Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nucleotides and Bacterial Strains
2.2. Phage Screening and Purification
2.3. Transmission Electron Microscopy
2.4. One-Step Growth Experiment
2.5. Characterization of Temperature and pH Tolerance
2.6. Host Range Determination
2.7. Phage Genome Extraction
2.8. Bioinformatics Analysis of Phage Genome
2.9. Genome Assembly in Yeast
2.10. Plasmid Extraction from Yeast Cells
2.11. Transferring Phage Genome into P. aeruginosa
2.12. Antibacterial Assays of Mutant Phages
2.13. Statistical Analysis
3. Results
3.1. Characterization of Isolated Phage PpY1
3.2. Stability of Phage PpY1 Under Varied pH and Temperature Conditions
3.3. Host Range of Phage PpY1
3.4. Analysis of the PpY1 Genome
3.5. Identification of Nonessential Genes of Phage PpY1
3.6. Antibacterial Curve of Mutant Phages
3.7. Construction of Genome Reduced Phage
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jesudason, T. Antibacterial agents in preclinical and clinical development. Lancet Microbe 2024, 5, 100962. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, A.; Siponen, S.; Pitkänen, T.; Holmfeldt, K.; Pursiainen, A.; Torvinen, E.; Miettinen, I.T. Phage Biocontrol of Pseudomonas aeruginosa in Water. Viruses 2021, 13, 928. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S.; Datta, S.; Prasad, R.; Dubey, D.; Prasad, R.K.; Vairale, M.G. Bacteriophages and its applications: An overview. Folia Microbiol. 2017, 62, 17–55. [Google Scholar] [CrossRef]
- Hershey, A.D.; Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 1952, 36, 39–56. [Google Scholar] [CrossRef]
- Crick, F.H.; Barnett, L.; Brenner, S.; Watts-Tobin, R.J. General nature of the genetic code for proteins. Nature 1961, 192, 1227–1232. [Google Scholar] [CrossRef]
- Lemire, S.; Yehl, K.M.; Lu, T.K. Phage-Based Applications in Synthetic Biology. Annu. Rev. Virol. 2018, 5, 453–476. [Google Scholar] [CrossRef]
- Chauthaiwale, V.M.; Therwath, A.; Deshpande, V.V. Bacteriophage lambda as a cloning vector. Microbiol. Rev. 1992, 56, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bao, X.; Wang, Y.; Xu, Y.; Deng, B.; Lu, Y.; Hou, J. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virol. J. 2018, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.S. Phage engineering for development of diagnostic tools. Prog. Mol. Biol. Transl. Sci. 2023, 200, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Yacoby, I.; Benhar, I. Targeted filamentous bacteriophages as therapeutic agents. Expert Opin. Drug Deliv. 2008, 5, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Elois, M.A.; Silva, R.D.; Pilati, G.V.T.; Rodriguez-Lazaro, D.; Fongaro, G. Bacteriophages as Biotechnological Tools. Viruses 2023, 15, 349. [Google Scholar] [CrossRef] [PubMed]
- Al-Wrafy, F.; Brzozowska, E.; Górska, S.; Gamian, A. Pathogenic factors of Pseudomonas aeruginosa—The role of biofilm in pathogenicity and as a target for phage therapy. Postep. Hig. Med. Dosw. (Online) 2017, 71, 78–91. [Google Scholar] [CrossRef]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef]
- Sanya, D.R.A.; Onésime, D.; Vizzarro, G.; Jacquier, N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol. 2023, 23, 86. [Google Scholar] [CrossRef]
