) | 6.4 (4.6–7.9) | 4.6 (4.6–6.5) | 4.6 (4.6–11.9) | |
RSV/6120/ΔNS2/1030s soropositive young chlidren | Vaccine (n = 10) | 2 (20%) | 7.4 (0.7) | 7.1 (1.0) | ND | ND | 12.2 (1.5) | 12.1 (1.5) | ND | ND |
Placebo (n = 5) | 0 | 7.4 (0.6) | 7.2 (0.7) | ND | ND | 13.1 (0.8) | 13.1 (0.8) | ND | ND | |
RSV/6120/ΔNS2/1030s soronegative young chlidren | Vaccine (n = 20) | 20 (100%) | 2.8 (0.9) | 6.5 (1.1) | 6.5 (1.2) | 7.8 (2.7) | 6.4 (2.0) | 10.9 (1.7) | ND | ND |
Placebo (n = 10) | 0 | 2.9 (0.9) | 2.6 (0.6) | 2.6 (0.6) | 5.6 (3.2) | 6.7 (1.6) | 6.0 (2.0) | ND | ND |
3.4. mRNA Vaccine
3.4.1. mRNA-1777 (V171)
3.4.2. mRNA-1345
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children in 2015: A Systematic Review and Modelling Study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Glezen, W.P. Risk of Primary Infection and Reinfection With Respiratory Syncytial Virus. Arch. Pediatr. Adolesc. Med. 1986, 140, 543. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.A.; Blount, R.E.; Savage, R.E. Recovery of Cytopathogenic Agent from Chimpanzees with Goryza. Exp. Biol. Med. 1956, 92, 544–549. [Google Scholar] [CrossRef]
- Adams, J.M. Epidemic Bronchiolitis and Pneumonitis Related to Respiratory Syncytial Virus. JAMA 1961, 176, 1037. [Google Scholar] [CrossRef]
- Afonso, C.L.; Amarasinghe, G.K.; Bányai, K.; Bào, Y.; Basler, C.F.; Bavari, S.; Bejerman, N.; Blasdell, K.R.; Briand, F.-X.; Briese, T.; et al. Taxonomy of the Order Mononegavirales: Update 2016. Arch. Virol. 2016, 161, 2351–2360. [Google Scholar] [CrossRef]
- Borchers, A.T.; Chang, C.; Gershwin, M.E.; Gershwin, L.J. Respiratory Syncytial Virus—A Comprehensive Review. Clin. Rev. Allergy Immunol. 2013, 45, 331–379. [Google Scholar] [CrossRef]
- Jung, H.E.; Kim, T.H.; Lee, H.K. Contribution of Dendritic Cells in Protective Immunity against Respiratory Syncytial Virus Infection. Viruses 2020, 12, 102. [Google Scholar] [CrossRef]
- Ruigrok, R.W.H.; Crépin, T. Nucleoproteins of Negative Strand RNA Viruses; RNA Binding, Oligomerisation and Binding to Polymerase Co-Factor. Viruses 2010, 2, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Oh, D.S.; Jung, H.E.; Chang, J.; Lee, H.K. Plasmacytoid Dendritic Cells Contribute to the Production of IFN-β via TLR7-MyD88-Dependent Pathway and CTL Priming during Respiratory Syncytial Virus Infection. Viruses 2019, 11, 730. [Google Scholar] [CrossRef]
- Vandini, S.; Bottau, P.; Faldella, G.; Lanari, M. Immunological, Viral, Environmental, and Individual Factors Modulating Lung Immune Response to Respiratory Syncytial Virus. BioMed Res. Int. 2015, 2015, 87572. [Google Scholar] [CrossRef]
- Eisenbarth, S.C. Dendritic Cell Subsets in T Cell Programming: Location Dictates Function. Nat. Rev. Immunol. 2019, 19, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Roe, M.F.E.; Bloxham, D.M.; White, D.K.; Ross-Russell, R.I.; Tasker, R.T.C.; O’donnell, D.R. Lymphocyte Apoptosis in Acute Respiratory Syncytial Virus Bronchiolitis. Clin. Exp. Immunol. 2004, 137, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, 481–502. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P.S.; Fonceca, A.M.; Howarth, D.; Correia, J.B.; Slupsky, J.R.; Trinick, R.E.; Al Turaiki, W.; Smyth, R.L.; Flanagan, B.F. Respiratory Syncytial Virus Infection of Airway Epithelial Cells, in Vivo and in Vitro, Supports Pulmonary Antibody Responses by Inducing Expression of the B Cell Differentiation Factor BAFF. Thorax 2013, 68, 76–81. [Google Scholar] [CrossRef]
- Sande, C.J.; Mutunga, M.N.; Medley, G.F.; Cane, P.A.; Nokes, D.J. Group- and Genotype-Specific Neutralizing Antibody Responses Against Respiratory Syncytial Virus in Infants and Young Children With Severe Pneumonia. J. Infect. Dis. 2013, 207, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Freiborst, J.; Ogra, P.L. Mucosal Immunity and Viral Infections. Ann. Med. 2001, 33, 172–177. [Google Scholar] [CrossRef]
- Yamazaki, H.; Tsutsumi, H.; Matsuda, K.; Nagai, K.; Ogra, P.L.; Chiba, S. Effect of Maternal Antibody on IgA Antibody Response in Nasopharyngeal Secretion in Infants and Children during Primary Respiratory Syncytial Virus Infection. J. Gen. Virol. 1994, 75, 2115–2119. [Google Scholar] [CrossRef]
