Antimicrobial Resistance in Lactococcus spp. Isolated from Native Brazilian Fish Species: A Growing Challenge for Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Identification
2.2. Susceptibility Testing
2.3. Calculation of Provisional Lactococcus Garvieae Epidemiological Cutoff Values
2.4. Data Analysis
3. Results
3.1. Bacterial Identification
3.2. Quality Control
3.3. Antimicrobial Susceptibility for Lactococcus formosensis
3.4. Antimicrobial Susceptibility for Lactococcus garvieae
3.5. Antimicrobial Susceptibility for Lactococcus petauri
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altinok, I.; Ozturk, R.C.; Ture, M. NGS Analysis Revealed That Lactococcus garvieae Lg-Per Was Lactococcus petauri in Türkiye. J. Fish Dis. 2022, 45, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, A.C.C.; do Rosário, A.E.C.; da Silva Maia, C.R.M.; Rocha, V.P.; Costa, H.L.; Trindade, J.M.; Nogueira, L.F.F.; Rosa, J.C.C.; Ranzani-Paiva, M.J.T.; Pilarski, F.; et al. Genetic Characterization of Lactococcosis-Causing Bacteria Isolated from Brazilian Native Fish Species. Aquaculture 2024, 593, 741305. [Google Scholar] [CrossRef]
- Bondavalli, F.; Colussi, S.; Pastorino, P.; Zanoli, A.; Bezzo Llufrio, T.; Fernández-Garayzábal, J.F.; Acutis, P.L.; Prearo, M. First Report of Lactococcus petauri in the Pumpkinseed (Lepomis gibbosus) from Candia Lake (Northwestern Italy). Fishes 2024, 9, 117. [Google Scholar] [CrossRef]
- Khoo, L.H.; Austin, F.W.; Quiniou, S.M.A.; Gaunt, P.S.; Riecke, D.K.; Jacobs, A.M.; Meals, K.O.; Dunn, A.W.; Griffin, M.J. Lactococcosis in Silver Carp. J. Aquat. Anim. Health 2014, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abraham, T.; Yazdi, Z.; Littman, E.; Shahin, K.; Heckman, T.I.; Quijano Cardé, E.M.; Nguyen, D.T.; Hu, R.; Adkison, M.; Veek, T.; et al. Detection and Virulence of Lactococcus garvieae and L. petauri from Four Lakes in Southern California. J. Aquat. Anim. Health 2023, 35, 187–198. [Google Scholar] [CrossRef]
- Salogni, C.; Bertasio, C.; Accini, A.; Gibelli, L.R.; Pigoli, C.; Susini, F.; Podavini, E.; Scali, F.; Varisco, G.; Alborali, G.L. The Characterisation of Lactococcus garvieae Isolated in an Outbreak of Septicaemic Disease in Farmed Sea Bass (Dicentrarchus labrax, Linnaues 1758) in Italy. Pathogens 2024, 13, 49. [Google Scholar] [CrossRef]
- Neupane, S.; Rao, S.; Yan, W.-X.; Wang, P.-C.; Chen, S.-C. First Identification, Molecular Characterization, and Pathogenicity Assessment of Lactococcus garvieae Isolated from Cultured Pompano in Taiwan. J. Fish Dis. 2023, 46, 1295–1309. [Google Scholar] [CrossRef]
- Shahin, K.; Veek, T.; Heckman, T.I.; Littman, E.; Mukkatira, K.; Adkison, M.; Welch, T.J.; Imai, D.M.; Pastenkos, G.; Camus, A.; et al. Isolation and Characterization of Lactococcus garvieae from Rainbow Trout, Onchorhyncus mykiss, from California, USA. Transbound. Emerg. Dis. 2022, 69, 2326–2343. [Google Scholar] [CrossRef]
- Ortega, C.; Irgang, R.; Valladares-Carranza, B.; Collarte, C.; Avendaño-Herrera, R. First Identification and Characterization of Lactococcus garvieae Isolated from Rainbow Trout (Oncorhynchus mykiss) Cultured in Mexico. Animals 2020, 10, 1609. [Google Scholar] [CrossRef]