- Pabary, R.; Singh, C.; Morales, S.; Bush, A.; Alshafi, K.; Bilton, D.; Alton, E.W.; Smithyman, A.; Davies, J.C. Antipseudomonal Bacteriophage Reduces Infective Burden and Inflammatory Response in Murine Lung. Antimicrob. Agents Chemother. 2016, 60, 744–751. [Google Scholar] [CrossRef]
- Onallah, H.; Hazan, R.; Nir-Paz, R.; Brownstein, M.J.; Fackler, J.R.; Horne, B.; Hopkins, R.; Basu, S.; Yerushalmy, O.; Alkalay-Oren, S.; et al. Refractory Pseudomonas aeruginosa infections treated with phage PASA16: A compassionate use case series. Med 2023, 4, 600–611.e604. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, R.A.; Balacheff, Q.; Debarbieux, L.; Marchi, J.; Weitz, J.S. Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection. mSystems 2024, 9, e00171-24. [Google Scholar] [CrossRef] [PubMed]
- Latka, A.; Lemire, S.; Grimon, D.; Dams, D.; Maciejewska, B.; Lu, T.; Drulis-Kawa, Z.; Briers, Y. Engineering the Modular Receptor-Binding Proteins of Klebsiella Phages Switches Their Capsule Serotype Specificity. mBio 2021, 12, e00455-21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ning, H.; Lin, H.; She, J.; Wang, L.; Jing, Y.; Wang, J. Expansion of the Plaquing Host Range and Improvement of the Absorption Rate of a T5-like Salmonella Phage by Altering the Long Tail Fibers. Appl. Environ. Microbiol. 2022, 88, e0089522. [Google Scholar] [CrossRef]
- Guan, J.; Oromi-Bosch, A.; Mendoza, S.D.; Karambelkar, S.; Berry, J.D.; Bondy-Denomy, J. Bacteriophage genome engineering with CRISPR-Cas13a. Nat. Microbiol. 2022, 7, 1956–1966. [Google Scholar] [CrossRef]
- Kilcher, S.; Loessner, M.J. Engineering Bacteriophages as Versatile Biologics. Trends Microbiol. 2019, 27, 355–367. [Google Scholar] [CrossRef]
- Garrett, J.; Bruno, C.; Young, R. Lysis protein S of phage lambda functions in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172, 7275–7277. [Google Scholar] [CrossRef]
- Orr-Weaver, T.L.; Szostak, J.W.; Rothstein, R.J. Yeast transformation: A model system for the study of recombination. Proc. Natl. Acad. Sci. USA 1981, 78, 6354–6358. [Google Scholar] [CrossRef]
- Noskov, V.N.; Koriabine, M.; Solomon, G.; Randolph, M.; Barrett, J.C.; Leem, S.H.; Stubbs, L.; Kouprina, N.; Larionov, V. Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning. Nucleic Acids Res. 2001, 29, E32. [Google Scholar] [CrossRef]
- Ipoutcha, T.; Racharaks, R.; Huttelmaier, S.; Wilson, C.J.; Ozer, E.A.; Hartmann, E.M. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol. Spectr. 2024, 12, e0289723. [Google Scholar] [CrossRef]
- Ando, H.; Lemire, S.; Pires, D.P.; Lu, T.K. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 2015, 1, 187–196. [Google Scholar] [CrossRef]
- Lenneman, B.R.; Fernbach, J.; Loessner, M.J.; Lu, T.K.; Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 2021, 68, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Schlub, T.E.; Holmes, E.C. An allometric relationship between the genome length and virion volume of viruses. J. Virol. 2014, 88, 6403–6410. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Huet, A.; Lopez, C.A.; Toropova, K.; Pope, W.H.; Duda, R.L.; Hendrix, R.W.; Conway, J.F. Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold. mBio 2017, 8, e01579-17. [Google Scholar] [CrossRef]
- Van den Bossche, A.; Ceyssens, P.J.; De Smet, J.; Hendrix, H.; Bellon, H.; Leimer, N.; Wagemans, J.; Delattre, A.S.; Cenens, W.; Aertsen, A.; et al. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J. Proteome Res. 2014, 13, 4446–4456. [Google Scholar] [CrossRef]