- Crowe, J.E.; Firestone, C.-Y.; Murphy, B.R. Passively Acquired Antibodies Suppress Humoral But Not Cell-Mediated Immunity in Mice Immunized with Live Attenuated Respiratory Syncytial Virus Vaccines. J. Immunol. 2001, 167, 3910–3918. [Google Scholar] [CrossRef]
- Lee Chung, H.; Jang, Y.Y. High Serum IgE Level in the Children with Acute Respiratory Syncytial Virus Infection Is Associated with Severe Disease. J. Allergy Clin. Immunol. 2016, 137, AB110. [Google Scholar] [CrossRef]
- Attaianese, F.; Guiducci, S.; Trapani, S.; Barbati, F.; Lodi, L.; Indolfi, G.; Azzari, C.; Ricci, S. Reshaping Our Knowledge: Advancements in Understanding the Immune Response to Human Respiratory Syncytial Virus. Pathogens 2023, 12, 1118. [Google Scholar] [CrossRef]
- Mazur, N.I.; Terstappen, J.; Baral, R.; Bardají, A.; Beutels, P.; Buchholz, U.J.; Cohen, C.; Crowe, J.E.; Cutland, C.L.; Eckert, L.; et al. Respiratory Syncytial Virus Prevention within Reach: The Vaccine and Monoclonal Antibody Landscape. Lancet Infect. Dis. 2023, 23, e2–e21. [Google Scholar] [CrossRef] [PubMed]
- Mazur, N.I.; Higgins, D.; Nunes, M.C.; Melero, J.A.; Langedijk, A.C.; Horsley, N.; Buchholz, U.J.; Openshaw, P.J.; McLellan, J.S.; Englund, J.A.; et al. The Respiratory Syncytial Virus Vaccine Landscape: Lessons from the Graveyard and Promising Candidates. Lancet Infect. Dis. 2018, 18, e295–e311. [Google Scholar] [CrossRef] [PubMed]
- Ada, G. Vaccines and Vaccination. N. Engl. J. Med. 2001, 345, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Falloon, J.; Ji, F.; Curtis, C.; Bart, S.; Sheldon, E.; Krieger, D.; Dubovsky, F.; Lambert, S.; Takas, T.; Villafana, T.; et al. A Phase 1a, First-in-Human, Randomized Study of a Respiratory Syncytial Virus F Protein Vaccine with and without a Toll-like Receptor-4 Agonist and Stable Emulsion Adjuvant. Vaccine 2016, 34, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Falloon, J.; Talbot, H.K.; Curtis, C.; Ervin, J.; Krieger, D.; Dubovsky, F.; Takas, T.; Yu, J.; Yu, L.; Lambert, S.L.; et al. Dose Selection for an Adjuvanted Respiratory Syncytial Virus F Protein Vaccine for Older Adults Based on Humoral and Cellular Immune Responses. Clin. Vaccine Immunol. 2017, 24, e00157-17. [Google Scholar] [CrossRef]
- Falloon, J.; Yu, J.; Esser, M.T.; Villafana, T.; Yu, L.; Dubovsky, F.; Takas, T.; Levin, M.J.; Falsey, A.R. An Adjuvanted, Postfusion F Protein–Based Vaccine Did Not Prevent Respiratory Syncytial Virus Illness in Older Adults. J. Infect. Dis. 2017, 216, 1362–1370. [Google Scholar] [CrossRef]
- Glenn, G.M.; Smith, G.; Fries, L.; Raghunandan, R.; Lu, H.; Zhou, B.; Thomas, D.N.; Hickman, S.P.; Kpamegan, E.; Boddapati, S.; et al. Safety and Immunogenicity of a Sf9 Insect Cell-Derived Respiratory Syncytial Virus Fusion Protein Nanoparticle Vaccine. Vaccine 2013, 31, 524–532. [Google Scholar] [CrossRef]
- Laera, D.; HogenEsch, H.; O’Hagan, D.T. Aluminum Adjuvants—‘Back to the Future’. Pharmaceutics 2023, 15, 1884. [Google Scholar] [CrossRef]
- Glenn, G.M.; Fries, L.F.; Thomas, D.N.; Smith, G.; Kpamegan, E.; Lu, H.; Flyer, D.; Jani, D.; Hickman, S.P.; Piedra, P.A. A Randomized, Blinded, Controlled, Dose-Ranging Study of a Respiratory Syncytial Virus Recombinant Fusion (F) Nanoparticle Vaccine in Healthy Women of Childbearing Age. J. Infect. Dis. 2016, 213, 411–422. [Google Scholar] [CrossRef]
- August, A.; Glenn, G.M.; Kpamegan, E.; Hickman, S.P.; Jani, D.; Lu, H.; Thomas, D.N.; Wen, J.; Piedra, P.A.; Fries, L.F. A Phase 2 Randomized, Observer-Blind, Placebo-Controlled, Dose-Ranging Trial of Aluminum-Adjuvanted Respiratory Syncytial Virus F Particle Vaccine Formulations in Healthy Women of Childbearing Age. Vaccine 2017, 35, 3749–3759. [Google Scholar] [CrossRef]
- Fries, L.; Shinde, V.; Stoddard, J.J.; Thomas, D.N.; Kpamegan, E.; Lu, H.; Smith, G.; Hickman, S.P.; Piedra, P.; Glenn, G.M. Immunogenicity and Safety of a Respiratory Syncytial Virus Fusion Protein (RSV F) Nanoparticle Vaccine in Older Adults. Immun. Ageing 2017, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Muňoz, F.M.; Swamy, G.K.; Hickman, S.P.; Agrawal, S.; Piedra, P.A.; Glenn, G.M.; Patel, N.; August, A.M.; Cho, I.; Fries, L. Safety and Immunogenicity of a Respiratory Syncytial Virus Fusion (F) Protein Nanoparticle Vaccine in Healthy Third-Trimester Pregnant Women and Their Infants. J. Infect. Dis. 2019, 220, 1802–1815. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Polack, F.P.; Piedra, P.A.; Munoz, F.M.; Trenholme, A.A.; Simões, E.A.F.; Swamy, G.K.; Agrawal, S.; Ahmed, K.; August, A.; et al. Respiratory Syncytial Virus Vaccination during Pregnancy and Effects in Infants. N. Engl. J. Med. 2020, 383, 426–439. [Google Scholar] [CrossRef]
