Community Structure and Biodiversity of Active Microbes in the Deep South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Sampling and Environmental Factors
2.2. Nucleic Acid Extraction and Sequencing
2.3. Quality Control, OTU Clustering, and Taxonomic Profiling
2.4. Statistic Analysis
3. Results
3.1. Community Structures of Active Deep-Sea Microbes from SCS Deep Layers
3.2. Diversity and Composition of Active Eukaryotic Microbes in the Deep Water
3.3. Alpha Diversity Analysis Provided a Contrast Pattern Between the Metagenomic and Metatranscriptomic OTUs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arístegui, J.; Gasol, J.M.; Duarte, C.M.; Herndld, G.J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 2009, 54, 1501–1529. [Google Scholar] [CrossRef]
- Chen, J.; Jia, Y.; Sun, Y.; Liu, K.; Zhou, C.; Liu, C.; Li, D.; Liu, G.; Zhang, C.; Yang, T. Global marine microbial diversity and its potential in bioprospecting. Nature 2024, 633, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Herndl, G.J.; Bayer, B.; Baltar, F.; Reinthaler, T. Prokaryotic life in the deep ocean’s water column. Ann. Rev. Mar. Sci. 2023, 15, 461–483. [Google Scholar] [CrossRef] [PubMed]
- Rigonato, J.; Budinich, M.; Murillo, A.A.; Brandão, M.C.; Pierella Karlusich, J.J.; Soviadan, Y.D.; Gregory, A.C.; Endo, H.; Kokoszka, F.; Vik, D. Ocean-wide comparisons of mesopelagic planktonic community structures. ISME Commun. 2023, 3, 83. [Google Scholar] [CrossRef] [PubMed]
- Baltar, F.; Martínez-Pérez, C.; Amano, C.; Vial, M.; Robaina-Estévez, S.; Reinthaler, T.; Herndl, G.J.; Zhao, Z.; Logares, R.; Morales, S.E. A ubiquitous gammaproteobacterial clade dominates expression of sulfur oxidation genes across the mesopelagic ocean. Nat. Microbiol. 2023, 8, 1137–1148. [Google Scholar] [CrossRef]
- Baumas, C.M.; Le Moigne, F.A.; Garel, M.; Bhairy, N.; Guasco, S.; Riou, V.; Armougom, F.; Grossart, H.-P.; Tamburini, C. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 2021, 15, 1695–1708. [Google Scholar] [CrossRef]
- Sunagawa, S.; Acinas, S.G.; Bork, P.; Bowler, C.; Eveillard, D.; Gorsky, G.; Guidi, L.; Iudicone, D.; Karsenti, E. Tara Oceans: Towards global ocean ecosystems biology. Nat. Rev. Microbiol. 2020, 18, 428–445. [Google Scholar] [CrossRef]
- Sebastián, M.; Giner, C.R.; Balagué, V.; Gómez-Letona, M.; Massana, R.; Logares, R.; Duarte, C.M.; Gasol, J.M. The active free-living bathypelagic microbiome is largely dominated by rare surface taxa. ISME Commun. 2024, 4, ycae015. [Google Scholar] [CrossRef]
- Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 2011, 9, 119–130. [Google Scholar] [CrossRef]
- Taylor, J.D.; Bird, K.E.; Widdicome, C.E.; Cunliffe, M. Active bacterioplankton community response to dissolved ‘free’ deoxyribonucleic acid (dDNA) in surface coastal marine waters. FEMS Microbiol. Ecol. 2018, 94, fiy132. [Google Scholar] [CrossRef]
- Alonso-Sáez, L.; Sánchez, O.; Gasol, J.M. Bacterial uptake of low molecular weight organics in the subtropical Atlantic: Are major phylogenetic groups functionally different? Limnol. Oceanogr. 2012, 57, 798–808. [Google Scholar] [CrossRef]
- Feike, J.; Jürgens, K.; Hollibaugh, J.T.; Krüger, S.; Jost, G.; Labrenz, M. Measuring unbiased metatranscriptomics in suboxic waters of the central Baltic Sea using a new in situ fixation system. ISME J. 2012, 6, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Edgcomb, V.; Taylor, C.; Pachiadaki, M.; Honjo, S.; Engstrom, I.; Yakimov, M. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 129, 213–222. [Google Scholar] [CrossRef]