- Edwards, K.F.; Steward, G.F.; Schvarcz, C.R. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol. Lett. 2021, 24, 363–373. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, W.; Gao, Y.; Jiang, C.; Shi, H.; Diao, X.; Li, S.; Chen, H.; Wang, H.; Li, R.; et al. Single-Stranded DNA-Binding Protein and Exogenous RecBCD Inhibitors Enhance Phage-Derived Homologous Recombination in Pseudomonas. iScience 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Pires, D.P.; Monteiro, R.; Mil-Homens, D.; Fialho, A.; Lu, T.K.; Azeredo, J. Designing P. aeruginosa synthetic phages with reduced genomes. Sci. Rep. 2021, 11, 2164. [Google Scholar] [CrossRef]
- Zheng, W.; Xia, Y.; Wang, X.; Gao, S.; Zhou, D.; Ravichandran, V.; Jiang, C.; Tu, Q.; Yin, Y.; Zhang, Y.; et al. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system. Nat. Protoc. 2023, 18, 2642–2670. [Google Scholar] [CrossRef]
- Lavigne, R.; Burkal’tseva, M.V.; Robben, J.; Sykilinda, N.N.; Kurochkina, L.P.; Grymonprez, B.; Jonckx, B.; Krylov, V.N.; Mesyanzhinov, V.V.; Volckaert, G. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 2003, 312, 49–59. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Shariati, A.; Azimi, T.; Ardebili, A.; Chirani, A.S.; Bahramian, A.; Pormohammad, A.; Sadredinamin, M.; Erfanimanesh, S.; Bostanghadiri, N.; Shams, S.; et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New Microbes New Infect. 2018, 21, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.F.; Pitts, B.; Pellock, B.; Walker, G.C.; Stewart, P.S.; O’Toole, G.A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Oromi-Bosch, A.; Antani, J.D.; Turner, P.E. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annu. Rev. Virol. 2023, 10, 503–524. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Martínez, B.; Rodríguez, A.; García, P. Isolation and characterization of bacteriophages infecting Staphylococcus epidermidis. Curr. Microbiol. 2010, 61, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Costa, A.R.; Konstantinides, N.; Ferreira, A.; Akturk, E.; Sillankorva, S.; Nemec, A.; Shneider, M.; Dötsch, A.; Azeredo, J. Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains. Environ. Microbiol. 2017, 19, 5060–5077. [Google Scholar] [CrossRef]
- Islam, M.S.; Raz, A.; Liu, Y.; Elbassiony, K.R.A.; Dong, X.; Zhou, P.; Zhou, Y.; Li, J. Complete Genome Sequence of Aeromonas Phage ZPAH7 with Halo Zones, Isolated in China. Microbiol. Resour. Announc. 2019, 8, e01678-18. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Y.; Gu, Y.; Zhu, Y.; Liu, X. Characterization and genomic study of “phiKMV-Like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci. Rep. 2017, 7, 13068. [Google Scholar] [CrossRef]
- Ceyssens, P.J.; Lavigne, R.; Mattheus, W.; Chibeu, A.; Hertveldt, K.; Mast, J.; Robben, J.; Volckaert, G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the phiKMV subgroup within the T7 supergroup. J. Bacteriol. 2006, 188, 6924–6931. [Google Scholar] [CrossRef]
- Karumidze, N.; Thomas, J.A.; Kvatadze, N.; Goderdzishvili, M.; Hakala, K.W.; Weintraub, S.T.; Alavidze, Z.; Hardies, S.C. Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl. Microbiol. Biotechnol. 2012, 94, 1609–1617. [Google Scholar] [CrossRef]
