A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seasonal Influenza Viruses and VLPs
2.2. Human RBCs
2.3. Test Serum Samples
2.4. HAI Assay Procedure
2.5. Validation Parameters: Precision, Specificity, Linearity, Sensitivity, Assay Robustness, and Sample Stability
2.6. Singleton (Single Titer) Testing of Serum Samples in the Influenza VLP HAI Assay
2.7. Correlation Analysis of the HAI Assay and MN Assay
2.8. Statistical Analysis
3. Results
3.1. Assay Validation Parameters
3.1.1. Precision
3.1.2. Specificity
3.1.3. Linearity and LLOQ
3.1.4. Robustness
3.1.5. Stability
3.2. Influence of Singleton (Single Titer) Sample Testing on GMT of Serum Samples
3.3. Influence of Singleton (Single Titer) Results and Paired Duplicates (Mean of Two Titers) on Precision (%GCV) at the Serum Sample Level
3.4. Influence of Singleton (Single Titer) Testing on Clinical Study GMT Results
3.5. Influence of Singleton (Single Titer) Testing on Clinical Study GMR, SPR and SCR Results
3.6. Correlation Between VLP-Based HAI and Wild-Type Virus MN Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza (accessed on 6 December 2023).
- Grohskopf, L.A.; Blanton, L.H.; Ferdinands, J.M.; Chung, J.R.; Broder, K.R.; Talbot, H.K. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2023–24 Influenza Season. MMWR Recomm. Rep. 2023, 72, 1–25. [Google Scholar] [CrossRef]
- Chiu, C. Seasonal Influenza Vaccines and Hurdles to Mutual Protection. Clin. Microbiol. Infect. 2016, 22, S113–S119. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Elbahesh, H.; Reperant, L.A.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E. Influenza Vaccines: Successes and Continuing Challenges. J. Infect. Dis. 2021, 224 (Suppl. S4), S405–S419. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, C.M.; Kistner, O.; Montomoli, E.; Viviani, S.; Marchi, S. Influenza Viruses and Vaccines: The Role of Vaccine Effectiveness Studies for Evaluation of the Benefits of Influenza Vaccines. Vaccines 2022, 10, 714. [Google Scholar] [CrossRef]
- Gomez Lorenzo, M.M.; Fenton, M.J. Immunobiology of Influenza Vaccines. Chest 2013, 143, 502–510. [Google Scholar] [CrossRef]
- Kay, A.W.; Blish, C.A. Immunogenicity and Clinical Efficacy of Influenza Vaccination in Pregnancy. Front. Immunol. 2015, 6, 289. [Google Scholar] [CrossRef]
- Ward, B.J.; Pillet, S.; Charland, N.; Trepanier, S.; Landry, N.; Ward, B.J.; Pillet, S.; Charland, N.; Trepanier, S.; Ward, F.B.J.; et al. The Establishment of Surrogates and Correlates of Protection: Useful Tools for the Licensure of Effective Influenza Vaccines? Hum. Vaccines Immunother. 2018, 14, 647–656. [Google Scholar] [CrossRef]
- Kirchenbaum, G.A.; Sautto, G.A.; Richardson, R.A.; Ecker, J.W.; Ross, T.M. A Competitive Hemagglutination Inhibition Assay for Dissecting Functional Antibody Activity against In Fl Uenza Virus. J. Virol. 2021, 95, e0237920. [Google Scholar] [CrossRef]