- Egger, R.C.; Rosa, J.C.C.; Resende, L.F.L.; de Pádua, S.B.; de Oliveira Barbosa, F.; Zerbini, M.T.; Tavares, G.C.; Figueiredo, H.C.P. Emerging Fish Pathogens Lactococcus petauri and L. garvieae in Nile Tilapia (Oreochromis niloticus) Farmed in Brazil. Aquaculture 2023, 565, 739093. [Google Scholar] [CrossRef]
- de Gazal, L.E.S.; de Brito, K.C.T.; Kobayashi, R.K.T.; Nakazato, G.; Cavalli, L.S.; Otutumi, L.K.; de Brito, B.G. Antimicrobials and Resistant Bacteria in Global Fish Farming and the Possible Risk for Public Health. Arq. Inst. Biol. 2020, 87, e0362019. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I.; et al. Review of Alternatives to Antibiotic Use in Aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Leal, C.A.G.; Silva, B.A.; Colombo, S.A. Susceptibility Profile and Epidemiological Cut-Off Values Are Influenced by Serotype in Fish Pathogenic Streptococcus agalactiae. Antibiotics 2023, 12, 1726. [Google Scholar] [CrossRef] [PubMed]
- Duman, M.; Buyukekiz, A.G.; Saticioglu, I.B.; Cengiz, M.; Sahinturk, P.; Altun, S. Epidemiology, Genotypic Diversity, and Antimicrobial Resistance of Lactococcus garvieae in Farmed Rainbow Trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2020, 19, 1–18. [Google Scholar]
- Raissy, M.; Moumeni, M. Detection of Antibiotic Resistance Genes in Some Lactococcus garvieae Strains Isolated from Infected Rainbow Trout. Iran. J. Fish. Sci. 2016, 15, 221–229. [Google Scholar]
- Monteiro, S.H.; Francisco, J.G.; Andrade, G.C.R.M.; Botelho, R.G.; Figueiredo, L.A.; Tornisielo, V.L. Study of Spatial and Temporal Distribution of Antimicrobial in Water and Sediments from Caging Fish Farms by On-Line SPE-LC-MS/MS. J. Environ. Sci. Health Part B 2016, 51, 634–643. [Google Scholar] [CrossRef]
- Leal, C.A.G. Resistência a Antimicrobianos Na Piscicultura. Panor. Aquic. 2022, 31, 38–47. [Google Scholar]
- Öztürk, R.Ç.; Ustaoglu, D.; Ture, M.; Bondavalli, F.; Colussi, S.; Pastorino, P.; Vela, A.I.; Kotzamanidis, C.; Fernandez-Garayzábal, J.F.; Bitchava, K.; et al. Epidemiological Cutoff Values and Genetic Antimicrobial Resistance of Lactococcus garvieae and L. petauri. Aquaculture 2024, 593, 741340. [Google Scholar] [CrossRef]
- Carvalho, G.M.; Silva, B.A.; Xavier, R.G.C.; Zanon, I.P.; Vilela, E.G.; Nicolino, R.R.; Tavares, G.C.; Silva, R.O.S. Evaluation of Disk Diffusion Method for Testing the Rifampicin, Erythromycin, and Tetracycline Susceptibility of Clostridioides (Prev. Clostridium) difficile. Anaerobe 2023, 80, 102720. [Google Scholar] [CrossRef]
- Sebastião, F.A.; Furlan, L.R.; Hashimoto, D.T.; Pilarski, F. Identification of Bacterial Fish Pathogens in Brazil by Direct Colony PCR and 16S RRNA Gene Sequencing. Adv. Microbiol. 2015, 05, 409. [Google Scholar] [CrossRef]