- Leroux-Roels, G.; De Boever, F.; Maes, C.; Nguyen, T.L.-A.; Baker, S.; Gonzalez Lopez, A. Safety and Immunogenicity of a Respiratory Syncytial Virus Fusion Glycoprotein F Subunit Vaccine in Healthy Adults: Results of a Phase 1, Randomized, Observer-Blind, Controlled, Dosage-Escalation Study. Vaccine 2019, 37, 2694–2703. [Google Scholar] [CrossRef]
- O’Hagan, D.T.; Tsai, T.; Reed, S. Emulsion-Based Adjuvants for Improved Influenza Vaccines. In Influenza Vaccines for the Future; Springer: Basel, Switzerland, 2011; pp. 327–357. [Google Scholar]
- McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; Baxa, U.; Yasuda, E.; Beaumont, T.; et al. Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody. Science 2013, 340, 1113–1117. [Google Scholar] [CrossRef]
- Ruckwardt, T.J.; Morabito, K.M.; Phung, E.; Crank, M.C.; Costner, P.J.; Holman, L.A.; Chang, L.A.; Hickman, S.P.; Berkowitz, N.M.; Gordon, I.J.; et al. Safety, Tolerability, and Immunogenicity of the Respiratory Syncytial Virus Prefusion F Subunit Vaccine DS-Cav1: A Phase 1, Randomised, Open-Label, Dose-Escalation Clinical Trial. Lancet Respir. Med. 2021, 9, 1111–1120. [Google Scholar] [CrossRef]
- Ascough, S.; Vlachantoni, I.; Kalyan, M.; Haijema, B.-J.; Wallin-Weber, S.; Dijkstra-Tiekstra, M.; Ahmed, M.S.; van Roosmalen, M.; Grimaldi, R.; Zhang, Q.; et al. Local and Systemic Immunity against Respiratory Syncytial Virus Induced by a Novel Intranasal Vaccine. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2019, 200, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.M.; Aggarwal, N.; Toma, A.; Halperin, S.A.; McNeil, S.A.; Fissette, L.; Dewé, W.; Leyssen, M.; Toussaint, J.-F.; Dieussaert, I. A Randomized, Controlled, Observer-Blinded Phase 1 Study of the Safety and Immunogenicity of a Respiratory Syncytial Virus Vaccine With or Without Alum Adjuvant. J. Infect. Dis. 2017, 215, 24–33. [Google Scholar] [CrossRef]
- Beran, J.; Lickliter, J.D.; Schwarz, T.F.; Johnson, C.; Chu, L.; Domachowske, J.B.; Van Damme, P.; Withanage, K.; Fissette, L.A.; David, M.-P.; et al. Safety and Immunogenicity of 3 Formulations of an Investigational Respiratory Syncytial Virus Vaccine in Nonpregnant Women: Results From 2 Phase 2 Trials. J. Infect. Dis. 2018, 217, 1616–1625. [Google Scholar] [CrossRef]
- Schwarz, T.F.; McPhee, R.A.; Launay, O.; Leroux-Roels, G.; Talli, J.; Picciolato, M.; Gao, F.; Cai, R.; Nguyen, T.L.-A.; Dieussaert, I.; et al. Immunogenicity and Safety of 3 Formulations of a Respiratory Syncytial Virus Candidate Vaccine in Nonpregnant Women: A Phase 2, Randomized Trial. J. Infect. Dis. 2019, 220, 1816–1825. [Google Scholar] [CrossRef]
- Schwarz, T.F.; Johnson, C.; Grigat, C.; Apter, D.; Csonka, P.; Lindblad, N.; Nguyen, T.L.-A.; Gao, F.F.; Qian, H.; Tullio, A.N.; et al. Three Dose Levels of a Maternal Respiratory Syncytial Virus Vaccine Candidate Are Well Tolerated and Immunogenic in a Randomized Trial in Nonpregnant Women. J. Infect. Dis. 2022, 225, 2067–2076. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Davis, M.G.; Steenackers, K.; Essink, B.; Vandermeulen, C.; Fogarty, C.; Andrews, C.P.; Kerwin, E.; David, M.-P.; Fissette, L.; et al. Safety and Immunogenicity of a Respiratory Syncytial Virus Prefusion F (RSVPreF3) Candidate Vaccine in Older Adults: Phase 1/2 Randomized Clinical Trial. J. Infect. Dis. 2023, 227, 761–772. [Google Scholar] [CrossRef]
- Kotb, S.; Haranaka, M.; Folschweiller, N.; Nakanwagi, P.; Verheust, C.; De Schrevel, N.; David, M.-P.; Mesaros, N.; Hulstrøm, V. Safety and Immunogenicity of a Respiratory Syncytial Virus Prefusion F Protein (RSVPreF3) Candidate Vaccine in Older Japanese Adults: A Phase I, Randomized, Observer-Blind Clinical Trial. Respir. Investig. 2023, 61, 261–269. [Google Scholar] [CrossRef]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 595–608. [Google Scholar] [CrossRef]
- Approval Letter—AREXVY. U.S. Food and Drug Administration. 23 May 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/arexvy (accessed on 5 February 2024).
