Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Suspension Preparation of L. fusiformis
2.2. Biosurfactant Production by L. fusiformis MGMM7
2.3. Crude Petroleum Oil Degradation Ability
2.4. Crude Petroleum Oil Degradation Ability in Soil Experiment
Soil Experiment
2.5. Plant Survival Ability in Remediated Soil
2.6. Phenol Degradation Ability of L. fusiformis MGMM7
2.7. Azo Dye Degradation Ability
2.8. Functional Genomic Analysis for Genetic Insights
2.8.1. Genome Sequencing and Assembly
2.8.2. Genomic Comparison of L. fusiformis Strains
2.8.3. Comparison of the Genomic Characteristics of L. fusiformis Strains
2.8.4. Genomic Islands Analysis and Pan-Genome Reconstruction
Statistical Analysis
3. Results
3.1. Screening for Biosurfactant Production by L. fusiformis MGMM7
3.2. Crude Oil Degradation Ability
3.3. Crude Oil Degradation in Contaminated Soil Experiment
3.4. Survival Rates of Plants in Remediated Soil
3.5. Lysinibacillus fusiformis MGMM7 Growth in Phenol and Its Degradation Ability
3.6. Azo Dye Degradation Ability of L. fusiformis MGMM7
3.7. Genome Assembly of L. fusiformis MGMM7
3.7.1. Genome Comparison of L. fusiformis Strains
3.7.2. Comparison of the Genomic Characteristics of L. fusiformis Strains
3.7.3. Specification of Secondary Metabolite Biosynthesis Gene Clusters in L. fusiformis Strains
3.7.4. Specifications of Genes Involved in Xenobiotic Degradation in Plasmids
3.7.5. Subsystem Comparison of Functional Gene Groups
3.7.6. Pan-Genome Reconstruction
3.8. Comparison of Genes Involved in Xenobiotic DNA Degradation
3.9. Specifications of Genes Involved in Xenobiotic Degradation in Genomic Islands (GIs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnston, J.E.; Lim, E.; Roh, H. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.G.; Pandey, A. Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, F.O.; Adelodun, B.; Ajibade, T.F.; Lasisi, K.H.; Abiola, C.; Adewumi, J.R.; Akinbile, C.O. The threatening effects of open dumping on soil at waste disposal sites of Akure city, Nigeria. Int. J. Environ. Waste Manag. 2021, 27, 127–146. [Google Scholar] [CrossRef]
- Hussain, B.; Chen, J.S.; Huang, S.W.; Tsai, I.S.; Rathod, J.; Hsu, B.M. Underpinning the ecological response of mixed chlorinated volatile organic compounds (CVOCs) associated with contaminated and bioremediated groundwaters: A potential nexus of microbial community structure and function for strategizing efficient bioremediation. Environ. Pollut. 2023, 334, 122–215. [Google Scholar] [CrossRef]
- McKone, T.E.; Daniels, J.I. Estimating human exposure through multiple pathways from air, water, and soil. Regul. Toxicol. Pharmacol. 1991, 13, 36–61. [Google Scholar] [CrossRef]
- Pereira, L.; Alves, M. Dyes—Environmental Impact and Remediation. In Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Carlon, C.; Hope, B.; Quercia, F. Contaminated land: A multi-dimensional problem. In Decision Support Systems for Risk-Based Management of Contaminated Sites; Marcomini, A.L., Suter, G., II, Critto, A., Eds.; Springer: Boston, MA, USA, 2009. [Google Scholar] [CrossRef]
- Meuser, H. Contaminated Urban Soils; Springer Science & Business Media: Dordrecht, The Netherlands, 2010; Volume 18. [Google Scholar]
- Liu, H.; Xu, J.; Liang, R.; Liu, J. Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS ONE 2014, 9, e105506. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P.; Yu, H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 2018, 9, 2885. [Google Scholar] [CrossRef]
- Ngo, A.C.R.; Tischler, D. Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. Int. J. Environ. Res. Public Health 2022, 19, 4740. [Google Scholar] [CrossRef]
- Shah, M.P. Azo dye removal technologies. Adv. Res. Appl. 2018, 5, 1090. [Google Scholar]
- Fouad, F.A.; Youssef, D.G.; Shahat, F.M.; Abd El-Ghany, M.N. Role of Microorganisms in Biodegradation of Pollutants. In Handbook of Biodegradable Materials; Ali, G.A.M., Makhlouf, A.S.H., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Xiang, W.; Hong, S.; Xue, Y.; Ma, Y. Functional Analysis of Novel alkB Genes Encoding Long-Chain n-Alkane Hydroxylases in Rhodococcus sp. Strain CH91. Microorganisms 2023, 11, 1537. [Google Scholar] [CrossRef] [PubMed]