- Fukushima, H.C.S.; Leal, C.A.G.; Cavalcante, R.B.; Figueiredo, H.C.P.; Arijo, S.; Moriñigo, M.A.; Ishikawa, M.; Borra, R.C.; Ranzani-Paiva, M.J.T. Lactococcus garvieae Outbreaks in Brazilian Farms Lactococcosis in Pseudoplatystoma sp.—Development of an Autogenous Vaccine as a Control Strategy. J. Fish Dis. 2017, 40, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Assis, G.B.N.; Pereira, F.L.; Zegarra, A.U.; Tavares, G.C.; Leal, C.A.; Figueiredo, H.C.P. Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens. Front. Microbiol. 2017, 8, 1492. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.C.; de Queiroz, G.A.; Assis, G.B.N.; Leibowitz, M.P.; Teixeira, J.P.; Figueiredo, H.C.P.; Leal, C.A.G. Disease Outbreaks in Farmed Amazon Catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) Caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae. Aquaculture 2018, 495, 384–392. [Google Scholar] [CrossRef]
- do Rosário, A.E.C.; Henrique, M.C.; da Costa, É.J.C.; Barbanti, A.C.C.; Tavares, G.C. Surtos de Bacteriose Em Juvenis de Pirarucu (Arapaima gigas) Provevientes de Pisciculturas Amazônicas e Avaliação Da Sensibilidade de Aeromonas jandaei a Antimicrobianos. In Enfermidades Parasitárias e Bacterianas na Piscicultura Brasileira: Insights e Perspectivas; da Cruz, M.G., da Castro, J.S., Jerônimo, G.T., Eds.; i-EDUCAM: São Luís, Brazil, 2023; pp. 33–46. [Google Scholar]
- Ferrario, C.; Ricci, G.; Milani, C.; Lugli, G.A.; Ventura, M.; Eraclio, G.; Borgo, F.; Fortina, M.G. Lactococcus garvieae: Where Is It From? A First Approach to Explore the Evolutionary History of This Emerging Pathogen. PLoS ONE 2013, 8, e84796. [Google Scholar] [CrossRef]
- Miller, R.A. VET03: Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2020. [Google Scholar]
- Smith, P.; Finnegan, W.; Ngo, T.; Kronvall, G. Influence of Incubation Temperature and Time on the Precision of MIC and Disc Diffusion Antimicrobial Susceptibility Test Data. Aquaculture 2018, 490, 19–24. [Google Scholar] [CrossRef]
- Kronvall, G.; Kahlmeter, G.; Myhre, E.; Galas, M.F. A New Method for Normalized Interpretation of Antimicrobial Resistance from Disk Test Results for Comparative Purposes. Clin. Microbiol. Infect. 2003, 9, 120–132. [Google Scholar] [CrossRef]
- Silley, P. Susceptibility testing methods, resistance and breakpoints: What do these terms really mean? Rev. Sci. Tech. Off. Int. Épizoot. 2012, 31, 33–41. [Google Scholar] [CrossRef]
- Smith, P. Eight Rules for Improving the Quality of Papers on the Antimicrobial Susceptibility of Bacteria Isolated from Aquatic Animals. Dis. Aquat. Organ. 2020, 139, 87–92. [Google Scholar] [CrossRef]
- Smith, P.; Christofilogiannis, P. Application of Normalised Resistance Interpretation to the Detection of Multiple Low-Level Resistance in Strains of Vibrio anguillarum Obtained from Greek Fish Farms. Aquaculture 2007, 272, 223–230. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Mauri, M.; Elli, T.; Caviglia, G.; Uboldi, G.; Azzi, M. RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy, 18–20 September 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the Antimicrobial Susceptibility of Bacteria Obtained from Animals. Vet. Microbiol. 2010, 141, 601–604. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Torres-Corral, Y.; Santos, Y. Predicting Antimicrobial Resistance of Lactococcus garvieae: PCR Detection of Resistance Genes versus MALDI-TOF Protein Profiling. Aquaculture 2022, 553, 738098. [Google Scholar] [CrossRef]