- Ison, M.G.; Papi, A.; Athan, E.; Feldman, R.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; et al. Efficacy and Safety of Respiratory Syncytial Virus (RSV) Prefusion F Protein Vaccine (RSVPreF3 OA) in Older Adults Over 2 RSV Seasons. Clin Infect Dis. 2024, 78, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.F.; Hwang, S.-J.; Ylisastigui, P.; Liu, C.-S.; Takazawa, K.; Yono, M.; Ervin, J.E.; Andrews, C.P.; Fogarty, C.; Eckermann, T.; et al. Immunogenicity and Safety Following 1 Dose of AS01E-Adjuvanted Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults: A Phase 3 Trial. J. Infect. Dis. 2024, 230, e102–e110. [Google Scholar] [CrossRef] [PubMed]
- Bebia, Z.; Reyes, O.; Jeanfreau, R.; Kantele, A.; De Leon, R.G.; Sánchez, M.G.; Banooni, P.; Gardener, G.J.; Rasero, J.L.B.; Pardilla, M.B.E.; et al. Safety and Immunogenicity of an Investigational Respiratory Syncytial Virus Vaccine (RSVPreF3) in Mothers and Their Infants: A Phase 2 Randomized Trial. J. Infect. Dis. 2023, 228, 299–310. [Google Scholar] [CrossRef]
- GSK Provides Update on Phase III RSV Maternal Vaccine Candidate Programme. GSK. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-provides-update-on-phase-iii-rsv-maternal-vaccine-candidate-programme/ (accessed on 12 February 2024).
- GSK Provides Further Update on Phase III RSV Maternal Vaccine Candidate Programme. GSK. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-provides-further-update-on-phase-iii-rsv-maternal-vaccine-candidate-programme/ (accessed on 12 February 2024).
- Dieussaert, I.R.; Kim, J.H.; Luik, S.; Seidl, C.; Pu, W.; Stegmann, J.-U.; Swamy, G.K.; Webster, P.; Dormitzer, P.R. RSV Prefusion F Protein–Based Maternal Vaccine—Preterm Birth and Other Outcomes. N. Engl. J. Med. 2024, 390, 1009–1021. [Google Scholar] [CrossRef]
- Schmoele-Thoma, B.; Falsey, A.R.; Walsh, E.E.; Swanson, K.; Zareba, A.; Cooper, D.; Gruber, W.C.; Jansen, K.U.; Radley, D.; Scott, D.; et al. Phase 1/2, First-in-Human Study of the Safety, Tolerability, and Immunogenicity of an RSV Prefusion F-Based Subunit Vaccine Candidate. Open Forum Infect. Dis. 2019, 6, S970. [Google Scholar] [CrossRef]
- Falsey, A.R.; Walsh, E.E.; Scott, D.A.; Gurtman, A.; Zareba, A.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Jiang, Q.; et al. Phase 1/2 Randomized Study of the Immunogenicity, Safety, and Tolerability of a Respiratory Syncytial Virus Prefusion F Vaccine in Adults With Concomitant Inactivated Influenza Vaccine. J. Infect. Dis. 2022, 225, 2056–2066. [Google Scholar] [CrossRef]
- Walsh, E.E.; Falsey, A.R.; Scott, D.A.; Gurtman, A.; Zareba, A.M.; Jansen, K.U.; Gruber, W.C.; Dormitzer, P.R.; Swanson, K.A.; Radley, D.; et al. A Randomized Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine. J. Infect. Dis. 2022, 225, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Baber, J.; Arya, M.; Moodley, Y.; Jaques, A.; Jiang, Q.; Swanson, K.A.; Cooper, D.; Maddur, M.S.; Loschko, J.; Gurtman, A.; et al. A Phase 1/2 Study of a Respiratory Syncytial Virus Prefusion F Vaccine With and Without Adjuvant in Healthy Older Adults. J. Infect. Dis. 2022, 226, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Schmoele-Thoma, B.; Zareba, A.M.; Jiang, Q.; Maddur, M.S.; Danaf, R.; Mann, A.; Eze, K.; Fok-Seang, J.; Kabir, G.; Catchpole, A.; et al. Vaccine Efficacy in Adults in a Respiratory Syncytial Virus Challenge Study. N. Engl. J. Med. 2022, 386, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Pérez Marc, G.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Approval Letter—ABRYSVO. U.S. Food & Drug Administration. 21 August 2023. Available online: https://www.fda.gov/vaccines-blood-biologics/abrysvo (accessed on 20 February 2024).