- Medeiros, R.; Escriou, N.; Naffakh, N.; Manuguerra, J.; Werf, S. Van Der. Hemagglutinin Residues of Recent Human A (H3N2) Influenza Viruses That Contribute to the Inability to Agglutinate Chicken Erythrocytes. Virology 2001, 289, 74–85. [Google Scholar] [CrossRef]
- Gulati, S.; Smith, D.F.; Cummings, R.D.; Couch, R.B.; Griesemer, S.B.; St, K.; Webster, R.G.; Air, G.M. Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread. PLoS ONE 2013, 8, e66325. [Google Scholar] [CrossRef]
- Allen, J.D.; Ross, T.M. H3N2 in Fluenza Viruses in Humans: Viral Mechanisms, Evolution, and Evaluation. Hum. Vaccines Immunother. 2018, 14, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Morokutti, A.; Redlberger-fritz, M.; Nakowitsch, S.; Krenn, B.M.; Wressnigg, N. Validation of the Modified Hemagglutination Inhibition Assay (MHAI), a Robust and Sensitive Serological Test for Analysis of Influenza Virus-Specific Immune Response. J. Clin. Virol. 2013, 56, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Ye, Z.; Xie, H.; Vahl, S.; Dawson, E.; Rowlen, K. Automated Interpretation of Influenza Hemagglutination Inhibition (HAI) Assay: Is Plate Tilting Necessary? PLoS ONE 2017, 12, e0179939. [Google Scholar] [CrossRef] [PubMed]
- Sawant, S.; Gurley, S.A.; Overman, R.G.; Sharak, A.; Mudrak, S.V.; Oguiniii, T.; Sempowski, G.D.; Sarzotti-kelsoe, M.; Walter, E.B.; Xie, H.; et al. H3N2 in Fluenza Hemagglutination Inhibition Method Qualification with Data Driven Statistical Methods for Human Clinical Trials. Front. Immunol. 2023, 14, 1155880. [Google Scholar] [CrossRef]
- Zacour, M.; Ward, B.J.; Brewer, A.; Tang, P.; Boivin, G.; Li, Y.; Warhuus, M.; Mcneil, S.A. Standardization of Hemagglutination Inhibition Assay for Influenza Serology Allows for High Reproducibility between Laboratories. Clin. Vaccine Immunol. 2016, 23, 36–42. [Google Scholar] [CrossRef]
- Kaufmann, L.; Syedbasha, M.; Vogt, D.; Hollenstein, Y.; Hartmann, J.; Linnik, J.E.; Egli, A. An Optimized Hemagglutination Inhibition (HI) Assay to Quantify Influenza- Specific Antibody Titers. J. Vis. Exp. 2017, 130, 55833. [Google Scholar] [CrossRef]
- Smith, G.E.; Flyer, D.C.; Raghunandan, R.; Liu, Y.; Wei, Z.; Wu, Y.; Kpamegan, E.; Courbron, D.; Fries, L.F., III; Glenn, G.M. Development of influenza H7N9 virus like particle (VLP) vaccine: Homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 2013, 31, 4305–4313. [Google Scholar] [CrossRef]
- Pushko, P.; Tumpey, T.M.; Bu, F.; Knell, J.; Robinson, R.; Smith, G. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 2005, 23, 5751–5759. [Google Scholar] [CrossRef]