- Altan, E.; Korun, J. Lactococcus garvieae Isolates from Rainbow Trout (Oncorhynchus mykiss, W.) Compared by PLG and SA1B10 PCR Primer Pairs. J. Ilm. Platax 2021, 9, 18–28. [Google Scholar] [CrossRef]
- Kawanishi, M.; Kojima, A.; Ishihara, K.; Esaki, H.; Kijima, M.; Takahashi, T.; Suzuki, S.; Tamura, Y. Drug Resistance and Pulsed-field Gel Electrophoresis Patterns of Lactococcus garvieae Isolates from Cultured Seriola (Yellowtail, Amberjack and Kingfish) in Japan. Lett. Appl. Microbiol. 2005, 40, 322–328. [Google Scholar] [CrossRef]
- Lim, F.H.; Jenkins, D.R. Native Valve Endocarditis Caused by Lactococcus garvieae: An Emerging Human Pathogen. BMJ Case Rep. 2017, 2017, bcr2017220116. [Google Scholar] [CrossRef]
- Korun, J.; Altan, E.; Teker, S.; Ulutaş, A. A Study on the Antimicrobial Resistance of Lactococcus garvieae. Acta Aquat. 2021, 8, 98–102. [Google Scholar] [CrossRef]
- Sezgin, S.S.; Yılmaz, M.; Arslan, T.; Kubilay, A. Current Antibiotic Sensitivity of Lactococcus garvieae in Rainbow Trout (Oncorhynchus mykiss) Farms from Southwestern Turkey. J. Agric. Sci. 2023, 29, 630–642. [Google Scholar] [CrossRef]
- Chang, P.H.; Lin, C.W.; Lee, Y.C. Lactococcus garvieae Infection of Cultured Rainbow Trout, Oncorhynchus mykiss, in Taiwan and Associated Biophysical Characteristics and Histopathology. Bull. Eur. Assoc. Fish Pathol. 2002, 22, 319–327. [Google Scholar]
- Majeed, S.; De Silva, L.A.D.S.; Kumarage, P.M.; Heo, G.J. Characterization of Pathogenic Lactococcus garvieae Isolated from Farmed Mullet (Mugil cephalus). Vet. Integr. Sci. 2025, 23, 1–17. [Google Scholar] [CrossRef]
- Ture, M.; Boran, H. Phenotypic and Genotypic Antimicrobial Resistance of Lactococcus sp. Strains Isolated from Rainbow Trout (Oncorhynchus mykiss). Bull. Vet. Inst. Pulawy 2015, 59, 37–42. [Google Scholar] [CrossRef]
- Vela, A.I.; del Mar Blanco, M.; Colussi, S.; Kotzamanidis, C.; Prearo, M.; Altinok, I.; Acutis, P.L.; Volpatti, D.; Alba, P.; Feltrin, F.; et al. The Association of Lactococcus petauri with Lactococcosis Is Older than Expected. Aquaculture 2024, 578, 740057. [Google Scholar] [CrossRef]
- Chan, Y.-X.; Cao, H.; Jiang, S.; Li, X.; Fung, K.-K.; Lee, C.-H.; Sridhar, S.; Chen, J.H.-K.; Ho, P.-L. Genomic Investigation of Lactococcus formosensis, Lactococcus garvieae, and Lactococcus petauri Reveals Differences in Species Distribution by Human and Animal Sources. Microbiol. Spectr. 2024, 12, e00541-24. [Google Scholar] [CrossRef] [PubMed]
- Heckman, T.I.; Yazdi, Z.; Older, C.E.; Griffin, M.J.; Waldbieser, G.C.; Chow, A.M.; Silva, I.M.; Anenson, K.M.; García, J.C.; LaFrentz, B.R.; et al. Redefining Piscine Lactococcosis. Appl. Environ. Microbiol. 2024, 90, e02349-23. [Google Scholar] [CrossRef]
- Lin, Y.; Han, J.; Barkema, H.W.; Wang, Y.; Gao, J.; Kastelic, J.P.; Han, B.; Qin, S.; Deng, Z. Comparative Genomic Analyses of Lactococcus garvieae Isolated from Bovine Mastitis in China. Microbiol. Spectr. 2023, 11, e02995-22. [Google Scholar] [CrossRef]
