Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal “Heat Shock” Proteins Also “pH Shock” Resistant?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transmission Electron Microscopy
2.2. Expression and Purification of Natural and Engineered Heat Shock Proteins
2.3. Gel Electrophoresis and Silver Staining
2.4. Circular Dichroism (CD)
2.5. Intrinsic Fluorescence Spectroscopy
2.6. 8-Anilino-1-Napthalenesulfonic Acid (ANS) Binding Assays
2.7. Differential Scanning Calorimetry (DSC)
2.8. Trypsin Digestion
2.9. Structural Modeling
2.10. Molecular Dynamics Simulations
3. Results
3.1. HSPs Resolved by Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis
3.2. Transmission Electron Microscopy (TEM) Reveals HSP Ring Structures In Vivo
3.3. Structural Models Predict Similarities in Three-Dimensional Structures of HSP Subtypes
3.4. HSPα, HSPβ, and HSPβ-coh Amino Acid Sequence Alignment Shows Conserved Regions
3.5. Differential Scanning Calorimetry Reveals Tm for HSPs Under Different pH Conditions
3.6. Circular Dichroism (CD) Shows Secondary Structure Shifts at Varied pH and Temperature
3.7. Weighted Spectral Difference (WSD) Suggests Differences in HSP Subtype Sensitivity to pH
3.8. Intrinsic Fluorescence (IF) Indicates Tertiary Structure Shifts at Varied pH and Temperature
3.9. Anilino Naphthalene 8-Sulfonate Binding Suggests Limited Stability of Tertiary Folds
3.10. Hydropathy Analysis Shows Differences in Hydrophobicity Between HSP Subtypes
3.11. Trypsin Digestion Assays Suggest a Flexible HSPb Backbone Structure
3.12. Molecular Dynamics Simulations Reveal Thermostability and pH Dependence of HSPs
4. Discussion
4.1. Primary Sequence Similarity and High Structural Paralogy Between HSP Subtypes
4.2. HSPs Exhibit High Thermal Tolerance but Limited Tolerance to Low pH
4.2.1. Natural and Engineered HSPs Exhibit Thermostability at Neutral pH
4.2.2. Integrity of HSP Tertiary Structure Shows pH Dependency
4.2.3. The HSPβ Backbone Structure Is More Resilient than That of HSPα or HSPβ-coh
4.3. HSP Secondary Structure Exhibits Greater Resilience than Tertiary Structure During Stress
4.4. Secondary Structure Stability and Tertiary Structure Flexibility May Impact HSP Function
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brock, T.D.; Brock, K.M.; Belly, R.T.; Weiss, R.L. Sulfolobus: A New Genus of Sulfur-Oxidizing Bacteria Living at Low pH and High Temperature. Arch. Mikrobiol. 1972, 84, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Mosser, J.L.; Mosser, A.G.; Brock, T.D. Population Ecology of Sulfolobus acidocaldarius: I. Temperature strains. Arch. Microbiol. 1974, 97, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Segerer, A.; Neuner, A.; Kristjansson, J.K.; Stetter, K.O. Acidianus infernus Gen. Nov., Sp. Nov., and Acidianus brierleyi Comb. Nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria. Int. J. Syst. Bacteriol. 1986, 36, 559–564. [Google Scholar] [CrossRef]
- Grogan, D.W. Phenotypic Characterization of the Archaebacterial Genus Sulfolobus: Comparison of Five Wild-Type Strains. J. Bacteriol. 1989, 171, 6710–6719. [Google Scholar] [CrossRef]
- Segerer, A.H.; Trincone, A.; Gahrtz, M.; Stetter, K.O. Stygiolobus azoricus Gen. Nov., Sp. Nov. Represents a Novel Genus of Anaerobic, Extremely Thermoacidophilic Archaebacteria of the Order Suvolobales. Int. J. Syst. Evol. Microbiol. 1991, 41, 495–501. [Google Scholar] [CrossRef]
- Takayanagi, S.; Kawasaki, H.; Sugimori, K.; Yamada, T.; Sugai, A.; Ito, T.; Yamasato, K.; Shioda, M. Sulfolobus hakonensis Sp. Nov., a Novel Species of Acidothermophilic Archaeon. Int. J. Syst. Bacteriol. 1996, 46, 377–382. [Google Scholar] [CrossRef]
