In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection and Obtaining the Sequencing Datasets
2.2. Data Processing and Analysis of Sequencing Reads
3. Results
Autor; Year | Accession Number | Country | Type of Study | NGS Technology | N | Groups |
---|---|---|---|---|---|---|
Albrich, W.C., et al.; 2022 [62] | PRJEB50040 | Switzerland and Ireland | Cohort | MiSeq | 98 | 8 mild, 24 moderate, and 66 severe |
Gaibani, P., et al.; 2021 [63] | PRJNA700830 | Italy | Case-control | MiSeq | 69 | COVID-19 |
Galperine, T., et al.; 2023 [64] | PRJEB61722 | Switzerland | Cohort | MiSeq | 57 | 42 severe, 15 critical |
Rafiqul Islam, S.M., et al.; 2022 [65] | PRJNA767939 | Bangladesh | Cross-section | MiSeq | 37 | 15 healthy, 22 COVID-19 |
Reinol, J., et al.; 2021 [66] | PRJNA747262 | Germany | Cross-section | NovaSeq 6000 | 212 | 95 negative, 44 mild, 35 moderate, 26 severe, 12 critical |
Talukdar, D., et al.; 2023 [67] | PRJNA895415 | India | Cohort | MiSeq | 52 | 7 mild, 45 severe |
Wu, Y. J., et al.; 2021 [68] | PRJNA684070 | China | Case-control | NovaSeq 6000 | 56 | 32 healthy, 5 mild, 16 moderate, 3 severe |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Clinical Management of COVID-19: Living Guideline; World Health Organization: Genebra, Switzerland, 2023; Volume 2023.
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020, 159, 944–955.e8. [Google Scholar] [CrossRef]
- Gou, W.; Fu, Y.; Yue, L.; Chen, G.-D.; Cai, X.; Shuai, M.; Xu, F.; Yi, X.; Chen, H.; Zhu, Y.; et al. Gut microbiota, inflammation, and molecular signatures of host response to infection. J. Genet. Genom. 2021, 48, 792–802. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.-Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 Influenza. Clin. Infect. Dis. 2020, 71, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Al Bataineh, M.T.; Henschel, A.; Mousa, M.; Daou, M.; Waasia, F.; Kannout, H.; Khalili, M.; Kayasseh, M.A.; Alkhajeh, A.; Uddin, M.; et al. Gut Microbiota Interplay With COVID-19 Reveals Links to Host Lipid Metabolism Among Middle Eastern Populations. Front. Microbiol. 2021, 12, 761067. [Google Scholar] [CrossRef] [PubMed]
- Bucci, V.; Ward, D.V.; Bhattarai, S.; Rojas-Correa, M.; Purkayastha, A.; Holler, D.; Qu, M.D.; Mitchell, W.G.; Yang, J.; Fountain, S.; et al. The intestinal microbiota predicts COVID-19 severity and fatality regardless of hospital feeding method. mSystems 2023, 8, e00310-23. [Google Scholar] [CrossRef]
- Rueca, M.; Fontana, A.; Bartolini, B.; Piselli, P.; Mazzarelli, A.; Copetti, M.; Binda, E.; Perri, F.; Gruber, C.E.M.; Nicastri, E.; et al. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int. J. Environ. Res. Public Health 2021, 18, 2174. [Google Scholar] [CrossRef] [PubMed]
- Hazan, S.; Stollman, N.; Bozkurt, H.S.; Dave, S.; Papoutsis, A.J.; Daniels, J.; Barrows, B.D.; Quigley, E.M.; Borody, T.J. Lost microbes of COVID-19: Bifidobacterium, Faecalibacterium depletion and decreased microbiome diversity associated with SARS-CoV-2 infection severity. BMJ Open Gastroenterol. 2022, 9, e000871. [Google Scholar] [CrossRef]
- Maeda, Y.; Motooka, D.; Kawasaki, T.; Oki, H.; Noda, Y.; Adachi, Y.; Niitsu, T.; Okamoto, S.; Tanaka, K.; Fukushima, K.; et al. Longitudinal alterations of the gut mycobiota and microbiota on COVID-19 severity. BMC Infect. Dis. 2022, 22, 572. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Feng, S.; Arjan, N.; Chen, W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019, 59, 3227–3236. [Google Scholar] [CrossRef]