- Oliveira, T.F.; Leibowitz, M.P.; Leal, C.A.G. Local Epidemiological Cutoff Values and Antimicrobial Susceptibility Profile for Brazilian Francisella orientalis Isolates. Aquaculture 2022, 553, 738054. [Google Scholar] [CrossRef]
- Sun, K.; Wang, H.; Zhang, M.; Xiao, Z.; Sun, L. Genetic Mechanisms of Multi-Antimicrobial Resistance in a Pathogenic Edwardsiella tarda Strain. Aquaculture 2009, 289, 134–139. [Google Scholar] [CrossRef]
- Savvidis, G.K.; Anatoliotis, C.; Kanaki, Z.; Vafeas, G. Epizootic Outbreaks of Lactococcosis Disease in Rainbow Trout, Oncorhynchus mykiss (Walbaum), Culture in Greece. Bull. Eur. Assoc. Fish Pathol. 2007, 27, 223–228. [Google Scholar]
Isolate | Species | Host | Origin | Tissue | Year | State | Genbank No. | Reference |
---|---|---|---|---|---|---|---|---|
167/23-02 | L. formosensis | Arapaima gigas | Farmed | Brain | 2023 | BA | PP591851 | [2] |
167/23-06 | L. formosensis | Arapaima gigas | Farmed | Brain | 2023 | BA | PP591852 | [2] |
167/23-09 | L. formosensis | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529765 | This study |
AM-LG05 | L. formosensis | Colossoma macropomum | Farmed | Intestine | 2022 | AM | PP591853 | [2] |
52MS | L. formosensis | Pseudoplatystoma fasciatum | Farmed | Brain | 2012 | MS | PP591850 | [20] |
LG91-23 | L. formosensis | Pseudoplatystoma sp. | Farmed | Brain | 2023 | MG | PP591854 | [2] |
CRBP53 | L. garvieae | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591857 | [2] |
CRBP54 | L. garvieae | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591858 | [2] |
CRBP138 | L. garvieae | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591859 | [2] |
CRBP144 | L. garvieae | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591860 | [2] |
PA-LG01 | L. garvieae | Arapaima gigas | Farmed | Brain | 2018 | PA | PP591868 | [24] |
LG88-23 | L. garvieae | Brycon amazonicus | Farmed | Brain | 2023 | MG | PP591866 | [2] |
LG89-23 | L. garvieae | Brycon amazonicus | Farmed | Kidney | 2023 | MG | PP591867 | [2] |
LG116-23 | L. garvieae | Cichla sp. | Wild | Brain | 2023 | MG | PQ529771 | This study |
LG63-21 | L. garvieae | Hoplias macrophtalmus | Farmed | Kidney | 2021 | MG | PP591864 | [2] |
LG114-23 | L. garvieae | Hoplias malabaricus | Wild | Brain | 2023 | AM | PQ529769 | This study |
LG10-14 | L. garvieae | Lophiosilurus alexandri | Farmed | Brain | 2014 | MG | PP591862 | [22] |
LG66-22 | L. garvieae | Phractocephalus hemioliopterus | Farmed | Kidney | 2022 | MG | PP591865 | [2] |
LG09-14 | L. garvieae | Pseudoplatystoma corruscans | Farmed | Kidney | 2014 | SP | PP591861 | [22] |
LG23-16 | L. garvieae | Pseudoplatystoma corruscans | Farmed | Brain | 2016 | SP | PP591863 | [23] |
177 | L. garvieae | Pseudoplatystoma fasciatum | Farmed | Brain | 2012 | MS | PP591856 | [21] |
31MS | L. garvieae | Pseudoplatystoma fasciatum | Farmed | Kidney | 2012 | MS | PP591855 | [20] |
LG119-24 | L. garvieae | Pseudoplatystoma sp. | Farmed | Brain | 2024 | MG | PQ529773 | This study |