- Kurosawa, N.; Itoh, Y.H.; Iwai, T.; Sugai, A.; Uda, I.; Kimura, N.; Horiuchi, T.; Itoh, T. Sulfurisphaera ohwakuensis Gen. Nov., Sp. Nov., a Novel Extremely Thermophilic Acidophile of the Order Sulfolobales. Int. J. Syst. Bacteriol. 1998, 48, 451–456. [Google Scholar] [CrossRef]
- Suzuki, T.; Iwasaki, T.; Uzawa, T.; Hara, K.; Nemoto, N.; Kon, T.; Ueki, T.; Yamagishi, A.; Oshima, T. Sulfolobus tokodaii Sp. Nov. (f. Sulfolobus Sp. Strain 7), a New Member of the Genus Sulfolobus Isolated from Beppu Hot Springs, Japan. Extremophiles 2002, 6, 39–44. [Google Scholar] [CrossRef]
- Ceballos, R.M.; Marceau, C.D.; Marceau, J.O.; Morris, S.; Clore, A.J.; Stedman, K.M. Differential Virus Host-Ranges of the Fuselloviridae of Hyperthermophilic Archaea: Implications for Evolution in Extreme Environments. Front. Microbiol. 2012, 3, 26572. [Google Scholar] [CrossRef]
- Servín-Garcidueñas, L.E.; Martínez-Romero, E. Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring. Genome Announc. 2014, 2, e00164-14. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Zhang, Z.; Li, K.; Zhang, X.; Mora-López, M.; Jiang, C.; Liu, C.; Wang, L.; Zhu, Y.; et al. Genome Sequencing of Sulfolobus Sp. A20 from Costa Rica and Comparative Analyses of the Putative Pathways of Carbon, Nitrogen, and Sulfur Metabolism in Various Sulfolobus Strains. Front. Microbiol. 2016, 7, 1902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, X.; Wang, H.; Jiang, H.; Dong, H.; Huang, L. Novel Sulfolobus fuselloviruses with Extensive Genomic Variations. J. Virol. 2020, 94, e01624-19. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, R.M.; Drummond, C.G.; Stacy, C.L.; Padilla-Crespo, E.; Stedman, K.M. Host-Dependent Differences in Replication Strategy of the Sulfolobus Spindle-Shaped Virus Strain SSV9 (a.k.a., SSVK1): Infection Profiles in Hosts of the Family Sulfolobaceae. Front. Microbiol. 2020, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-J.; Jiang, Z.; Wang, P.; Qin, Y.-L.; Xu, W.; Wang, Y.; Liu, S.-J.; Jiang, C.-Y. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front. Microbiol. 2021, 12, 768283. [Google Scholar] [CrossRef] [PubMed]
- Counts, J.A.; Willard, D.J.; Kelly, R.M. Life in Hot Acid: A Genome-based Reassessment of the Archaeal Order Sulfolobales. Environ. Microbiol. 2021, 23, 3568–3584. [Google Scholar] [CrossRef]
- Zillig, W.; Stetter, K.O.; Wunderl, S.; Schulz, W.; Priess, H.; Scholz, I. The Sulfolobus-“Caldariella” Group: Taxonomy on the Basis of the Structure of DNA-Dependent RNA Polymerases. Arch. Microbiol. 1980, 125, 259–269. [Google Scholar] [CrossRef]
- She, Q.; Singh, R.K.; Confalonieri, F.; Zivanovic, Y.; Allard, G.; Awayez, M.J.; Chan-Weiher, C.C.-Y.; Clausen, I.G.; Curtis, B.A.; De Moors, A.; et al. The Complete Genome of the Crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 2001, 98, 7835–7840. [Google Scholar] [CrossRef]
- Ceballos, R.M.; Stacy, C.L. Quantifying Relative Virulence: When μ Max Fails and AUC Alone Just Is Not Enough. J. Gen. Virol. 2021, 102, 001515. [Google Scholar] [CrossRef]
- De Lise, F.; Iacono, R.; Moracci, M.; Strazzulli, A.; Cobucci-Ponzano, B. Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023, 13, 114. [Google Scholar] [CrossRef]
- Trent, J.D.; Osipiuk, J.; Pinkau, T. Acquired Thermotolerance and Heat Shock in the Extremely Thermophilic Archaebacterium Sulfolobus Sp. Strain B12. J. Bacteriol. 1990, 172, 1478–1484. [Google Scholar] [CrossRef]