- Ottman, N.; Reunanen, J.; Meijerink, M.; Pietila, T.E.; Kainulainen, V.; Klievink, J.; Huuskonen, L.; Aalvink, S.; Skurnik, M.; Boeren, S.; et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 2017, 12, e0173004. [Google Scholar] [CrossRef]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63, 727–735. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, Y.; Yang, Y.; Gong, W.; Sun, X.; Yang, L.; Zhang, Q.; Jin, M. Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Front. Microbiol. 2021, 11, 586476. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Cui, M.; Yang, X.; Li, J.; Yao, Y.; Guo, Q.; Lu, A.; Qi, X.; Zhou, D.; Zhang, C.; et al. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat. Commun. 2023, 14, 642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, B.; Xu, J.; Liu, Y.; Qiu, E.; Li, Z.; Li, Z.; He, Y.; Zhou, H.; Bai, Y.; et al. Bacteroides fragilis protects against antibiotic-associated Diarrhea in rats by modulating intestinal defenses. Front. Immunol. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K.L.; Kim, M.V.; Iwasaki, A.; Kasper, D.L. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell 2020, 183, 1312–1324.e10. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453, 620–625. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Kujawski, M.; Chu, H.; Li, L.; Mazmanian, S.K.; Cantin, E.M. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat. Commun. 2019, 10, 2153. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Slusher, N.A.; Cabana, M.D.; Lynch, S. V Role of the gut microbiota in defining human health. Expert Rev. Anti. Infect. Ther. 2010, 8, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Takahashi, T.; Oishi, K.; Tanaka, H.; Masuda, M.; Takahashi, S.; Takano, M.; Kawakami, T.; Fukushima, K.; Kanazawa, H.; et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol. Immunol. 2015, 59, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Shimizu, K.; Nomoto, K.; Watanuki, M.; Tanaka, R. Antibacterial effect of fermented milk containing Bifidobacterium breve, Bifidobacterium bifidum and Lactobacillus acidophilus against indigenous Escherichia coli infection in mice. Microb. Ecol. Health Dis. 2001, 13, 16–24. [Google Scholar] [CrossRef]
- Chollet, L.; Heumel, S.; Deruyter, L.; Bouilloux, F.; Delval, L.; Robert, V.; Gevaert, M.H.; Pichavant, M.; Sencio, V.; Robil, C.; et al. Faecalibacterium duncaniae as a novel next generation probiotic against influenza. Front. Immunol. 2024, 15, 1347676. [Google Scholar] [CrossRef] [PubMed]
- Szajewska, H.; Ruszczyński, M.; Radzikowski, A. Probiotics in the prevention of antibiotic-associated diarrhea in children: A meta-analysis of randomized controlled trials. J. Pediatr. 2006, 149, E38–E39. [Google Scholar] [CrossRef]
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017, 65, e45–e80. [Google Scholar] [CrossRef] [PubMed]
- Yoda, K.; Miyazawa, K.; Hosoda, M.; Hiramatsu, M.; Yan, F.; He, F. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur. J. Nutr. 2014, 53, 105–115. [Google Scholar] [CrossRef]
- Boge, T.; Rémigy, M.; Vaudaine, S.; Tanguy, J.; Bourdet-Sicard, R.; van der Werf, S. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine 2009, 27, 5677–5684. [Google Scholar] [CrossRef]
- Gophna, U.; Konikoff, T.; Nielsen, H.B. Oscillospira and related bacteria—From metagenomic species to metabolic features. Environ. Microbiol. 2017, 19, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Konikoff, T.; Gophna, U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016, 24, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Gu, L.; Guo, Y.; Feng, H.; Chen, S.; Jurat, J.; Fu, W.; Zhang, D. Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Front. Cell. Infect. Microbiol. 2021, 11, 627608. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