- Fries, L.; Smith, G.; Glenn, G. A Recombinant Virus like Particle Influenza A (H7N9) Vaccine. N. Engl. J. Med. 2013, 369, 2564–2566. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Influenza Surveillance Network: Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza. 2011. Available online: https://iris.who.int/handle/10665/44518 (accessed on 6 December 2023).
- Shinde, V.; Cho, I.; Plested, J.S.; Agrawal, S.; Fiske, J.; Cai, R.; Zhou, H.; Pham, X.; Zhu, M.; Cloney-clark, S.; et al. Comparison of the Safety and Immunogenicity of a Novel Matrix-M-Adjuvanted Nanoparticle Influenza Vaccine with a Quadrivalent Seasonal Influenza Vaccine in Older Adults: A Randomized Controlled Trial. Lancet Infect. Dis. 2022, 22, 73–84. [Google Scholar] [CrossRef]
- Shinde, V.; Fries, L.; Wu, Y.; Agrawal, S.; Cho, I.; Thomas, D.; Spindler, M.; Lindner, E.; Hahn, T.; Plested, J.; et al. Improved Titers against Influenza Drift Variants with a Nanoparticle Vaccine. N. Engl. J. Med. 2018, 378, 2346–2348. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, G.; Obradovic, A.; Ristic, S.; Petrovic, D.; Mitrovic, D.; Vignjevic, S.F.; Ilic, K.; Stoiljkovic, V.; Lavadinovic, L.; Pelemis, M.; et al. Safety and Immunogenicity of a Seasonal Trivalent Inactivated Split Influenza Vaccine: A Double Blind, Phase III Randomized Clinical Trial in Healthy Serbian Adults. Ther. Adv. Vaccines Immunother. 2020, 8, 2515135520925336. [Google Scholar] [CrossRef] [PubMed]
- Shinde, V.; Cai, R.; Plested, J.; Cho, I.; Fiske, J.; Pham, X.; Zhu, M.; Cloney-clark, S.; Wang, N.; Zhou, H.; et al. Induction of Cross-Reactive Hemagglutination Inhibiting Antibody and Polyfunctional CD4+ T-Cell Responses by a Recombinant Matrix-M—Adjuvanted Hemagglutinin Nanoparticle Influenza Vaccine. Clin. Infect. Dis. 2021, 73, e4278–e4287. [Google Scholar] [CrossRef] [PubMed]
- Ovsyannikova, I.G.; White, S.J.; Albrecht, R.A.; Garcia-Sastre, A.; Poland, G. Turkey versus Guinea Pig Red Blood Cells: Hemagglutination Differences Alter Hemagglutination Inhibition Responses against Influenza A/H1N1. Viral Immunol. 2014, 27, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Waldock, J.; Zheng, L.; Remarque, E.J.; Civet, A.; Hu, B.; Jalloh, L.; Cox, J. Assay Harmonization and Use of Biological Standards To Improve the Reproducibility of the Hemagglutination Inhibition Assay: A FLUCOP Collaborative Study. mSphere 2021, 6, e0056721. [Google Scholar] [CrossRef]
- Manjeet, R.; Mohan, H.; Narang, J.; Pundir, S.; Shekhar, C. A Changing Trend in Diagnostic Methods of Influenza A (H3N2) Virus in Human: A Review. 3 Biotech 2021, 11, 87. [Google Scholar] [CrossRef]
- Stephenson, I.; Wood, J.M.; Nicholson, K.G.; Zambon, M.C. Sialic Acid Receptor Specificity on Erythrocytes Affects Detection of Antibody to Avian Influenza Haemagglutinin. J. Med. Virol. 2003, 70, 391–398. [Google Scholar] [CrossRef]
- Ito, T.; Suzuki, Y.; Kida, H. Receptor Specificity of Influenza A Viruses Correlates with the Agglutination of Erythrocytes from Different Animal Species. Virology 1997, 227, 493–499. [Google Scholar] [CrossRef]