- Trent, J.D.; Nimmesgern, E.; Wall, J.S.; Hartl, F.-U.; Horwich, A.L. A Molecular Chaperone from a Thermophilic Archaebacterium Is Related to the Eukaryotic Protein T-Complex Polypeptide-1. Nature 1991, 354, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, H.K.; Osipiuk, J.; Maltsev, N.; Overbeek, R.; Quaite-Randall, E.; Joachimiak, A.; Trent, J.D. The 60 kDa Heat Shock Proteins in the Hyperthermophilic Archaeon Sulfolobus shibatae. J. Mol. Biol. 1995, 253, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, H.K.; Yaoi, T.; Brocchieri, L.; McMillan, R.A.; Alton, T.; Trent, J.D. The Composition, Structure and Stability of a Group II Chaperonin Are Temperature Regulated in a Hyperthermophilic Archaeon. Mol. Microbiol. 2003, 48, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, R.M.; Jr, R.M.C.; Rani, A.; Morales, C.T.; Batchenkova, N.A. Improved Hydrolysis of Pretreated Lignocellulosic Biomass Using Mobile Enzyme Sequestration Platforms. In Recent Advances in Energy, Environment and Materials; INASE: London, UK, 2014; p. 47. [Google Scholar]
- Baes, R.; Lemmens, L.; Mignon, K.; Carlier, M.; Peeters, E. Defining Heat Shock Response for the Thermoacidophilic Model Crenarchaeon Sulfolobus Acidocaldarius. Extremophiles 2020, 24, 681–692. [Google Scholar] [CrossRef]
- Bhakta, K.; Roy, M.; Samanta, S.; Ghosh, A. Functional Diversity in Archaeal Hsp60: A Molecular Mosaic of Group I and Group II Chaperonin. FEBS J. 2024, 291, 4323–4348. [Google Scholar] [CrossRef]
- Malik, J.A.; Lone, R. Heat Shock Proteins with an Emphasis on HSP 60. Mol. Biol. Rep. 2021, 48, 6959–6969. [Google Scholar] [CrossRef]
- Knapp, S.; Schmidt-Krey, I.; Hebert, H.; Bergman, T.; Jörnvall, H.; Ladenstein, R. The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus: A biochemical and structural characterization. J. Mol. Biol. 1994, 242, 397–407. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Sobti, M.; Stewart, A.G. Structural Analysis of a Filamentous Chaperonin from Sulfolobus solfataricus. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Sobti, M.; Stewart, A.G. Structural Analysis of the Sulfolobus Solfataricus TF55β Chaperonin by Cryo-Electron Microscopy. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2021, 77, 79–84. [Google Scholar] [CrossRef]
- Guagliardi, A.; Cerchia, L.; Bartolucci, S.; Rossi, M. The Chaperonin from the Archaeon Sulfolobus solfataricus Promotes Correct Refolding and Prevents Thermal Denaturation in Vitro. Protein Sci. 1994, 3, 1436–1443. [Google Scholar] [CrossRef]
- Lopez, T.; Dalton, K.; Frydman, J. The Mechanism and Function of Group II Chaperonins. J. Mol. Biol. 2015, 427, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Skjærven, L.; Cuellar, J.; Martinez, A.; Valpuesta, J.M. Dynamics, Flexibility, and Allostery in Molecular Chaperonins. FEBS Lett. 2015, 589, 2522–2532. [Google Scholar] [CrossRef]
- Chatterjee, B.K.; Puri, S.; Sharma, A.; Pastor, A.; Chaudhuri, T.K. Molecular Chaperones: Structure-Function Relationship and Their Role in Protein Folding; Springer: Cham, Switzerland, 2018; pp. 181–218. [Google Scholar] [CrossRef]
- Pereira, J.H.; Ralston, C.Y.; Douglas, N.R.; Meyer, D.; Knee, K.M.; Goulet, D.R.; King, J.A.; Frydman, J.; Adams, P.D. Crystal Structures of a Group II Chaperonin Reveal the Open and Closed States Associated with the Protein Folding Cycle. J. Biol. Chem. 2010, 285, 27958–27966. [Google Scholar] [CrossRef] [PubMed]
- Chaston, J.J.; Smits, C.; Aragão, D.; Wong, A.S.W.; Ahsan, B.; Sandin, S.; Molugu, S.K.; Molugu, S.K.; Bernal, R.A.; Stock, D.; et al. Structural and Functional Insights into the Evolution and Stress Adaptation of Type II Chaperonins. Structure 2016, 24, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, K.O. Allosteric Communication, Assembly, and Nucleotide Hydrolysis in Group II Chaperonins. Ph.D. Thesis, Stanford University, Stanford, CA, USA, January 2022. Available online: https://purl.stanford.edu/kv604nm1473 (accessed on 29 September 2024).