- Simões, E.A.F.; Center, K.J.; Tita, A.T.N.; Swanson, K.A.; Radley, D.; Houghton, J.; McGrory, S.B.; Gomme, E.; Anderson, M.; Roberts, J.P.; et al. Prefusion F Protein–Based Respiratory Syncytial Virus Immunization in Pregnancy. N. Engl. J. Med. 2022, 386, 1615–1626. [Google Scholar] [CrossRef]
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.F.; Pahud, B.A.; Llapur, C.; Baker, J.; Pérez Marc, G.; Radley, D.; Shittu, E.; et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N. Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef]
- FDA Approves First Vaccine for Pregnant Individuals to Prevent RSV in Infants. U.S. Food & Drug Administration. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-vaccine-pregnant-individuals-prevent-rsv-infants (accessed on 20 February 2024).
- Otsuki, T.; Akada, S.; Anami, A.; Kosaka, K.; Munjal, I.; Baber, J.; Shoji, Y.; Aizawa, M.; Swanson, K.A.; Gurtman, A.; et al. Efficacy and Safety of Bivalent RSVpreF Maternal Vaccination to Prevent RSV Illness in Japanese Infants: Subset Analysis from the Pivotal Randomized Phase 3 MATISSE Trial. Vaccine 2024, 42, 126041. [Google Scholar] [CrossRef]
- Surie, D.; Self, W.H.; Zhu, Y.; Yuengling, K.A.; Johnson, C.A.; Grijalva, C.G.; Dawood, F.S.; Gaglani, M.; Ghamande, S.; McNeal, T.; et al. RSV Vaccine Effectiveness Against Hospitalization Among US Adults 60 Years and Older. JAMA 2024, 332, 1105. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Bai, Y.; Zhu, B.; Chang, F.; Lu, Y. Efficacy, Safety, and Immunogenicity of Subunit Respiratory Syncytial Virus Vaccines: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines 2024, 12, 879. [Google Scholar] [CrossRef]
- Fong, Y.; Huang, Y.; Borate, B.; van der Laan, L.W.P.; Zhang, W.; Carpp, L.N.; Cho, I.; Glenn, G.; Fries, L.; Gottardo, R.; et al. Antibody Correlates of Protection From Severe Respiratory Syncytial Virus Disease in a Vaccine Efficacy Trial. Open Forum Infect. Dis. 2023, 10, ofac693, Erratum in: Open Forum Infect. Dis. 2023, 10, ofad250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leroux-Roels, I.; Bruhwyler, J.; Stergiou, L.; Sumeray, M.; Joye, J.; Maes, C.; Lambert, P.-H.; Leroux-Roels, G. Double-Blind, Placebo-Controlled, Dose-Escalating Study Evaluating the Safety and Immunogenicity of an Epitope-Specific Chemically Defined Nanoparticle RSV Vaccine. Vaccines 2023, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Schepens, B.; Sedeyn, K.; Vande Ginste, L.; De Baets, S.; Schotsaert, M.; Roose, K.; Houspie, L.; Van Ranst, M.; Gilbert, B.; van Rooijen, N.; et al. Protection and Mechanism of Action of a Novel Human Respiratory Syncytial Virus Vaccine Candidate Based on the Extracellular Domain of Small Hydrophobic Protein. EMBO Mol. Med. 2014, 6, 1436–1454. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.M.; MacDonald, L.D.; Weir, G.M.; MacKinnon-Cameron, D.; Ye, L.; McNeil, S.; Schepens, B.; Saelens, X.; Stanford, M.M.; Halperin, S.A. A Respiratory Syncytial Virus Vaccine Based on the Small Hydrophobic Protein Ectodomain Presented With a Novel Lipid-Based Formulation Is Highly Immunogenic and Safe in Adults: A First-in-Humans Study. J. Infect. Dis. 2018, 218, 378–387. [Google Scholar] [CrossRef]
- DeBay, D.R.; Brewer, K.D.; LeBlanc, S.A.; Weir, G.M.; Stanford, M.M.; Mansour, M.; Bowen, C. V Using MRI to Evaluate and Predict Therapeutic Success from Depot-Based Cancer Vaccines. Mol. Ther. Methods Clin. Dev. 2015, 2, 15048. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, G.; Dong, A.; He, Z.; Wang, J.; Jiang, B.; Wang, B.; Wang, M.; Huai, X.; Zhang, S.; et al. A First-in-Human Trial to Evaluate the Safety and Immunogenicity of a G Protein-Based Recombinant Respiratory Syncytial Virus Vaccine in Healthy Adults 18–45 Years of Age. Vaccines 2023, 11, 999. [Google Scholar] [CrossRef]
- Bull, J.J.; Smithson, M.W.; Nuismer, S.L. Transmissible Viral Vaccines. Trends Microbiol. 2018, 26, 6–15. [Google Scholar] [CrossRef]
- Green, C.A.; Scarselli, E.; Sande, C.J.; Thompson, A.J.; de Lara, C.M.; Taylor, K.S.; Haworth, K.; Del Sorbo, M.; Angus, B.; Siani, L.; et al. Chimpanzee Adenovirus– and MVA-Vectored Respiratory Syncytial Virus Vaccine Is Safe and Immunogenic in Adults. Sci. Transl. Med. 2015, 7, 300ra126. [Google Scholar] [CrossRef]