- Divakar, K.; Prabha, S.; Gautam, P. Purification, immobilization and kinetic characterization of GxSxG esterase with short chain fatty acid specificity from Lysinibacillus fusiformis AU01. Biocatal. Agric. Biotechnol. 2017, 12, 131–141. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Sun, Z.-H.; Zheng, P.; Zhu, L.L. Biotransformation of Isoeugenol to Vanillin by a Novel Strain of Bacillus fusiformis. Biotechnol. Lett. 2005, 27, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, X.; Liu, H.; Miller, S.J.; Wang, G.; Rensing, C. Characterization and Genomic Analysis of a Highly Chromate Resistant and Reducing Bacterial Strain Lysinibacillus fusiformis ZC1. J. Hazard Mater. 2011, 185, 682–688. [Google Scholar] [CrossRef]
- Lin, C.; Gan, L.; Chen, Z.L. Biodegradation of Naphthalene by Strain Bacillus fusiformis (BFN). J. Hazard. Mater. 2010, 182, 771–777. [Google Scholar] [CrossRef]
- Passera, A.; Rossato, M.; Oliver, J.S.; Battelli, G.; Shahzad, G.I.R.; Cosentino, E.; Sage, J.M.; Toffolatti, S.L.; Lopatriello, G.; Davis, J.R.; et al. Characterization of Lysinibacillus fusiformis strain S4C11: In Vitro, in Planta, and in Silico Analyses Reveal a Plant-Beneficial Microbe. Microbiol. Res. 2021, 244, 126665. [Google Scholar] [CrossRef]
- Ahsan, N.; Shimizu, M. Lysinibacillus Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents. Rev. Agric. Sci. 2021, 9, 103–116. [Google Scholar] [CrossRef]
- Satpute, S.K.; Bhawsar, B.D.; Dhakephalkar, P.K.; Chopade, B.A. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J. Mar. Sci. 2008, 37, 243–250. [Google Scholar]
- Panda, S.K.; Kar, R.N.; Panda, C.R. Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. Int. J. Environ. Sci. 2013, 3, 1314–1321. [Google Scholar]
- Xu, R.; Obbard, J.P. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. J. Environ. Qual. 2003, 32, 1234–1243. [Google Scholar] [CrossRef]
- Gyekye, K.A. An assessment of toxic in urban soils using garden cress (Lepidium sativum) in Vasileostrovsky Ostrov and Elagin Ostrov, Saint Petersburg, Russia. J. Geogr. Geol. 2013, 5, 63–70. [Google Scholar] [CrossRef]
- Mahgoub, S.A.; Qattan, S.Y.; Salem, S.S.; Abdelbasit, H.M.; Raafat, M.; Ashkan, M.F.; Al-Quwaie, D.A.; Motwali, E.A.; Alqahtani, F.S.; Abd El-Fattah, H.I. Characterization and biodegradation of phenol by Pseudomonas aeruginosa and Klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination. Molecules 2023, 28, 1203. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.; Rajput, G.; Ambasana, C. Decolorization of water-soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour. Technol. 2010, 101, 6580–6583. [Google Scholar] [CrossRef] [PubMed]
- Asses, N.; Ayed, L.; Hkiri, N.; Hamdi, M. Congo red decolorization and detoxification by Aspergillus niger: Removal mechanisms and dye degradation pathway. BioMed Res. Int. 2018, 1, 3049686. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol: Chloroform. Cold Spring Harb. Protoc. 2006, 1, pdb-prot4455. [Google Scholar] [CrossRef]
- Bolger, A.M.; Marc, L.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Chen, K.T.; Liu, C.L.; Huang, S.H.; Shen, H.T.; Shieh, Y.K.; Chiu, H.T.; Lu, C.L. A contig scaffolding tool using algebraic rearrangements. Bioinformatics 2018, 34, 109–111. [Google Scholar] [CrossRef]
- Antipov, D.; Hartwick, N.; Shen, M.; Raiko, M.; Lapidus, A.; Pevzner, P.A. PlasmidSPAdes: Assembly of plasmids from whole-genome sequencing data. Bioinformatics 2016, 32, 3380–3387. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Chklovski, A.; Parks, D.H.; Woodcroft, B.J.; Tyson, G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023, 20, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zheng, X.; Zhang, D.; Iqbal, W.; Liu, C.; Yang, B.; Zhao, X.; Lu, X.; Mao, Y. Microbial characterization of heavy metal-resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicol. Environ. Saf. 2019, 181, 472–480. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Parkhill, J. Roary: Rapid large-scale prokaryote pangenome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Oberto, J. SyntTax: A web server linking synteny to prokaryotic taxonomy. BMC Bioinform. 2013, 14, 4. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Zagnitko, O. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Halecký, M.; Kozliak, E. Modern bioremediation approaches: Use of biosurfactant, emulsifiers, enzymes, GMOs. In Advanced Nano-Bio Technologies for Water and Soil Treatment; Filip, J., Cajthaml, T., Najmanová, P., Černík, M., Zbořil, R., Eds.; Applied Environmental Science and Engineering for a Sustainable Future; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- John, W.C.; Ogbonna, I.O.; Gberikon, G.M.; Iheukwumere, C.C. Evaluation of biosurfactant production potential of Lysinibacillus fusiformis MK559526 isolated from automobile-mechanic-workshop soil. Braz. J. Microbiol. 2021, 52, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Chowdhuri, U.R.; Kundu, P.P. Biodegradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for biodegradation. RSC Adv. 2016, 6, 2982–2992. [Google Scholar] [CrossRef]
- Wani, P.A.; Ebudola, A.N.; Olusebi, Y.K.; Rafi, N.; Fawzhia, O.S.J.; Oluwaseun, O.I. Hydrocarbon- utilizing and metal-tolerant bacteria simultaneously degrade hydrocarbons and detoxify metals in petroleum contaminated soil. Geomicrobiol. J. 2023, 40, 372–381. [Google Scholar] [CrossRef]
- Prince, R.C.; McFarlin, K.M.; Butler, J.D.; Febbo, E.J.; Wang, F.C.; Nedwed, T.J. The primary biodegradation of dispersed crude oil in the sea. Chemosphere 2013, 90, 521–526. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Ge, B.; Men, X.; Xue, Q. A versatile and efficient approach to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions. Separ. Purif. Technol. 2017, 176, 1–7. [Google Scholar] [CrossRef]
- Gunasekera, T.S.; Bowen, L.L.; Zhou, C.E.; Howard-Byerly, S.C.; Foley, W.S.; Striebich, R.C.; Ruiz, O.N. Transcriptomic analyses elucidate adaptive differences of closely related strains of Pseudomonas aeruginosa in fuel. Appl. Environ. Microbiol. 2017, 83, e03249-16. [Google Scholar] [CrossRef]
- Willumsen, P.A.; Karlson, U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 1996, 7, 415–423. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Ramu Dirisala, V.; Kodali, V.P. Role of biosurfactants in bioremediation of oil pollution—A review. Petroleum 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Zhou, T.; Cai, P.; Li, J.; Li, Z.; Dan, X.; Huang, X.; Zhang, X. Whole genome analysis of intestinal source Bacillus and its effect on the prevention and control of hybrid snakehead (Channa maculata♀× Channa argus♂) nocardiosis. Front. Mar. Sci. 2024, 11, 1254806. [Google Scholar] [CrossRef]
- Hagan, A.K.; Plotnick, Y.M.; Dingle, R.E.; Mendel, Z.I.; Cendrowski, S.R.; Sherman, D.H.; Tripathi, A.; Hanna, P.C. Petrobactin protects against oxidative stress and enhances sporulation efficiency in Bacillus anthracis Sterne. MBio 2018, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Goveas, L.C.; Alva, M.; Menezes, J.; Krishna, A.; Salian, A.; Sajankila, S.P. Optimization of degradation of petroleum crude oil by Lysinibacillus sp. SS1 in seawater by response surface methodology. J. Appl. Biotechnol. Rep. 2022, 9, 494–503. [Google Scholar] [CrossRef]
- Li, S.W.; Huang, Y.X.; Liu, M.Y. Transcriptome profiling reveals the molecular processes for survival of Lysinibacillus fusiformis strain 15-4 in petroleum environments. Ecotoxicol. Environ. Saf. 2020, 192, 110250. [Google Scholar] [CrossRef]
- Nithimethachoke, T.; Boonmak, C.; Morikawa, M. A novel alkane monooxygenase evolved from a broken piece of ribonucleotide reductase in Geobacillus kaustophilus HTA426 isolated from Mariana Trench. Extremophiles 2024, 28, 18. [Google Scholar] [CrossRef]
- Jimenez-Diaz, L.; Caballero, A.; Segura, A. Pathways for the degradation of fatty acids in bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids; Rojo, F., Ed.; Handbook of Hydrocarbon and Lipid Microbiology; Springer: Cham, Switzerland, 2017; Volume 10, pp. 291–313. [Google Scholar] [CrossRef]