- Saibil, H. Chaperone Machines for Protein Folding, Unfolding and Disaggregation. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642. [Google Scholar] [CrossRef]
- Ditzel, L.; Löwe, J.; Stock, D.; Stetter, K.-O.; Huber, H.; Huber, R.; Steinbacher, S. Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT. Cell 1998, 93, 125–138. [Google Scholar] [CrossRef]
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular Chaperones in Protein Folding and Proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Noi, K.; Hirai, H.; Hongo, K.; Mizobata, T.; Kawata, Y. A Potentially Versatile Nucleotide Hydrolysis Activity of Group II Chaperonin Monomers from Thermoplasma acidophilum. Biochemistry 2009, 48, 9405–9415. [Google Scholar] [CrossRef]
- Gupta, A.J.; Haldar, S.; Miličić, G.; Hartl, F.U.; Hayer-Hartl, M. Active Cage Mechanism of Chaperonin-Assisted Protein Folding Demonstrated at Single-Molecule Level. J. Mol. Biol. 2014, 426, 2739–2754. [Google Scholar] [CrossRef]
- Mitsuzawa, S.; Kagawa, H.; Li, Y.; Chan, S.L.; Paavola, C.D.; Trent, J.D. The Rosettazyme: A Synthetic Cellulosome. J. Biotechnol. 2009, 143, 139–144. [Google Scholar] [CrossRef]
- Moll, R.; Schäfer, G. Purification and Characterisation of an Archaebacterial Succinate Dehydrogenase Complex from the Plasma Membrane of the Thermoacidophile Sulfolobus acidocaldarius. Eur. J. Biochem. 1991, 201, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Schocke, L.; Bräsen, C.; Siebers, B. Thermoacidophilic Sulfolobus Species as Source for Extremozymes and as Novel Archaeal Platform Organisms. Curr. Opin. Biotechnol. 2019, 59, 71–77. [Google Scholar] [CrossRef]
- Paavola, C.D.; Chan, S.L.; Li, Y.; Mazzarella, K.M.; McMillan, R.A.; Trent, J.D. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein. Nanotechnology 2006, 17, 1171–1176. [Google Scholar] [CrossRef]
- Dinh, N.N.; Winn, B.C.; Arthur, K.K.; Gabrielson, J.P. Quantitative Spectral Comparison by Weighted Spectral Difference for Protein Higher Order Structure Confirmation. Anal. Biochem. 2014, 464, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-58829-343-5. [Google Scholar]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Ranson, N.A.; Farr, G.W.; Roseman, A.M.; Gowen, B.; Fenton, W.A.; Horwich, A.L.; Saibil, H.R. ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy. Cell 2001, 107, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. CP Bioinform. 2016, 54, 5–6. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005, 61, 704–721. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cheng, X.; Jo, S.; MacKerell, A.D.; Klauda, J.B.; Im, W. CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Biophys. J. 2016, 110, 641a. [Google Scholar] [CrossRef]
- Reid, J.K. Large Sparse Sets of Linear Equations. Comput. J. 1971, 15, 70. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D.; Pastor, R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Feller, S.E.; Zhang, Y.; Pastor, R.W.; Brooks, B.R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. J. Chem. Phys. 1995, 103, 4613–4621. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An, N·log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Heinig, M.; Frishman, D. STRIDE: A Web Server for Secondary Structure Assignment from Known Atomic Coordinates of Proteins. Nucleic Acids Res. 2004, 32, W500–W502. [Google Scholar] [CrossRef]
- Trent, J.D.; Kagawa, H.K.; Paavola, C.D.; McMillan, R.A.; Howard, J.; Jahnke, L.; Lavin, C.; Embaye, T.; Henze, C.E. Intracellular Localization of a Group II Chaperonin Indicates a Membrane-Related Function. Proc. Natl. Acad. Sci. USA 2003, 100, 15589–15594. [Google Scholar] [CrossRef]
- Trent, J.D.; Kagawa, H.K.; Yaoi, T.; Olle, E.; Zaluzec, N.J. Chaperonin filaments: The archaeal cytoskeleton? Proc. Natl. Acad. Sci. USA 1997, 94, 5383–5388. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J. Biomol. Tech. JBT 2010, 21, 167. [Google Scholar]