- Green, C.A.; Sande, C.J.; Scarselli, E.; Capone, S.; Vitelli, A.; Nicosia, A.; Silva-Reyes, L.; Thompson, A.J.; de Lara, C.M.; Taylor, K.S.; et al. Novel Genetically-Modified Chimpanzee Adenovirus and MVA-Vectored Respiratory Syncytial Virus Vaccine Safely Boosts Humoral and Cellular Immunity in Healthy Older Adults. J. Infect. 2019, 78, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Cicconi, P.; Jones, C.; Sarkar, E.; Silva-Reyes, L.; Klenerman, P.; de Lara, C.; Hutchings, C.; Moris, P.; Janssens, M.; Fissette, L.A.; et al. First-in-Human Randomized Study to Assess the Safety and Immunogenicity of an Investigational Respiratory Syncytial Virus (RSV) Vaccine Based on Chimpanzee-Adenovirus-155 Viral Vector–Expressing RSV Fusion, Nucleocapsid, and Antitermination Viral Proteins in Healthy Adults. Clin. Infect. Dis. 2020, 70, 2073–2081. [Google Scholar] [CrossRef]
- Díez-Domingo, J.; Sáez-Llorens, X.; Rodriguez-Weber, M.A.; Epalza, C.; Chatterjee, A.; Chiu, C.-H.; Lin, C.-Y.; Berry, A.A.; Martinón-Torres, F.; Baquero-Artigao, F.; et al. Safety and Immunogenicity of a ChAd155-Vectored Respiratory Syncytial Virus (RSV) Vaccine in Healthy RSV-Seropositive Children 12–23 Months of Age. J. Infect. Dis. 2023, 227, 1293–1302. [Google Scholar] [CrossRef]
- Sáez-Llorens, X.; Norero, X.; Mussi-Pinhata, M.M.; Luciani, K.; de la Cueva, I.S.; Díez-Domingo, J.; Lopez-Medina, E.; Epalza, C.; Brzostek, J.; Szymański, H.; et al. Safety and Immunogenicity of a ChAd155-Vectored Respiratory Syncytial Virus Vaccine in Infants 6–7 Months of Age: A Phase 1/2 Randomized Trial. J. Infect. Dis. 2024, 229, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Bastian, A.R.; Feldman, R.A.; Omoruyi, E.; de Paepe, E.; Hendriks, J.; van Zeeburg, H.; Godeaux, O.; Langedijk, J.P.M.; Schuitemaker, H.; et al. Phase 1 Safety and Immunogenicity Study of a Respiratory Syncytial Virus Vaccine With an Adenovirus 26 Vector Encoding Prefusion F (Ad26.RSV.PreF) in Adults Aged ≥60 Years. J. Infect. Dis. 2020, 222, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; De Paepe, E.; Haazen, W.; Omoruyi, E.; Bastian, A.R.; Comeaux, C.; Heijnen, E.; Strout, C.; Schuitemaker, H.; Callendret, B. Safety and Immunogenicity of the Ad26.RSV.PreF Investigational Vaccine Coadministered with an Influenza Vaccine in Older Adults. J. Infect. Dis. 2021, 223, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; De Paepe, E.; DeVincenzo, J.; Gymnopoulou, E.; Menten, J.; Murray, B.; Rosemary Bastian, A.; Vandebosch, A.; Haazen, W.; Noulin, N.; et al. Prevention of Respiratory Syncytial Virus Infection in Healthy Adults by a Single Immunization of Ad26.RSV.PreF in a Human Challenge Study. J. Infect. Dis. 2022, 226, 396–406. [Google Scholar] [CrossRef]
- Stuart, A.S.V.; Virta, M.; Williams, K.; Seppa, I.; Hartvickson, R.; Greenland, M.; Omoruyi, E.; Bastian, A.R.; Haazen, W.; Salisch, N.; et al. Phase 1/2a Safety and Immunogenicity of an Adenovirus 26 Vector Respiratory Syncytial Virus (RSV) Vaccine Encoding Prefusion F in Adults 18–50 Years and RSV-Seropositive Children 12–24 Months. J. Infect. Dis. 2022, 227, 71–82. [Google Scholar] [CrossRef]
- Falsey, A.R.; Williams, K.; Gymnopoulou, E.; Bart, S.; Ervin, J.; Bastian, A.R.; Menten, J.; De Paepe, E.; Vandenberghe, S.; Chan, E.K.H.; et al. Efficacy and Safety of an Ad26.RSV.PreF–RSV PreF Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 609–620. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hosman, T.; Bastian, A.R.; Vandenberghe, S.; Chan, E.K.H.; Douoguih, M.; Heijnen, E.; Comeaux, C.A.; Callendret, B.; Allaw, M.; et al. Long-Term Efficacy and Immunogenicity of Ad26.RSV.PreF–RSV PreF Protein Vaccine (CYPRESS): A Randomised, Double-Blind, Placebo-Controlled, Phase 2b Study. Lancet Infect. Dis. 2024, 24, 1015–1024. [Google Scholar] [CrossRef]
- Samy, N.; Reichhardt, D.; Schmidt, D.; Chen, L.M.; Silbernagl, G.; Vidojkovic, S.; Meyer, T.P.; Jordan, E.; Adams, T.; Weidenthaler, H.; et al. Safety and Immunogenicity of Novel Modified Vaccinia Ankara-Vectored RSV Vaccine: A Randomized Phase I Clinical Trial. Vaccine 2020, 38, 2608–2619. [Google Scholar] [CrossRef]
- Jordan, E.; Lawrence, S.J.; Meyer, T.P.H.; Schmidt, D.; Schultz, S.; Mueller, J.; Stroukova, D.; Koenen, B.; Gruenert, R.; Silbernagl, G.; et al. Broad Antibody and Cellular Immune Response From a Phase 2 Clinical Trial With a Novel Multivalent Poxvirus-Based Respiratory Syncytial Virus Vaccine. J. Infect. Dis. 2021, 223, 1062–1072. [Google Scholar] [CrossRef]