- La Reau, A.J.; Suen, G. The Ruminococci: Key symbionts of the gut ecosystem. J. Microbiol. 2018, 56, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Gozalbo-Rovira, R.; Rubio-Del-campo, A.; Santiso-Bellón, C.; Vila-Vicent, S.; Buesa, J.; Delgado, S.; Molinero, N.; Margolles, A.; Yebra, M.J.; Collado, M.C.; et al. Interaction of intestinal bacteria with human rotavirus during infection in children. Int. J. Mol. Sci. 2021, 22, 1010. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Díaz, J.; García-Mantrana, I.; Vila-Vicent, S.; Gozalbo-Rovira, R.; Buesa, J.; Monedero, V.; Collado, M.C. Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. Sci. Rep. 2017, 7, 45559. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lkhagva, E.; Kim, S.; Zhai, C.; Islam, M.M.; Kim, H.J.; Hong, S.T. The gut microbe pair of Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270 confers complete protection against SARS-CoV-2 infection by activating CD8+ T cell-mediated immunity. Gut Microbes 2024, 16, 2342497. [Google Scholar] [CrossRef]
- Dhar, D.; Mohanty, A. Gut microbiota and COVID-19-possible link and implications. Virus Res. 2020, 285, 198018. [Google Scholar] [CrossRef]
- Rocchi, G.; Giovanetti, M.; Benedetti, F.; Borsetti, A.; Ceccarelli, G.; Zella, D.; Altomare, A.; Ciccozzi, M.; Guarino, M.P.L. Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens 2022, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Linglong, P.; Weixia, D.; Hong, W. Protective effects of bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS ONE 2016, 11, e0161635. [Google Scholar] [CrossRef]
- Maubert, M.A.; Michon, C.; Chain, F.; Marquant, R.; Miquel, S.; Carlier, L.; Pigneur, B.; Kharrat, P.; Thomas, G.; Rainteau, D.; et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 2017, 65, 415–425. [Google Scholar]
- Li, H.B.; Xu, M.L.; Xu, X.D.; Tang, Y.Y.; Jiang, H.L.; Li, L.; Xia, W.J.; Cui, N.; Bai, J.; Dai, Z.M.; et al. Faecalibacterium prausnitzii Attenuates CKD via Butyrate-Renal GPR43 Axis. Circ. Res. 2022, 131, E120–E134. [Google Scholar] [CrossRef] [PubMed]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Hao, M.; Zai, X.; Song, J.; Huang, Y.; Gui, S.; Chen, J. A new perspective on gut-lung axis affected through resident microbiome and their implications on immune response in respiratory diseases. Arch. Microbiol. 2024, 206, 107. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Guo, M.; Xiao, C.; Fu, Z.; Yu, S.; Jiang, L.; Wang, S.; Ling, Y.; Liu, F.; et al. Integrated analysis of gut microbiome and host immune responses in COVID-19. Front. Med. 2022, 16, 263–275. [Google Scholar] [CrossRef]
- Costea, P.I.; Zeller, G.; Sunagawa, S.; Pelletier, E.; Alberti, A.; Levenez, F.; Tramontano, M.; Driessen, M.; Hercog, R.; Jung, F.E.; et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 2017, 35, 1069–1076. [Google Scholar] [CrossRef]
- Sinha, R.; Abu-Ali, G.; Vogtmann, E.; Fodor, A.A.; Ren, B.; Amir, A.; Schwager, E.; Crabtree, J.; Ma, S.; Abnet, C.C.; et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 2017, 35, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Reuben, R.C.; Beugnon, R.; Jurburg, S.D. COVID-19 alters human microbiomes: A meta-analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1211348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, Y.; Li, Y.; Wu, Q.; Wu, J.; Park, S.K.; Guo, C.; Lu, J. Meta-analysis of 16S rRNA microbial data identified alterations of the gut microbiota in COVID-19 patients during the acute and recovery phases. BMC Microbiol. 2022, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ghosh, T.S.; McCann, R.; Mallon, P.; Hill, C.; Draper, L.; Schult, D.; Fanning, L.J.; Shannon, R.; Sadlier, C.; et al. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023, 15, 2242615. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Lange, E.C.; Rampelotto, P.H.; Longo, L.; de Freitas, L.B.R.; Uribe-Cruz, C.; Alvares-da-Silva, M.R. Ornithine aspartate effects on bacterial composition and metabolic pathways in a rat model of steatotic liver disease. World J. Hepatol. 2024, 16, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Behrens, L.M.P.; Gasparotto, J.; Rampelotto, P.H.; Escalona, M.A.R.; da Silva, L.d.S.; Carazza-Kessler, F.G.; Barbosa, C.P.; Campos, M.S.; Dorn, M.; Gelain, D.P.; et al. Sodium propionate oral supplementation ameliorates depressive-like behavior through gut microbiome and histone 3 epigenetic regulation. J. Nutr. Biochem. 2024, 130, 109660. [Google Scholar] [CrossRef] [PubMed]