- Makkoch, J.; Prachayangprecha, S.; Payungporn, S.; Chieochansin, T. Erythrocyte Binding Preference of Human Pandemic Influenza Virus A and Its Effect on Antibody Response Detection. Ann. Lab. Med. 2012, 32, 276–282. [Google Scholar] [CrossRef]
- Noah, D.L.; Hill, H.; Hines, D.; White, E.L.; Wolff, M.C. Qualification of the Hemagglutination Inhibition Assay in Support of Pandemic Influenza Vaccine Licensure. Clin. Vaccine Immunol. 2009, 16, 558–566. [Google Scholar] [CrossRef]
- Sicca, F.; Martinuzzi, D.; Montomoli, E.; Huckriede, A. Comparison of Influenza-Specific Neutralizing Antibody Titers Determined Using Different Assay Readouts and Hemagglutination Inhibition Titers: Good Correlation but Poor Agreement. Vaccine 2020, 38, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, C.M.; Remarque, E.; Mortier, D.; Montomoli, E. Comparison of Hemagglutination Inhibition, Single Radial Hemolysis, Virus Neutralization Assays, and ELISA to Detect Antibody Levels against Seasonal Influenza Viruses. Influenza Other Respir. Viruses 2018, 12, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Veguilla, V.; Hancock, K.; Schiffer, J.; Gargiullo, P.; Lu, X.; Aranio, D.; Branch, A.; Dong, L.; Holiday, C.; Liu, F.; et al. Sensitivity and Specificity of Serologic Assays for Detection of Human Infection with 2009 Pandemic H1N1 Virus in U.S. Populations. J. Clin. Microbiol. 2011, 49, 2210–2215. [Google Scholar] [CrossRef] [PubMed]
Virus Strains | HAI Assay Type | Total Sample (N) | Proportion of Samples Within Acceptance Criteria, n (%) | ||
---|---|---|---|---|---|
Intra-Assay %GCV ≤ −50% | Inter-Assay %GCV ≤ −50% | Total %GCV ≤ −50% | |||
A/Kansas/14/2017 | Egg-derived | 56 | 56 (100.0) | 56 (100.0) | 55 (98.2) |
VLP | 46 | 46 (100.0) | 46 (100.0) | 46 (100.0) | |
A/Brisbane/02/2018 | Egg-derived | 46 | 46 (100.0) | 44 (95.7) | 44 (95.7) |
VLP | 46 | 46 (100.0) | 46 (100.0) | 46 (100.0) | |
B/Maryland/15/2016 | Egg-derived | 46 | 46 (100.0) | 46 (100.0) | 45 (97.8) |
VLP | 46 | 46 (100.0) | 45 (97.8) | 44 (95.7) | |
B/Phuket/3073/2013 | Egg-derived | 46 | 46 (100.0) | 46 (100.0) | 46 (100.0) |
VLP | 46 | 46 (100.0) | 45 (97.8) | 45 (97.8) | |
A/California/94/2019 | VLP | 48 | 48 (100.0) | 47 (97.9) | 45 (93.8) |
A/Cardiff/0508/2019 | 48 | 48 (100.0) | 47 (97.9) | 47 (97.9) | |
A/Netherlands/1268/2019 | 48 | 48 (100.0) | 48 (100.0) | 48 (100.0) | |
A/Tokyo/EH1801/2018 | 48 | 48 (100.0) | 48 (100.0) | 48 (100.0) |
Virus Strains | HAI Assay Type | Intra-Assay %GCV | Inter-Assay %GCV | Total %GCV |
---|---|---|---|---|
A/Kansas/14/2017 | Egg-derived | 16.2 | 3.9 | 16.7 |
VLP | 17.0 | 5.1 | 17.8 | |
A/Brisbane/02/2018 | Egg-derived | 16.2 | 2.2 | 16.3 |
VLP | 14.1 | 3.4 | 14.6 | |
B/Maryland/15/2016 | Egg-derived | 12.4 | 3.0 | 12.8 |