- Jordan, E.; Kabir, G.; Schultz, S.; Silbernagl, G.; Schmidt, D.; Jenkins, V.A.; Weidenthaler, H.; Stroukova, D.; Martin, B.K.; De Moerlooze, L. Reduced Respiratory Syncytial Virus Load, Symptoms, and Infections: A Human Challenge Trial of MVA-BN-RSV Vaccine. J. Infect. Dis. 2023, 228, 999–1011. [Google Scholar] [CrossRef]
- Jordan, E.; Jenkins, V.; Silbernagl, G.; Chávez, M.P.V.; Schmidt, D.; Schnorfeil, F.; Schultz, S.; Chen, L.; Salgado, F.; Jacquet, J.-M.; et al. A Multivalent RSV Vaccine Based on the Modified Vaccinia Ankara Vector Shows Moderate Protection against Disease Caused by RSV in Older Adults in a Phase 3 Clinical Study. Vaccine 2024, 42, 126427. [Google Scholar] [CrossRef] [PubMed]
- Scaggs Huang, F.; Bernstein, D.I.; Slobod, K.S.; Portner, A.; Takimoto, T.; Russell, C.J.; Meagher, M.; Jones, B.G.; Sealy, R.E.; Coleclough, C.; et al. Safety and Immunogenicity of an Intranasal Sendai Virus-Based Vaccine for Human Parainfluenza Virus Type I and Respiratory Syncytial Virus (SeVRSV) in Adults. Hum. Vaccines Immunother. 2021, 17, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Abarca, K.; Rey-Jurado, E.; Muñoz-Durango, N.; Vázquez, Y.; Soto, J.A.; Gálvez, N.M.S.; Valdés-Ferrada, J.; Iturriaga, C.; Urzúa, M.; Borzutzky, A.; et al. Safety and Immunogenicity Evaluation of Recombinant BCG Vaccine against Respiratory Syncytial Virus in a Randomized, Double-Blind, Placebo-Controlled Phase I Clinical Trial. EClinicalMedicine 2020, 27, 100517. [Google Scholar] [CrossRef]
- Wright, P.F.; Karron, R.A.; Belshe, R.B.; Shi, J.R.; Randolph, V.B.; Collins, P.L.; O’Shea, A.F.; Gruber, W.C.; Murphy, B.R. The Absence of Enhanced Disease with Wild Type Respiratory Syncytial Virus Infection Occurring after Receipt of Live, Attenuated, Respiratory Syncytial Virus Vaccines. Vaccine 2007, 25, 7372–7378. [Google Scholar] [CrossRef]
- Karron, R.A.; Buchholz, U.J.; Collins, P.L. Live-Attenuated Respiratory Syncytial Virus Vaccines. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 259–284. [Google Scholar]
- Malkin, E.; Yogev, R.; Abughali, N.; Sliman, J.; Wang, C.K.; Zuo, F.; Yang, C.-F.; Eickhoff, M.; Esser, M.T.; Tang, R.S.; et al. Safety and Immunogenicity of a Live Attenuated RSV Vaccine in Healthy RSV-Seronegative Children 5 to 24 Months of Age. PLoS ONE 2013, 8, e77104. [Google Scholar] [CrossRef]
- Karron, R.A.; Luongo, C.; Thumar, B.; Loehr, K.M.; Englund, J.A.; Collins, P.L.; Buchholz, U.J. A Gene Deletion That Up-Regulates Viral Gene Expression Yields an Attenuated RSV Vaccine with Improved Antibody Responses in Children. Sci. Transl. Med. 2015, 7, 312ra175. [Google Scholar] [CrossRef]
- Verdijk, P.; van der Plas, J.L.; van Brummelen, E.M.J.; Jeeninga, R.E.; de Haan, C.A.M.; Roestenberg, M.; Burggraaf, J.; Kamerling, I.M.C. First-in-Human Administration of a Live-Attenuated RSV Vaccine Lacking the G-Protein Assessing Safety, Tolerability, Shedding and Immunogenicity: A Randomized Controlled Trial. Vaccine 2020, 38, 6088–6095. [Google Scholar] [CrossRef]
- Buchholz, U.J.; Cunningham, C.K.; Muresan, P.; Gnanashanmugam, D.; Sato, P.; Siberry, G.K.; Rexroad, V.; Valentine, M.; Perlowski, C.; Schappell, E.; et al. Live Respiratory Syncytial Virus (RSV) Vaccine Candidate Containing Stabilized Temperature-Sensitivity Mutations Is Highly Attenuated in RSV-Seronegative Infants and Children. J. Infect. Dis. 2018, 217, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Valentine, M.E.; Perlowski, C.; Thumar, B.; Gnanashanmugam, D.; Siberry, G.K.; Schappell, E.; et al. Live-Attenuated Respiratory Syncytial Virus Vaccine Candidate With Deletion of RNA Synthesis Regulatory Protein M2-2 Is Highly Immunogenic in Children. J. Infect. Dis. 2018, 217, 1347–1355. [Google Scholar] [CrossRef]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Libous, J.; Perlowski, C.; Thumar, B.; Gnanashanmugam, D.; Moye, J.; Schappell, E.; et al. Live Respiratory Syncytial Virus Attenuated by M2-2 Deletion and Stabilized Temperature Sensitivity Mutation 1030s Is a Promising Vaccine Candidate in Children. J. Infect. Dis. 2020, 221, 534–543. [Google Scholar] [CrossRef]