167/23-03 | L. petauri | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529760 | This study |
167/23-04 | L. petauri | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529761 | This study |
167/23-05 | L. petauri | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529762 | This study |
167/23-07 | L. petauri | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529763 | This study |
167/23-08 | L. petauri | Arapaima gigas | Farmed | Kidney | 2023 | BA | PQ529764 | This study |
167/23-10 | L. petauri | Arapaima gigas | Farmed | Spleen | 2023 | BA | PQ529766 | This study |
CRBT89 | L. petauri | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591879 | [2] |
CRBT98 | L. petauri | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591880 | [2] |
CRBP146 | L. petauri | Arapaima gigas | Farmed | Intestine | 2023 | AM | PP591878 | [2] |
AM-LG07 | L. petauri | Brycon amazonicus | Farmed | Brain | 2022 | AM | PP591876 | [2] |
AM-LG08 | L. petauri | Brycon amazonicus | Farmed | Brain | 2022 | AM | PP591877 | [2] |
AM-LG02 | L. petauri | Colossoma macropomum | Farmed | Intestine | 2020 | AM | PP591874 | [2] |
AM-LG03 | L. petauri | Colossoma macropomum | Farmed | Intestine | 2022 | AM | PP591875 | [2] |
LG03-18 | L. petauri | Pseudoplatystoma corruscans | Farmed | Brain | 2018 | MG | PP591881 | [2] |
14MS | L. petauri | Pseudoplatystoma fasciatum | Farmed | Kidney | 2012 | MS | PP591869 | [20] |
176 | L. petauri | Pseudoplatystoma fasciatum | Farmed | Brain | 2012 | MS | PP591873 | [21] |
86 | L. petauri | Pseudoplatystoma sp. | Farmed | Brain | 2012 | MS | PP591870 | [21] |
89/2 | L. petauri | Pseudoplatystoma sp. | Farmed | Brain | 2012 | MS | PP591871 | [21] |
93 | L. petauri | Pseudoplatystoma sp. | Farmed | Brain | 2012 | MS | PP591872 | [21] |
LG86-23 | L. petauri | Pseudoplatystoma sp. | Farmed | Kidney | 2023 | MG | PP591882 | [2] |
LG94-23 | L. petauri | Pseudoplatystoma sp. | Farmed | Brain | 2023 | MG | PP591883 | [2] |
LG104-23 | L. petauri | Pseudoplatystoma sp. | Farmed | Brain | 2023 | MG | PP591884 | [2] |
LG106-23 | L. petauri | Pseudoplatystoma sp. | Farmed | Kidney | 2023 | MG | PP591885 | [2] |
LG117-23 | L. petauri | Pseudoplatystoma sp. | Farmed | Kidney | 2023 | MG | PQ529772 | This study |
Antimicrobials | Minimum Value | Maximum Value | Mean ± SD | ECV (mm) | WT (%) | NWT * (%) |
---|---|---|---|---|---|---|
Lactococcus formosensis a | ||||||
Amoxicillin | 19 | 27 | 23.2 ± 2.7 | - | - | - |
Erythromycin | 20 | 30 | 25.7 ± 3.7 | - | - | - |
Florfenicol | 6 | 28 | 22.3 ± 7.8 | - | - | 16.7 |
Neomycin | 10 | 17 | 14.9 ± 2.4 | - | - | - |
Norfloxacin | 6 | 6 | 6.0 ± 0.0 | - | - | 100 |
Oxytetracycline | 6 | 27 | 9.5 ± 7.5 | - | - | 66.7 |
Trimethoprim-sulfametoxazole | 6 | 6 | 6.0 ± 0.0 | - | - | 100 |
Lactococcus garvieae b | ||||||
Amoxicillin | 18 | 28 | 21.4 ± 2.2 | ≥11 | 100 | 0 |
Erythromycin | 16 | 31 | 24.7 ± 3.7 | ≥16 | 100 | 0 |
Florfenicol | 6 | 29 | 20.9 ± 4.4 | ≥12 | 94.4 | 5.6 |
Neomycin | 10 | 19 | 15.1 ± 2.7 | ≥7 | 100 | 0 |
Norfloxacin | 6 | 19 | 9.0 ± 4.0 | - | - | 47 |