VLP | 16.4 | 4.8 | 17.1 | |
B/Phuket/3073/2013 | Egg-derived | 16.0 | 7.1 | 17.6 |
VLP | 11.2 | 3.3 | 11.7 | |
A/California/94/2019 | VLP | 18.8 | 10.4 | 21.6 |
A/Cardiff/0508/2019 | 19.7 | 12.2 | 23.3 | |
A/Netherlands/1268/2019 | 13.2 | 3.9 | 13.8 | |
A/Tokyo/EH1801/2018 | 15.0 | 4.6 | 15.7 |
Sample | HA of Virus Type | Overall HAI GMT | |||
---|---|---|---|---|---|
A/Kansas/14/2017 (H3N2) | A/Brisbane/02/2018 (H1N1) | B/Maryland/15/2016 (B/Victoria) | B/Phuket/3073/2013 (B/Yamagata) | ||
Sample #47 | H3N2 | 1280 | 5 | 6 | 5 |
Sample #29 | H3N2 | 2080 | 5 | 5 | 5 |
Sample #27 | H3N2 | 1280 | 5 | 5 | 5 |
Sample #43 | H3N2 | 452 | 5 | 5 | 5 |
Sample #49 | H1N1 | 160 | 1567 | 7 | 7 |
Sample #28 | H1N1 | 5 | 2070 | 5 | 5 |
Sample #45 | B/Victoria | 160 | 5 | 2560 | 310 |
Sample #32 | B/Victoria | 46 | 5 | 2944 | 368 |
Sample #41 | B/Yamagata | 160 | 5 | 5 | 18,784 |
Sample #31 | B/Victoria | 80 | 5 | 1280 | 904 |
Sample | HA of Virus Type | Overall HAI GMT | |||||||
---|---|---|---|---|---|---|---|---|---|
A/Kansas/14/2017 (H3N2) | A/Brisbane/02/2018 (H1N1) | B/Maryland/15/2016 (B/Victoria) | B/Phuket/3073/2013 (B/Yamagata) | A/California/94/2019 (H3N2) | A/Cardiff/0508/2019 (H3N2) | A/Netherlands/1268/2019 (H3N2) | A/Tokyo/EH1801/2018 (H3N2) | ||
Sample #47 | H3N2 | 2032 | 5 | 26 | 92 | 359 | 302 | 311 | 185 |
Sample #29 | H3N2 | 3116 | 5 | 5 | 5 | 1514 | 1429 | 206 | 5 |
Sample #27 | H3N2 | 1318 | 5 | 5 | 5 | 1318 | 508 | 854 | 381 |
Sample #43 | H3N2 | 1437 | 5 | 5 | 5 | 8366 | 1280 | 3948 | 2560 |
Sample #49 | H1N1 | 147 | 2560 | 15 | 80 | 127 | 76 | 78 | 39 |
Sample #28 | H1N1 | 5 | 2850 | 5 | 5 | 5 | 5 | 5 | 5 |
Sample #45 | B/Victoria | 101 | 14 | 2487 | 190 | 120 | 78 | 80 | 40 |
Sample #32 | B/Victoria | 5 | 5 | 4663 | 309 | 5 | 5 | 5 | 5 |
Sample #41 | B/Yamagata | 78 | 5 | 5 | 10,240 | 170 | 71 | 127 | 78 |
Sample #31 | B/Victoria | 5 | 5 | 960 | 55 | 5 | 5 | 5 | 5 |
Sample #51 | H3N2 | – | – | – | – | 2487 | 640 | – | 1437 |
Sample #50 | H3N2 | – | – | – | – | 3836 | – | – | 622 |
Sample #52 | H3N2 | – | – | – | – | – | 359 | 1208 | – |
Sample #53 | H3N2 | – | – | – | – | – | 1356 | 640 | – |
Strain | Parameter | %GCV | ||
---|---|---|---|---|
Intra-Assay | Inter-Assay | Total-Assay | ||
A/Kansas/14/2017 | Singleton titers | 16.0 | 5.5 | 16.9 |
Paired replicates | 16.0 | 5.5 | 16.9 | |
Random replicates 1 | 16.6 | 5.5 | 17.5 | |
Random replicates 2 | 16.5 | 5.2 | 17.3 | |
A/Brisbane/02/2018 | Singleton titers | 15.8 | 3.0 | 16.1 |
Paired replicates | 15.8 | 3.0 | 16.1 | |
Random replicates 1 | 16.2 | 4.2 | 16.8 | |
Random replicates 2 | 16.2 | 2.8 | 16.4 | |
B/Maryland/15/2016 | Singleton titers | 17.1 | 6.8 | 18.4 |
Paired replicates | 17.1 | 6.8 | 18.4 | |
Random replicates 1 | 16.9 | 6.5 | 18.2 | |
Random replicates 2 | 17.0 | 6.7 | 18.3 | |