- Mena Canata, D.A.; Benfato, M.S.; Pereira, F.D.; Ramos Pereira, M.J.; Hackenhaar, F.S.; Mann, M.B.; Frazzon, A.P.G.; Rampelotto, P.H. Comparative Analysis of the Gut Microbiota of Bat Species with Different Feeding Habits. Biology 2024, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 2016, e2584. [Google Scholar] [CrossRef]
- Pezzini, M.F.; Rampelotto, P.H.; Dall’Agnol, J.; Guerreiro, G.T.S.; Longo, L.; Suarez Uribe, N.D.; Lange, E.C.; Álvares-da-Silva, M.R.; Joveleviths, D. Changes in the gut microbiota of rats after exposure to the fungicide Mancozeb. Toxicol. Appl. Pharmacol. 2023, 466, 116480. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, 590–596. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Tang, X. Guidelines for the diagnosis and treatment of coronavirus disease 2019 (COVID-19) in China. Glob. Health Med. 2020, 2, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Albrich, W.C.; Ghosh, T.S.; Ahearn-Ford, S.; Mikaeloff, F.; Lunjani, N.; Forde, B.; Suh, N.; Kleger, G.-R.; Pietsch, U.; Frischknecht, M.; et al. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes 2022, 14, 2073131. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; D’Amico, F.; Bartoletti, M.; Lombardo, D.; Rampelli, S.; Fornaro, G.; Coladonato, S.; Siniscalchi, A.; Re, M.C.; Viale, P.; et al. The gut microbiota of critically Ill patients with COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 670424. [Google Scholar] [CrossRef] [PubMed]
- Galperine, T.; Choi, Y.; Pagani, J.L.; Kritikos, A.; Papadimitriou-Olivgeris, M.; Méan, M.; Scherz, V.; Opota, O.; Greub, G.; Guery, B.; et al. Temporal changes in fecal microbiota of patients infected with COVID-19: A longitudinal cohort. BMC Infect. Dis. 2023, 23, 537. [Google Scholar] [CrossRef] [PubMed]
- Rafiqul Islam, S.M.; Foysal, M.J.; Hoque, M.N.; Mehedi, H.M.H.; Rob, M.A.; Salauddin, A.; Tanzina, A.Y.; Biswas, S.; Noyon, S.H.; Siddiki, A.M.A.M.Z.; et al. Dysbiosis of Oral and Gut Microbiomes in SARS-CoV-2 Infected Patients in Bangladesh: Elucidating the Role of Opportunistic Gut Microbes. Front. Med. 2022, 9, 821777. [Google Scholar] [CrossRef]
- Reinold, J.; Farahpour, F.; Fehring, C.; Dolff, S.; Konik, M.; Korth, J.; van Baal, L.; Hoffmann, D.; Buer, J.; Witzke, O.; et al. A Pro-Inflammatory Gut Microbiome Characterizes SARS-CoV-2 Infected Patients and a Reduction in the Connectivity of an Anti-Inflammatory Bacterial Network Associates with Severe COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 747816. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D.; Bandopadhyay, P.; Ray, Y.; Paul, S.R.; Sarif, J.; D’Rozario, R.; Lahiri, A.; Das, S.; Bhowmick, D.; Chatterjee, S.; et al. Association of gut microbial dysbiosis with disease severity, response to therapy and disease outcomes in Indian patients with COVID-19. Gut Pathog. 2023, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, X.; Jiang, G.; Tang, H.; Ming, S.; Tang, L.; Lu, J.; Guo, C.; Shan, H.; Huang, X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 2021, 7, 61. [Google Scholar] [CrossRef]
- Machado, A.S.; Oliveira, J.R.; Lelis, D.d.F.; de Paula, A.M.B.; Guimarães, A.L.S.; Andrade, J.M.O.; Brandi, I.V.; Santos, S.H.S. Oral Probiotic Bifidobacterium longum Supplementation Improves Metabolic Parameters and Alters the Expression of the Renin-Angiotensin System in Obese Mice Liver. Biol. Res. Nurs. 2021, 23, 100–108. [Google Scholar] [CrossRef]