- Marietou, A.; Bartlett, D.H. Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl. Environ. Microbiol. 2014, 80, 5992–6003. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.-M.; Li, J.; He, L.-S.; Cui, G.-J.; Li, W.-L.; Chen, J.; Xin, Y.-Z.; Cai, D.-S.; Zhang, A.-Q. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 144, 132–137. [Google Scholar] [CrossRef]
- Charvet, S.; Riemann, L.; Alneberg, J.; Andersson, A.F.; von Borries, J.; Fischer, U.; Labrenz, M. AFISsys-an autonomous instrument for the preservation of brackish water samples for microbial metatranscriptome analysis. Water Res. 2019, 149, 351–361. [Google Scholar] [CrossRef]
- Wei, Z.-F.; Li, W.-L.; Li, J.; Chen, J.; Xin, Y.-Z.; He, L.-S.; Wang, Y. Multiple in situ nucleic acid collections (MISNAC) from deep-sea waters. Front. Mar. Sci. 2020, 7, 81. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Q.; Lu, R.; Zheng, P.; Wang, Y. In situ genomics and transcriptomics of SAR202 subclusters revealed subtle distinct activities in deep-sea water. Microorganisms 2022, 10, 1629. [Google Scholar] [CrossRef]
- Xu, P.; Yang, M.; He, L.; Zhang, H.; Gao, Z.; Jiang, Y.; Wang, Y. Discovery of Prevalent Ciliophora, Discoba, and Copepoda Protists in Deep Sea Water by In Situ Nucleotide Extraction. J. Mar. Sci. Eng. 2023, 12, 61. [Google Scholar] [CrossRef]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef]
- Campbell, B.J.; Yu, L.; Heidelberg, J.F.; Kirchman, D.L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. USA 2011, 108, 12776–12781. [Google Scholar] [CrossRef] [PubMed]
- Beman, J.M.; Vargas, S.M.; Vazquez, S.; Wilson, J.M.; Yu, A.; Cairo, A.; Perez-Coronel, E. Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern tropical North Pacific Ocean oxygen minimum zone. Environ. Microbiol. 2021, 23, 2765–2781. [Google Scholar] [CrossRef] [PubMed]
- Salter, I.; Galand, P.E.; Fagervold, S.K.; Lebaron, P.; Obernosterer, I.; Oliver, M.J.; Suzuki, M.T.; Tricoire, C. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015, 9, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.; Bird, K.E.; Murrell, J.C.; Cunliffe, M. Latitudinal variation in the potential activity of Atlantic Ocean bacterioplankton revealed through 16S rRNA and 16S rRNA gene metabarcoding. Front. Mar. Sci. 2023, 10, 1241333. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.; Choi, J.; Ma, L.; Heaton, E.A.; Howe, A. Response of Total (DNA) and metabolically active (RNA) microbial communities in Miscanthus× Giganteus cultivated soil to different nitrogen fertilization rates. Microbiol. Spectr. 2022, 10, e02116-21. [Google Scholar] [CrossRef]
- Freudenthal, J.; Ju, F.; Bürgmann, H.; Dumack, K. Microeukaryotic gut parasites in wastewater treatment plants: Diversity, activity, and removal. Microbiome 2022, 10, 27. [Google Scholar] [CrossRef]
- Coesel, S.N.; Durham, B.P.; Groussman, R.D.; Hu, S.K.; Caron, D.A.; Morales, R.L.; Ribalet, F.; Armbrust, E.V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc. Natl. Acad. Sci. USA 2021, 118, e2011038118. [Google Scholar] [CrossRef]
- Zhou, Z.-Y.; Hu, Y.; Li, A.; Li, Y.-J.; Zhao, H.; Wang, S.-Q.; Otecko, N.O.; Zhang, D.; Wang, J.-H.; Liu, Y. Genome wide analyses uncover allele-specific RNA editing in human and mouse. Nucleic Acids Res. 2018, 46, 8888–8897. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Xu, H.; Luo, X.; Qian, J.; Pang, X.; Song, J.; Qian, G.; Chen, J.; Chen, S. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLoS ONE 2012, 7, e52249. [Google Scholar] [CrossRef]
- Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-L.; Mara, P.; Cui, G.-J.; Edgcomb, V.P.; Wang, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 2022, 13, 1515. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef]
- Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; de Vargas, C.; Decelle, J. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012, 41, D597–D604. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef]
- Arandia-Gorostidi, N.; Parada, A.; Dekas, A. Single-cell view of deep-sea microbial activity and intracommunity heterogeneity. ISME J. 2023, 17, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Acinas, S.G.; Sánchez, P.; Salazar, G.; Cornejo-Castillo, F.M.; Sebastián, M.; Logares, R.; Royo-Llonch, M.; Paoli, L.; Sunagawa, S.; Hingamp, P. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 2021, 4, 604. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.D.; Secchi, E.; Rusconi, R.; Stocker, R. Not just going with the flow: The effects of fluid flow on bacteria and plankton. Annu. Rev. Cell Dev. Biol. 2019, 35, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Blazewicz, S.J.; Barnard, R.L.; Daly, R.A.; Firestone, M.K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013, 7, 2061–2068. [Google Scholar] [CrossRef]
- Biard, T. Diversity and ecology of Radiolaria in modern oceans. Environ. Microbiol. 2022, 24, 2179–2200. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Høeg, J.T.; Crandall, K.A. Deep phylogeny and character evolution in Thecostraca (Crustacea: Maxillopoda). Integr. Comp. Biol. 2012, 52, 430–442. [Google Scholar] [CrossRef]
- Easson, C.G.; Boswell, K.M.; Tucker, N.; Warren, J.D.; Lopez, J.V. Combined eDNA and acoustic analysis reflects diel vertical migration of mixed consortia in the Gulf of Mexico. Front. Mar. Sci. 2020, 7, 552. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Xu, Z.; Luo, G.; Chen, C.; Li, H.; Liu, Y.; Li, J.; He, J.; Chen, H. Full-depth vertical distribution of planktonic ciliates (Ciliophora) and a novel bio-index for indicating habitat suitability of tintinnid in the Arctic Ocean. Mar. Environ. Res. 2023, 186, 105924. [Google Scholar] [CrossRef]
- Muratore, D.; Boysen, A.K.; Harke, M.J.; Becker, K.W.; Casey, J.R.; Coesel, S.N.; Mende, D.R.; Wilson, S.T.; Aylward, F.O.; Eppley, J.M. Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat. Ecol. Evol. 2022, 6, 218–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; He, Y.; Yang, M.; Gao, Z.; Zhou, J.; Wang, Y. Community Structure and Biodiversity of Active Microbes in the Deep South China Sea. Microorganisms 2024, 12, 2325. https://doi.org/10.3390/microorganisms12112325
Yang T, He Y, Yang M, Gao Z, Zhou J, Wang Y. Community Structure and Biodiversity of Active Microbes in the Deep South China Sea. Microorganisms. 2024; 12(11):2325. https://doi.org/10.3390/microorganisms12112325
Chicago/Turabian StyleYang, Taoran, Yinghui He, Ming Yang, Zhaoming Gao, Jin Zhou, and Yong Wang. 2024. "Community Structure and Biodiversity of Active Microbes in the Deep South China Sea" Microorganisms 12, no. 11: 2325. https://doi.org/10.3390/microorganisms12112325
APA StyleYang, T., He, Y., Yang, M., Gao, Z., Zhou, J., & Wang, Y. (2024). Community Structure and Biodiversity of Active Microbes in the Deep South China Sea. Microorganisms, 12(11), 2325. https://doi.org/10.3390/microorganisms12112325