B/Phuket/3073/2013 | Singleton titers | 10.1 | 2.9 | 10.6 |
Paired replicates | 10.1 | 2.9 | 10.6 | |
Random replicates 1 | 10.5 | 2.9 | 10.9 | |
Random replicates 2 | 10.5 | 2.9 | 10.9 |
Strain | Protocol Arm (N) | Visit | GMT (95% CI) | ||
---|---|---|---|---|---|
Duplicate | Random Titer 1 | Random Titer 2 | |||
A/Kansas/14/2017 | Fluzone Quadrivalent (1286) | Day 0 | 26.5 (25.4, 27.7) | 26.5 (25.3, 27.7) | 26.5 (25.4, 27.7) |
Day 28 | 90.7 (84.9, 96.9) | 91.3 (85.5, 97.6) | 90.8 (85.0, 96.9) | ||
Quad-NIV (1280) | Day 0 | 27.3 (26.1, 28.6) | 27.4 (26.1, 28.7) | 27.4 (26.1, 28.7) | |
Day 28 | 153.6 (143.9, 163.9) | 153.2 (143.6, 163.5) | 153.5 (143.8, 163.8) | ||
A/Brisbane/02/2018 | Fluzone Quadrivalent (1286) | Day 0 | 32.4 (30.7, 34.2) | 32.4 (30.7, 34.2) | 32.3 (30.6, 34.1) |
Day 28 | 62.7 (59.2, 66.4) | 62.8 (59.3, 66.5) | 62.5 (59.0, 66.2) | ||
Quad-NIV (1280) | Day 0 | 31.7 (30.0, 33.5) | 31.7 (30.0, 33.4) | 31.7 (30.1, 33.5) | |
Day 28 | 76.6 (72.4, 81.1) | 76.4 (72.2, 80.9) | 76.5 (72.3, 81.0) | ||
B/Maryland/15/2016 | Fluzone Quadrivalent (1286) | Day 0 | 29.5 (28.3, 30.8) | 29.6 (28.3, 30.9) | 29.5 (28.3, 30.8) |
Day 28 | 47.2 (45.2, 49.4) | 47.4 (45.3, 49.6) | 47.5 (45.4, 49.6) | ||
Quad-NIV (1280) | Day 0 | 29.8 (28.5, 31.1) | 29.8 (28.5, 31.2) | 29.7 (28.4, 31.1) | |
Day 28 | 62.8 (59.8, 66.0) | 62.6 (59.7, 65.8) | 63.0 (60.0, 66.1) | ||
B/Phuket/3073/2013 | Fluzone Quadrivalent (1286) | Day 0 | 44.3 (42.7, 46.1) | 44.3 (42.6, 46.0) | 44.2 (42.5, 46.0) |
Day 28 | 78.4 (75.1, 81.9) | 78.3 (75.0, 81.8) | 78.8 (75.4, 82.3) | ||
Quad-NIV (1280) | Day 0 | 45.8 (44.0, 47.7) | 45.8 (44.0, 47.7) | 46.0 (44.1, 47.9) | |
Day 28 | 118.3 (113.0, 123.8) | 118.0 (112.8, 123.5) | 118.3 (113.1, 123.8) | ||
A/South Australia/34/2019 | Fluzone Quadrivalent (1286) | Day 0 | 38.3 (36.6, 40.1) | 38.3 (36.6, 40.1) | 38.3 (36.6, 40.1) |
Fluzone Quadrivalent (1284) | Day 28 | 70.4 (66.3, 74.7) | 70.4 (66.3, 74.7) | 70.4 (66.4, 74.7) | |
Quad-NIV (1280) | Day 0 | 39.3 (37.5, 41.2) | 39.2 (37.4, 41.1) | 39.1 (37.3, 41.0) | |
Day 28 | 98.1 (92.1, 104.4) | 98.3 (92.3, 104.6) | 97.7 (91.8, 104.1) | ||
A/California/94/2019 | Fluzone Quadrivalent (1286) | Day 0 | 44.0 (42.0, 46.0) | 43.9 (41.9, 46.0) | 43.9 (41.9, 46.0) |
Day 28 | 80.6 (75.9, 85.6) | 80.4 (75.7, 85.5) | 80.4 (75.7, 85.4) | ||
Quad-NIV (1280) | Day 0 | 44.5 (42.4, 46.7) | 44.5 (42.4, 46.7) | 44.6 (42.5, 46.8) | |
Day 28 | 115.0 (108.0, 122.4) | 114.7 (107.7, 122.1) | 114.9 (107.9, 122.3) | ||
A/Cardiff/0508/2019 | Fluzone Quadrivalent (1286) | Day 0 | 25.7 (24.7, 26.6) | 25.6 (24.7, 26.6) | 25.7 (24.7, 26.7) |
Day 28 | 45.4 (43.1, 47.8) | 45.5 (43.2, 47.9) | 45.4 (43.1, 47.8) | ||
Quad-NIV (1280) | Day 0 | 27.0 (26.0, 28.1) | 26.9 (25.9, 28.0) | 27.0 (25.9, 28.1) | |
Day 28 | 63.9 (60.5, 67.6) | 63.8 (60.4, 67.5) | 63.9 (60.5, 67.6) | ||