Oxytetracycline | 6 | 27 | 16.5 ± 7.3 | ≥10 | 72.2 | 27.8 |
Trimethoprim-sulfametoxazole | 6 | 19 | 7.2 ± 3.4 | - | - | 88.2 |
Lactococcus petauri c | ||||||
Amoxicillin | 15 | 26 | 20.5 ± 3.0 | ≥16 | 95.8 | 4.2 |
Erythromycin | 6 | 31 | 22.4 ± 7.1 | ≥23 | 66.7 | 33.3 |
Florfenicol | 6 | 29 | 19.5 ± 6.9 | ≥21 | 62.5 | 37.5 |
Neomycin | 10 | 19 | 14.2 ± 2.2 | ≥9 | 100 | 0 |
Norfloxacin | 6 | 14 | 8.6 ± 2.9 | ≥13 | 16.7 | 83.3 |
Oxytetracycline | 6 | 26 | 13.6 ± 7.5 | ≥23 | 16.7 | 83.3 |
Trimethoprim-sulfametoxazole | 6 | 14 | 6.3 ± 1.4 | - | - | 95.8 |
Escherichia coli ATCC 25922 d | ||||||
Amoxicillin | 14 | 19 | 15.8 ± 2.4 | - | - | - |
Erythromycin | 12 | 18 | 14.6 ± 2.8 | - | - | - |
Florfenicol | 19 | 28 | 23.5 ± 4.4 | - | - | - |
Neomycin | 16 | 20 | 18.0 ± 2.0 | - | - | - |
Norfloxacin | 24 | 34 | 30.6 ± 5.7 | - | - | - |
Oxytetracycline | 19 | 27 | 23.2 ± 3.3 | - | - | - |
Trimethoprim-sulfametoxazole | 25 | 26 | 25.5 ± 0.7 | - | - | - |
Aeromonas salmonicida subsp. salmonicida ATCC 33658 d | ||||||
Amoxicillin | 24 | 30 | 27.4 ± 3.1 | - | - | - |
Erythromycin | 19 | 22 | 20.7 ± 1.5 | - | - | - |
Florfenicol | 32 | 36 | 34.2 ± 1.7 | - | - | - |
Neomycin | 12 | 20 | 17.3 ± 4.6 | - | - | - |
Norfloxacin | 21 | 37 | 29.6 ± 8.0 | - | - | - |
Oxytetracycline | 29 | 32 | 29.7 ± 1.5 | - | - | - |
Trimethoprim-sulfametoxazole | 24 | 26 | 25.0 ± 1.4 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosário, A.E.C.d.; Barbanti, A.C.C.; Matos, H.C.; Maia, C.R.M.d.S.; Trindade, J.M.; Nogueira, L.F.F.; Pilarski, F.; Gallani, S.U.; Leal, C.A.G.; Figueiredo, H.C.P.; et al. Antimicrobial Resistance in Lactococcus spp. Isolated from Native Brazilian Fish Species: A Growing Challenge for Aquaculture. Microorganisms 2024, 12, 2327. https://doi.org/10.3390/microorganisms12112327
Rosário AECd, Barbanti ACC, Matos HC, Maia CRMdS, Trindade JM, Nogueira LFF, Pilarski F, Gallani SU, Leal CAG, Figueiredo HCP, et al. Antimicrobial Resistance in Lactococcus spp. Isolated from Native Brazilian Fish Species: A Growing Challenge for Aquaculture. Microorganisms. 2024; 12(11):2327. https://doi.org/10.3390/microorganisms12112327
Chicago/Turabian StyleRosário, Angélica Emanuely Costa do, Angelo Carlo Chaparro Barbanti, Helena Caldeira Matos, Cynthia Rafaela Monteiro da Silva Maia, Júlia Miranda Trindade, Luiz Fagner Ferreira Nogueira, Fabiana Pilarski, Silvia Umeda Gallani, Carlos Augusto Gomes Leal, Henrique César Pereira Figueiredo, and et al. 2024. "Antimicrobial Resistance in Lactococcus spp. Isolated from Native Brazilian Fish Species: A Growing Challenge for Aquaculture" Microorganisms 12, no. 11: 2327. https://doi.org/10.3390/microorganisms12112327
APA StyleRosário, A. E. C. d., Barbanti, A. C. C., Matos, H. C., Maia, C. R. M. d. S., Trindade, J. M., Nogueira, L. F. F., Pilarski, F., Gallani, S. U., Leal, C. A. G., Figueiredo, H. C. P., & Tavares, G. C. (2024). Antimicrobial Resistance in Lactococcus spp. Isolated from Native Brazilian Fish Species: A Growing Challenge for Aquaculture. Microorganisms, 12(11), 2327. https://doi.org/10.3390/microorganisms12112327