- Karron, R.A.; Luongo, C.; Mateo, J.S.; Wanionek, K.; Collins, P.L.; Buchholz, U.J. Safety and Immunogenicity of the Respiratory Syncytial Virus Vaccine RSV/ΔNS2/Δ1313/I1314L in RSV-Seronegative Children. J. Infect. Dis. 2020, 222, 82–91. [Google Scholar] [CrossRef] [PubMed]
- McFarland, E.J.; Karron, R.A.; Muresan, P.; Cunningham, C.K.; Perlowski, C.; Libous, J.; Oliva, J.; Jean-Philippe, P.; Moye, J.; Schappell, E.; et al. Live-Attenuated Respiratory Syncytial Virus Vaccine With M2-2 Deletion and With Small Hydrophobic Noncoding Region Is Highly Immunogenic in Children. J. Infect. Dis. 2020, 221, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.K.; Karron, R.A.; Muresan, P.; Kelly, M.S.; McFarland, E.J.; Perlowski, C.; Libous, J.; Oliva, J.; Jean-Philippe, P.; Moye, J.; et al. Evaluation of Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV/ΔNS2/Δ1313/I1314L and RSV/276 in RSV-Seronegative Children. J. Infect. Dis. 2022, 226, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Karron, R.A.; Luongo, C.; Woods, S.; Oliva, J.; Collins, P.L.; Buchholz, U.J.; RSVPed Team. Evaluation of the Live-Attenuated Intranasal Respiratory Syncytial Virus (RSV) Vaccine RSV/6120/ΔNS2/1030s in RSV-Seronegative Young Children. J. Infect. Dis. 2024; 229, 346–354. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Weissman, D. Recent Advances in MRNA Vaccine Technology. Curr. Opin. Immunol. 2020, 65, 14–20. [Google Scholar] [CrossRef]
- Li, M.; Ren, J.; Si, X.; Sun, Z.; Wang, P.; Zhang, X.; Liu, K.; Wei, B. The Global MRNA Vaccine Patent Landscape. Hum. Vaccines Immunother. 2022, 18, 2095837. [Google Scholar] [CrossRef]
- Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The Promise of MRNA Vaccines: A Biotech and Industrial Perspective. NPJ Vaccines 2020, 5, 11. [Google Scholar] [CrossRef]
- Mascola, J.R.; Fauci, A.S. Novel Vaccine Technologies for the 21st Century. Nat. Rev. Immunol. 2020, 20, 87–88. [Google Scholar] [CrossRef]
- Aliprantis, A.O.; Shaw, C.A.; Griffin, P.; Farinola, N.; Railkar, R.A.; Cao, X.; Liu, W.; Sachs, J.R.; Swenson, C.J.; Lee, H.; et al. A Phase 1, Randomized, Placebo-Controlled Study to Evaluate the Safety and Immunogenicity of an MRNA-Based RSV Prefusion F Protein Vaccine in Healthy Younger and Older Adults. Hum. Vaccines Immunother. 2021, 17, 1248–1261. [Google Scholar] [CrossRef]
- Shaw, C.A.; Essink, B.; Harper, C.; Mithani, R.; Kapoor, A.; Dhar, R.; Wilson, L.; Guo, R.; Panozzo, C.A.; Wilson, E.; et al. Safety and Immunogenicity of an mRNA-Based RSV Vaccine Including a 12-Month Booster in a Phase 1 Clinical Trial in Healthy Older Adults. J. Infect. Dis. 2024, 230, e647–e656. [Google Scholar] [CrossRef]
- Wilson, E.; Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez-Marc, G.; Zaman, K.; Monroy, J.; Duncan, C.J.A.; Ujiie, M.; Ramet, M.; et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. N. Engl. J. Med. 2023, 389, 2233–2244. [Google Scholar] [CrossRef]
- Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez Marc, G.; Jimenez, G.; Ahmed, S.; Zaman, K.; Duncan, C.J.A.; Ujiie, M.; Rämet, M.; et al. Humoral Immunogenicity of mRNA-1345 RSV Vaccine in Older Adults. J. Infect. Dis. 2024, jiae316. [Google Scholar] [CrossRef] [PubMed]
- Moderna Receives U.S. FDA Approval for RSV Vaccine mRESVIA(R). Moderna. Available online: https://investors.modernatx.com/news/news-details/2024/Moderna-Receives-U.S.-FDA-Approval-for-RSV-Vaccine-mRESVIAR/default.aspx (accessed on 31 May 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.S.d.; Borges, S.G.; Pozzebon, B.B.; Souza, A.P.D.d. Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms 2024, 12, 2305. https://doi.org/10.3390/microorganisms12112305
Silva GSd, Borges SG, Pozzebon BB, Souza APDd. Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms. 2024; 12(11):2305. https://doi.org/10.3390/microorganisms12112305
Chicago/Turabian StyleSilva, Gabriela Souza da, Sofia Giacomet Borges, Bruna Bastos Pozzebon, and Ana Paula Duarte de Souza. 2024. "Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges" Microorganisms 12, no. 11: 2305. https://doi.org/10.3390/microorganisms12112305
APA StyleSilva, G. S. d., Borges, S. G., Pozzebon, B. B., & Souza, A. P. D. d. (2024). Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges. Microorganisms, 12(11), 2305. https://doi.org/10.3390/microorganisms12112305