A/Idaho/13/2018 | Fluzone Quadrivalent (1286) | Day 0 | 52.9 (50.9, 55.0) | 52.9 (50.9, 54.9) | 52.9 (50.9, 55.0) |
Fluzone Quadrivalent (1283) | Day 28 | 136.8 (129.5, 144.6) | 136.8 (129.4, 144.6) | 136.7 (129.3, 144.6) | |
Quad-NIV (1279) | Day 0 | 53.6 (51.6, 55.8) | 53.8 (51.7, 55.9) | 53.9 (51.8, 56.0) | |
Day 28 | 202.5 (191.2, 214.4) | 202.4 (191.2, 214.3) | 202.2 (190.9, 214.2) | ||
A/Netherlands 1268/2019 | Fluzone Quadrivalent (1286) | Day 0 | 39.6 (38.0, 41.3) | 39.7 (38.0, 41.4) | 39.5 (37.8, 41.2) |
Fluzone Quadrivalent (1284) | Day 28 | 74.7 (70.6, 79.0) | 74.7 (70.6, 79.1) | 74.9 (70.8, 79.3) | |
Quad-NIV (1280) | Day 0 | 39.4 (37.7, 41.2) | 39.6 (37.8, 41.4) | 39.4 (37.7, 41.2) | |
Day 28 | 102.3 (96.5, 108.5) | 102.1 (96.3, 108.4) | 102.2 (96.4, 108.4) | ||
A/Tokyo/EH1801/2018 | Fluzone Quadrivalent (1286) | Day 0 | 31.2 (30.1, 32.3) | 31.1 (30.1, 32.3) | 31.3 (30.2, 32.4) |
Fluzone Quadrivalent (1284) | Day 28 | 54.5 (51.7, 57.4) | 54.4 (51.6, 57.3) | 54.6 (51.9, 57.5) | |
Quad-NIV (1280) | Day 0 | 32.2 (31.0, 33.4) | 32.3 (31.1, 33.5) | 32.2 (31.0, 33.4) | |
Day 28 | 78.0 (73.8, 82.5) | 78.0 (73.8, 82.5) | 78.1 (73.8, 82.6) | ||
B/Washington/02/2019 | Fluzone Quadrivalent (1286) | Day 0 | 48.4 (46.8, 50.1) | 48.3 (46.7, 50.0) | 48.3 (46.7, 50.0) |
Fluzone Quadrivalent (1283) | Day 28 | 71.4 (69.0, 74.0) | 71.4 (68.9, 73.9) | 71.4 (68.9, 74.0) | |
Quad-NIV (1279) | Day 0 | 48.7 (47.0, 50.5) | 49.0 (47.2, 50.8) | 48.5 (46.8, 50.3) | |
Day 28 | 88.2 (84.7, 91.8) | 87.9 (84.3, 91.5) | 88.3 (84.8, 91.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, T.S.; Zhu, M.; Parekh, A.; Patel, U.; Cloney-Clark, S.; Klindworth, A.; Silva, D.; Gorinson, A.; Miranda, K.; Wang, M.; et al. A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine. Microorganisms 2024, 12, 2358. https://doi.org/10.3390/microorganisms12112358
Vincent TS, Zhu M, Parekh A, Patel U, Cloney-Clark S, Klindworth A, Silva D, Gorinson A, Miranda K, Wang M, et al. A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine. Microorganisms. 2024; 12(11):2358. https://doi.org/10.3390/microorganisms12112358
Chicago/Turabian StyleVincent, Timothy S., Mingzhu Zhu, Anand Parekh, Urvashi Patel, Shane Cloney-Clark, Andrew Klindworth, David Silva, Andrew Gorinson, Karlee Miranda, Mi Wang, and et al. 2024. "A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine" Microorganisms 12, no. 11: 2358. https://doi.org/10.3390/microorganisms12112358
APA StyleVincent, T. S., Zhu, M., Parekh, A., Patel, U., Cloney-Clark, S., Klindworth, A., Silva, D., Gorinson, A., Miranda, K., Wang, M., Longacre, Z., Zhou, B., Cho, I., Cai, R., Kalkeri, R., Fries, L., Shinde, V., & Plested, J. S. (2024). A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine. Microorganisms, 12(11), 2358. https://doi.org/10.3390/microorganisms12112358