- Abellan-Schneyder, I.; Matchado, M.S.; Reitmeier, S.; Sommer, A.; Sewald, Z.; Baumbach, J.; List, M.; Neuhaus, K. Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 2018, 20, 1125–1139. [Google Scholar] [CrossRef]
- Balvočiute, M.; Huson, D.H. SILVA, RDP, Greengenes, NCBI and OTT—How do these taxonomies compare? BMC Genom. 2017, 18, 114. [Google Scholar] [CrossRef] [PubMed]
- Comin, M.; Di Camillo, B.; Pizzi, C.; Vandin, F. Comparison of microbiome samples: Methods and computational challenges. Brief. Bioinform. 2021, 22, 88–95. [Google Scholar] [CrossRef]
- Heumel, S.; de Rezende Rodovalho, V.; Urien, C.; Specque, F.; Brito Rodrigues, P.; Robil, C.; Delval, L.; Sencio, V.; Descat, A.; Deruyter, L.; et al. Shotgun metagenomics and systemic targeted metabolomics highlight indole-3-propionic acid as a protective gut microbial metabolite against influenza infection. Gut Microbes 2024, 16, 2325067. [Google Scholar] [CrossRef] [PubMed]
- Labarta-Bajo, L.; Gramalla-Schmitz, A.; Gerner, R.R.; Kazane, K.R.; Humphrey, G.; Schwartz, T.; Sanders, K.; Swafford, A.; Knight, R.; Raffatellu, M.; et al. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc. Natl. Acad. Sci. USA 2020, 117, 24998–25007. [Google Scholar] [CrossRef] [PubMed]
- Mattar, A.F.; Teitelbaum, D.H.; Drongowski, R.A.; Yongyi, F.; Harmon, C.M.; Coran, A.G. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int. 2002, 18, 586–590. [Google Scholar] [CrossRef]
- Castillo, N.A.; Perdigán, G.; De Moreno De Leblanc, A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2011, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. The role of anaerobic bacteria in bacteremia. Anaerobe 2010, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Zhou, Y.; Disoma, C.; Dong, Z.; Du, A.; Zhang, Y.; Chen, Y.; Huang, W.; Chen, J.; et al. Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients with Altered Gut Microbiota. Front. Microbiol. 2021, 12, 712081. [Google Scholar] [CrossRef]
- Turroni, F.; Taverniti, V.; Ruas-Madiedo, P.; Duranti, S.; Guglielmetti, S.; Lugli, G.A.; Gioiosa, L.; Palanza, P.; Margolles, A.; van Sinderen, D.; et al. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response. Appl. Environ. Microbiol. 2014, 80, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, J.; Feng, J.; Hu, X.; Wang, T.; Gong, W.; Huang, K.; Guo, Y.; Zou, Z.; Lin, X.; et al. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 2020, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Maddah, R.; Goodarzi, V.; Asadi-Yousefabad, S.-L.; Abbasluo, M.; Shariati, P.; Shafiei Kafraj, A. Evaluation of the gut microbiome associated with COVID-19. Inform. Med. Unlocked 2023, 38, 101239. [Google Scholar] [CrossRef] [PubMed]
- Gumenyuk, L.N.; Golod, M.V.; Silaeva, N.V.; Sorokina, L.E.; Ilyasov, S.S.; Androschyuk, N.A.; Krivoshapko, O.R.; Velilyaev, A.M.; Asanova, L.N. Gut Microbiota Alterations and Their Relationship to the Disease Severity and Some Cytokine Profile Indicators in Patients with COVID-19. Bull. Russ. State Med. Univ. 2022, 22–29. [Google Scholar] [CrossRef]
- He, X.; Zhao, S.; Li, Y. Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6666114. [Google Scholar] [CrossRef]
- Crost, E.H.; Coletto, E.; Bell, A.; Juge, N. Ruminococcus gnavus: Friend or foe for human health. FEMS Microbiol. Rev. 2023, 47, fuad014. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Letchumanan, V.; Hong, K.W.; Chua, K.O.; Mutalib, N.S.A.; Ng, A.L.O.; Ming, L.C.; Lim, H.X.; Thurairajasingam, S.; Law, J.W.F.; et al. The Role of Human Gut Microbe Ruminococcus gnavus in Inflammatory Diseases. Prog. Microbes Mol. Biol. 2023, 6, 1–38. [Google Scholar] [CrossRef]
Genus | Study | Reference Database | Statistical Analysis | p Values | FDR | Healthy | COVID-19 | LDA Score |
---|---|---|---|---|---|---|---|---|
Akkermansia | PRJNA767939 | NCBI | Kruskal-Wallis | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - | |
Bacteroides | PRJNA767939 | NCBI | Kruskal-Wallis | 0.0039 | - | 2.7 ± 0.6 | 5.6 ± 0.6 | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.00546 | 0.039524 | 43.933 | 692.86 | 2.51 | |
Bifidobacterium | PRJNA767939 | NCBI | Kruskal-Wallis | 0.0036 | - | 2.9 ± 0.4 | 4.8 ± 0.4 | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.00811 | 0.490316 | 21.133 | 337.23 | 2.2 | |
Faecalibacterium | PRJNA767939 | NCBI | Kruskal-Wallis | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.01214 | 0.0601 | 167.93 | 167.91 | 0.005 | |
Lactobacillus | PRJNA767939 | NCBI | Kruskal-Wallis | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.22587 | 0.43817 | 72.667 | 0 | 0.666 | |
Ruminococcus | PRJNA767939 | NCBI | Kruskal-Wallis | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.73108 | 0.89347 | 0.53333 | 16.818 | −0.197 | |
Oscillopira | PRJNA767939 | NCBI | Kruskal-Wallis | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - |
Genus | Study | Reference Database | Statistical Analysis | p Values | FDR | Healthy | Mild | Moderate | Severe | Critical | LDA Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Akkermansia | PRJEB50040 | NR | Mann–Whitney | - | - | - | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.20718 | 0.64559 | - | 118.33 | 219.32 | 23.375 | - | 2 | |
PRJEB61722 | EzBioCloud | NBZIMM | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.25462 | 0.71539 | - | - | - | 339.76 | 349.87 | 0.782 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.26107 | 0.62404 | 209.45 | 100.77 | 258 | 762.92 | 81.667 | 2.53 | |
PRJNA895415 | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.61856 | 0.80146 | - | 18.429 | - | 99 | - | 1.62 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.14288 | 0.31141 | - | 0.1 | 48 | 0 | - | 1.4 | |
Bacteroides | PRJEB50040 | NR | Mann–Whitney | - | - | - | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.85223 | 0.93806 | 615.62 | 708.12 | 521.25 | 1.98 | |||
PRJEB61722 | EzBioCloud | NBZIMM | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.31891 | 0.71539 | - | - | - | 6377.7 | 4934.2 | 2.86 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | <0.05 | NR | NR | NR | NR | NR | NR | >3.5 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.015893 | 0.15148 | 1294.7 | 2000.2 | 2796.6 | 2225.7 | 3793.8 | 3.1 | |
PRJNA895415 | Silva v. 138 | LEfSe | 0.47709 | 0.67512 | - | NR | - | NR | - | 5.03 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.9893 | 0.9893 | - | 1156.6 | - | 1099.2 | - | 1.47 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.19739 | 0.38132 | - | 10796 | 7530.5 | 7351.2 | - | 3.24 | |
Bifidobacterium | PRJEB50040 | NR | Mann–Whitney | NR | NR | - | NR | NR | NR | - | NR |
Standard Protocol | Silva v. 138 | LEfSe | 0.014983 | 0.20259 | - | 175.04 | 88.652 | 158.62 | - | 1.65 | |
PRJEB61722 | EzBioCloud | NBZIMM | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.39997 | 0.71539 | - | - | - | 92.476 | 27.733 | 1.52 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | <0.05 | NR | NR | NR | NR | NR | NR | >3.5 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.036361 | 0.25788 | 1014.1 | 673.86 | 728.63 | 1067.8 | 240.42 | 2.62 | |
PRJNA895415 | Silva v. 138 | LEfSe | 0.0014225 | 0.027866 | - | NR | - | NR | - | 5.69 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.0091114 | 0.21696 | - | 1631.3 | - | 574.96 | - | 2.72 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | 0.000000788 | - | - | NR | NR | NR | - | 2.976288515 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.00093705 | 0.022593 | - | 628.1 | 1315.9 | 28.333 | - | 2.82 | |
Faecalibacterium | PRJEB50040 | NR | Mann–Whitney | NR | NR | - | NR | NR | NR | - | NR |
Standard Protocol | Silva v. 138 | LEfSe | 0.10236 | 0.51668 | - | 192.88 | 223.17 | 441.62 | - | 2.1 | |