- Cady, K.C.; Bondy-Denomy, J.; Heussler, G.E.; Davidson, A.R.; O’Toole, G.A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 2012, 194, 5728–5738. [Google Scholar] [CrossRef]
- Liu, H.W.; Roisné-Hamelin, F.; Beckert, B.; Li, Y.; Myasnikov, A.; Gruber, S. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol. Cell 2022, 82, 4727–4740.e4726. [Google Scholar] [CrossRef]
- Yuan, S.; Shi, J.; Jiang, J.; Ma, Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res. 2022, 50, 13183–13197. [Google Scholar] [CrossRef]
Host Strains | PpY1 | KOgp01−05 | KOgp03−06 | KOgp08−12 | KOgp16−17 | Origin |
---|---|---|---|---|---|---|
P. aeruginosa PAO1 | + | + | + | + | + | Model strain |
P. aeruginosa PA04 | − | − | − | − | − | Mink lung |
P. aeruginosa 130726.ZN | − | − | − | − | − | Feed for sick mink |
P. aeruginosa YP−35 | − | − | − | − | − | Duck embryo |
P. aeruginosa PA−L27 | − | − | − | − | − | Yolk of chicken embryo |
P. aeruginosa C3SL | − | − | − | − | − | Feed for mink |
P. aeruginosa PA−DANWO6 | − | − | − | − | − | Duck’s nest |
P. aeruginosa YP−2 | − | − | − | − | − | Duck embryo |
P. aeruginosa 111203 | + | + | + | + | + | Mink lung |
P. aeruginosa D.11092618 | − | − | − | − | − | Mink lung |
P. aeruginosa WD01 | − | − | − | − | − | Mink lung |
P. aeruginosa DC | − | − | − | − | − | Mink lung |
P. aeruginosa SN03 | + | + | + | + | + | Sheep lung |
P. aeruginosa PA−631 | + | + | + | + | + | Mink lung |
P. aeruginosa PA−4 | + | + | + | + | + | Chicken organs |
P. aeruginosa PA−LSJ4 | + | + | + | + | + | Feed for sick chickens |
P. aeruginosa F2303 | − | − | − | − | − | Human sputum |
P. aeruginosa YP−25 | + | + | + | + | + | Duck embryo |
P. aeruginosa PA−XJ24030 | − | − | − | − | − | Human pathogen isolated from antimicrobial disks |
P. aeruginosa PA−JF4 | − | − | − | − | − | Chicken lung |
P. aeruginosa PA−DKB15−QH | * | * | − | − | − | Yolk of chicken embryo |
P. aeruginosa D.11112309 | + | + | + | + | Mink lung | |
P. aeruginosa YP−39 | + | + | − | − | + | Duck embryo |
P. aeruginosa YP−26 | − | − | − | − | − | Duck embryo |
P. aeruginosa PA−SX8−F3 | − | − | − | − | − | Chicken fecal |
P. aeruginosa PA−XJ230522054 | − | − | − | − | − | Human pathogen isolated from antimicrobial disks |
P. aeruginosa PA−XJ17030 | − | − | − | − | − | Human pathogen isolated from antimicrobial disks |
Gene | Strand | Size (bp) | Start | Stop | Function of Encoded Protein |
---|---|---|---|---|---|
gp58 | − | 213 | 380 | 168 | hypothetical protein |
gp01 | + | 285 | 1907 | 2191 | hypothetical protein |
gp02 | + | 228 | 2191 | 2418 | hypothetical protein |
gp03 | + | 540 | 2429 | 2968 | hypothetical protein |
gp04 | + | 105 | 3031 | 3135 | hypothetical protein |
gp05 | + | 120 | 3138 | 3257 | hypothetical protein |
gp06 | + | 369 | 3336 | 3704 | hypothetical protein |
gp07 | + | 228 | 3691 | 3918 | hypothetical protein |
gp08 | + | 186 | 3915 | 4100 | hypothetical protein |
gp09 | + | 180 | 4097 | 4276 | hypothetical protein |
gp10 | + | 282 | 4276 | 4557 | hypothetical protein |
gp11 | + | 261 | 4557 | 4817 | hypothetical protein |
gp12 | + | 288 | 4819 | 5106 | hypothetical protein |
gp13 | + | 423 | 5184 | 5606 | hypothetical protein |
gp14 | + | 360 | 5675 | 6034 | hypothetical protein |
gp15 | + | 855 | 6037 | 6891 | DNA-binding protein |
gp16 | + | 540 | 7250 | 7789 | hypothetical protein |
gp17 | + | 114 | 7794 | 7907 | hypothetical protein |