- Cardamone, M.; Puri, N.K. Spectrofluorimetric Assessment of the Surface Hydrophobicity of Proteins. Biochem. J. 1992, 282, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Crooks, R.O.; Rao, T.; Mason, J.M. Truncation, Randomization, and Selection. J. Biol. Chem. 2011, 286, 29470–29479. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.Y.; Taneja, A.K.; Hodges, R.S. Synthesis of a Model Protein of Defined Secondary and Quaternary Structure. Effect of Chain Length on the Stabilization and Formation of Two-Stranded Alpha-Helical Coiled-Coils. J. Biol. Chem. 1984, 259, 13253–13261. [Google Scholar] [CrossRef]
- Kwok, S.C.; Hodges, R.S. Stabilizing and Destabilizing Clusters in the Hydrophobic Core of Long Two-Stranded α-Helical Coiled-Coils. J. Biol. Chem. 2004, 279, 21576–21588. [Google Scholar] [CrossRef]
- Eftink, M.R. Intrinsic fluorescence of proteins. In Topics in fluorescence spectroscopy: Volume 6: Protein Fluorescence; Springer: Boston, MA, USA, 2002; pp. 1–15. [Google Scholar] [CrossRef]
- Royer, C.A. Approaches to Teaching Fluorescence Spectroscopy. Biophys. J. 1995, 68, 1191–1195. [Google Scholar] [CrossRef]
- Gasymov, O.K.; Glasgow, B.J. ANS Fluorescence: Potential to Augment the Identification of the External Binding Sites of Proteins. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2007, 1774, 403–411. [Google Scholar] [CrossRef]
- Lee, C.H. 1-anilinonaphthalene-8-sulfonate (ANS); a versatile fluorescent probe from protein folding study to drug design. BioWave 2010, 12, 1. [Google Scholar]
- Freier, D.; Mothershed, C.P.; Wiegel, J. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 1988, 54, 204–211. [Google Scholar] [CrossRef]
- Ng, T.K.; Ben-Bassat, A.; Zeikus, J.G. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 1981, 41, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Fukui, N.; Araki, K.; Hongo, K.; Mizobata, T.; Kawata, Y. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture. J. Biol. Chem. 2016, 291, 25217–25226. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, T.K.; Verma, V.K.; Maheshwari, A. GroEL Assisted Folding of Large Polypeptide Substrates in Escherichia coli: Present Scenario and Assignments for the Future. Prog. Biophys. Mol. Biol. 2009, 99, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Yurkova, M.S.; Savvin, O.I.; Zenin, V.A.; Fedorov, A.N. Design and Characterization of a Methionineless Variant of Thermostable Chaperon GroEL from Thermus Thermophilus. Appl. Biochem. Microbiol. 2019, 55, 112–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furr, M.; Badiee, S.A.; Basha, S.; Agrawal, S.; Alraawi, Z.; Heng, S.; Stacy, C.; Ahmed, Y.; Moradi, M.; Kumar, T.K.S.; et al. Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal “Heat Shock” Proteins Also “pH Shock” Resistant? Microorganisms 2024, 12, 2348. https://doi.org/10.3390/microorganisms12112348
Furr M, Badiee SA, Basha S, Agrawal S, Alraawi Z, Heng S, Stacy C, Ahmed Y, Moradi M, Kumar TKS, et al. Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal “Heat Shock” Proteins Also “pH Shock” Resistant? Microorganisms. 2024; 12(11):2348. https://doi.org/10.3390/microorganisms12112348
Chicago/Turabian StyleFurr, Mercede, Shadi A. Badiee, Sreenivasulu Basha, Shilpi Agrawal, Zeina Alraawi, Sobroney Heng, Carson Stacy, Yeasin Ahmed, Mahmoud Moradi, Thallapuranam K. S. Kumar, and et al. 2024. "Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal “Heat Shock” Proteins Also “pH Shock” Resistant?" Microorganisms 12, no. 11: 2348. https://doi.org/10.3390/microorganisms12112348
APA StyleFurr, M., Badiee, S. A., Basha, S., Agrawal, S., Alraawi, Z., Heng, S., Stacy, C., Ahmed, Y., Moradi, M., Kumar, T. K. S., & Ceballos, R. M. (2024). Structural Stability Comparisons Between Natural and Engineered Group II Chaperonins: Are Crenarchaeal “Heat Shock” Proteins Also “pH Shock” Resistant? Microorganisms, 12(11), 2348. https://doi.org/10.3390/microorganisms12112348