PRJEB61722 | EzBioCloud | NBZIMM | NR | NR | - | - | - | NR | NR | NR | |
Standard Protocol | Silva v. 138 | LEfSe | 0.11045 | 0.65431 | - | - | - | 362.33 | 711.02 | 2.24 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | <0.05 | NR | NR | NR | NR | NR | NR | >3.5 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.13339 | 0.49392 | 1350 | 1356.6 | 1123.1 | 859.73 | 544.33 | 2.61 | |
PRJNA895415 | Silva v. 138 | LEfSe | 0.33006 | 0.55638 | - | NR | - | NR | - | 4.94 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.19233 | 0.7538 | - | 549.57 | - | 244.44 | - | 2.19 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - | |
Lactobacillus | PRJEB50040 | NR | Mann–Whitney | - | - | - | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.28178 | 0.68442 | - | 0.41667 | 18.182 | 0 | - | 0.281 | |
PRJEB61722 | EzBioCloud | NBZIMM | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.60958 | 0.81735 | - | - | - | 18.738 | 13.267 | 0.572 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.036361 | 0.25788 | 1014.1 | 673.86 | 728.63 | 1067.8 | 240.42 | 2.62 | |
PRJNA895415 | Silva v. 138 | LEfSe | 0.012934 | 0.058699 | - | NR | - | NR | - | 4.73 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.0091114 | 0.21696 | - | 1631.3 | - | 574.96 | - | 2.72 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | 0.017048742 | - | - | NR | NR | NR | - | 2.831048869 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.0043056 | 0.038006 | - | 0.4 | 0.35294 | 20.833 | - | 1.05 | |
Oscillospira | PRJEB50040 | NR | Mann–Whitney | - | - | - | - | - | - | - | - |
Standard Protocol | Silva v. 138 | LEfSe | 0.00044315 | 0.033128 | - | 0.625 | 0.12121 | 0.375 | - | 0.1 | |
PRJEB61722 | EzBioCloud | NBZIMM | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.014872 | 0.47234 | - | - | - | 0.53333 | 34.762 | 0.393 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.78601 | 0.8749 | 14.842 | 17.955 | 21.429 | 22.692 | 10.833 | 0.202 | |
PRJNA895415 | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - | |
PRJNA684070 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - | |
Ruminococcus | PRJEB50040 | NR | Mann–Whitney | NR | NR | - | NR | NR | NR | - | NR |
Standard Protocol | Silva v. 138 | LEfSe | 0.0011837 | 0.05019 | - | 197.71 | 52.182 | 93.875 | - | 1.87 | |
PRJEB61722 | EzBioCloud | NBZIMM | NR | NR | - | - | - | NR | NR | NR | |
Standard Protocol | Silva v. 138 | LEfSe | 0.060367 | 0.58486 | - | - | - | 71 | 191.17 | 1.79 | |
PRJNA747262 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | 0.29349 | 0.62404 | 318.84 | 508.55 | 439.37 | 560.35 | 678.17 | 2.26 | |
PRJNA895415 | Silva v. 138 | LEfSe | 0.60229 | 0.78007 | - | NR | - | NR | - | 3.29 | |
Standard Protocol | Silva v. 138 | LEfSe | 0.48934 | 0.76757 | - | 24.571 | - | 24.511 | - | 0.0129 | |
PRJNA684070 | Greengenes 13.8 | LEfSe | - | - | - | - | - | - | - | - | |
Standard Protocol | Silva v. 138 | LEfSe | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taufer, C.R.; da Silva, J.; Rampelotto, P.H. In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages. Microorganisms 2024, 12, 2353. https://doi.org/10.3390/microorganisms12112353
Taufer CR, da Silva J, Rampelotto PH. In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages. Microorganisms. 2024; 12(11):2353. https://doi.org/10.3390/microorganisms12112353
Chicago/Turabian StyleTaufer, Clarissa Reginato, Juliana da Silva, and Pabulo Henrique Rampelotto. 2024. "In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages" Microorganisms 12, no. 11: 2353. https://doi.org/10.3390/microorganisms12112353
APA StyleTaufer, C. R., da Silva, J., & Rampelotto, P. H. (2024). In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages. Microorganisms, 12(11), 2353. https://doi.org/10.3390/microorganisms12112353