gp18 | + | 99 | 7904 | 8002 | hypothetical protein |
gp19 | + | 825 | 7975 | 8799 | DNA primase |
gp20 | + | 1269 | 8768 | 10,036 | DNA helicase/AAA family ATPase |
gp21 | + | 621 | 10,026 | 10,646 | hypothetical protein |
gp22 | + | 948 | 10,646 | 11,593 | phage-associated ATP-dependent DNA ligase |
gp23 | + | 285 | 11,590 | 11,874 | hypothetical protein |
gp24 | + | 321 | 11,871 | 12,191 | hypothetical protein |
gp25 | + | 2427 | 12,188 | 14,614 | DNA-directed DNA polymerase |
gp26 | + | 312 | 14,611 | 14,922 | hypothetical protein |
gp27 | + | 1050 | 14,977 | 16,026 | hypothetical protein |
gp28 | + | 942 | 16,026 | 16,967 | 5′−3′ exonuclease |
gp29 | + | 441 | 16,957 | 17,397 | endonuclease VII |
gp30 | + | 1047 | 17,394 | 18,440 | 3′−5′exonuclease |
gp31 | + | 372 | 18,450 | 18,821 | hypothetical protein |
gp32 | + | 351 | 18,814 | 19,164 | hypothetical protein |
gp33 | + | 2448 | 19,173 | 21,620 | DNA−directed RNA polymerase |
gp34 | + | 252 | 21,805 | 22,056 | hypothetical protein |
gp35 | + | 474 | 22,056 | 22,529 | GNAT family N−acetyltransferase |
gp36 | + | 297 | 22,474 | 22,770 | virion structural protein |
gp37 | + | 1533 | 22,782 | 24,314 | Head-to-tail connector protein |
gp38 | + | 969 | 24,318 | 25,286 | capsid assembly protein |
gp39 | + | 1008 | 25,339 | 26,346 | major capsid protein |
gp40 | + | 555 | 26,443 | 26,997 | non-contractile tail tubular protein A |
gp41 | + | 2481 | 27,000 | 29,480 | Non-contractile tail tubular protein B |
gp42 | + | 546 | 29,480 | 30,025 | hypothetical protein |
gp43 | + | 2697 | 30,025 | 32,721 | baseplate hub structural protein/lysozyme R |
gp44 | + | 4014 | 32,725 | 36,738 | DNA ejectosome component, peptidoglycan lytic exotransglycosylase |
gp45 | + | 756 | 36,740 | 37,495 | tail fiber protein A |
gp46 | + | 459 | 37,495 | 37,953 | tail fiber protein B |
gp47 | + | 906 | 37,946 | 38,851 | tail fiber protein C |
gp48 | + | 606 | 38,855 | 39,460 | tail fiber protein D |
gp49 | + | 306 | 39,460 | 39,765 | terminase small subunit |
gp50 | + | 1806 | 39,775 | 41,580 | terminase large subunit |
gp51 | + | 201 | 41,577 | 41,777 | holin |
gp52 | + | 483 | 41,774 | 42,256 | endolysin |
gp53 | + | 330 | 42,214 | 42,543 | phage lambda Rz-like lysis protein |
gp54 | + | 114 | 42,518 | 42,631 | phage lambda Rz1-like protein |
gp55 | + | 315 | 42,633 | 42,947 | hypothetical protein |
gp56 | + | 195 | 42,997 | 43,191 | hypothetical protein |
gp57 | − | 213 | 43,727 | 43,515 | hypothetical protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, X.; Zhao, S.; Zhang, Q.; Liu, S.; Zhang, Y.; Yan, F. Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage. Microorganisms 2024, 12, 2346. https://doi.org/10.3390/microorganisms12112346
Cong X, Zhao S, Zhang Q, Liu S, Zhang Y, Yan F. Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage. Microorganisms. 2024; 12(11):2346. https://doi.org/10.3390/microorganisms12112346
Chicago/Turabian StyleCong, Xiaomei, Shuang Zhao, Qing Zhang, Shuo Liu, Youming Zhang, and Fu Yan. 2024. "Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage" Microorganisms 12, no. 11: 2346. https://doi.org/10.3390/microorganisms12112346
APA StyleCong, X., Zhao, S., Zhang, Q., Liu, S., Zhang, Y., & Yan, F. (2024). Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage. Microorganisms, 12(11), 2346. https://doi.org/10.3390/microorganisms12112346