- Su, H.; Lin, J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. Biotechnol. Biofuels Bioprod. 2023, 16, 109. [Google Scholar] [CrossRef]
- Ahn, J.H.; Jung, K.H.; Lim, E.S.; Kim, S.M.; Han, S.O.; Um, Y. Recent advances in microbial production of medium- chain fatty acid from renewable carbon resources: A comprehensive review. Bioresour. Technol. 2023, 381, 129147. [Google Scholar] [CrossRef]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Schöftner, P.; Yousaf, S.; Wang, A.; Syed, J.H.; Reichenauer, T.G. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 2018, 147, 202–219. [Google Scholar] [CrossRef]
- Haddadi, A.; Shavandi, M. Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int. Biodeter Biodegr. 2013, 85, 29–34. [Google Scholar] [CrossRef]
- Rehfuss, M.; Urban, J. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst. Appl. Microbiol. 2005, 28, 421–429. [Google Scholar] [CrossRef]
- Anli, G.E.N.G.; Lim, C.J. Proteome analysis of the adaptation of a phenol-degrading bacterium Acinetobacter sp. EDP3 to the variation of phenol loadings. Chin. J. Chem. Eng. 2007, 15, 781–787. [Google Scholar] [CrossRef]
- Pandeeti, E.V.P.; Siddavattam, D. Purification and characterization of catechol 1, 2-dioxygenase from Acinetobacter sp. DS002 and cloning, sequencing of partial catA gene. Indian J. Microbiol. 2011, 51, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.R.; Cammack, R. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 1992, 46, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Tuan, N.N.; Hsieh, H.C.; Lin, Y.W.; Huang, S.L. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes. Bioresour. Technol. 2011, 102, 4232–4240. [Google Scholar] [CrossRef]
- Feng, J.; Cerniglia, C.E.; Chen, H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front. Biosci. Elite Ed. 2012, 4, 568–586. [Google Scholar] [CrossRef]
- Srinivasan, S.; Parameswari, K.; Nagaraj, S. Chapter 12-Latest innovations in bacterial degradation of textile azo dyes. In Emerging Technologies in Environmental Bioremediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–309. [Google Scholar] [CrossRef]
- Zafar, S.; Bukhari, D.A.; Rehman, A. Azo dyes degradation by microorganisms–An efficient and sustainable approach. Saudi J. Biol. Sci. 2022, 29, 103437. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Bacterial Decolorization and Degradation of Azo Dyes: A Review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Libra, J.A.; Borchert, M.; Vigelahn, L.; Storm, T. Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 2004, 56, 167–180. [Google Scholar] [CrossRef]
- Tan, N.C.G.; Opsteeg, J.L.; Lettinga, G.; Field, J.A. Mineralization of Azo Dyes under Integrated Anaerobic/Aerobic Conditions. In Novel Approaches for Bioremediation of Organic Pollution; Fass, R., Flashner, Y., Reuveny, S., Eds.; Springer: Boston, MA, USA, 1999; pp. 83–93. [Google Scholar] [CrossRef]
- Prasad, S.S.; Aikat, K. Study of biodegradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environ. Technol. 2014, 35, 956–965. [Google Scholar] [CrossRef]
- Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 2003, 58, 179–196. [Google Scholar] [CrossRef]
- Sari, I.P.; Simarani, K. Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. R. Soc. Open Sci. 2019, 6, 190152. [Google Scholar] [CrossRef] [PubMed]
- Maurya, K.L.; Swain, G.; Kumar, M.; Sonwani, R.K.; Verma, A.; Singh, R.S. Biodegradation of Congo red dye using Lysinibacillus species in a moving bed biofilm reactor: Continuous study and kinetic evaluation. Appl. Biochem. Biotechnol. 2023, 195, 5267–5279. [Google Scholar] [CrossRef] [PubMed]
- Santhanarajan, A.E.; Rhee, C.; Sul, W.J.; Yoo, K.; Seong, H.J.; Kim, H.G.; Koh, S.C. Transcriptomic analysis of degradative pathways for azo dye acid blue 113 in Sphingomonas melonis B-2 from the dye wastewater treatment process. Microorganisms 2022, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Wisniewski-Dyé, F.; Lozano, L.; Acosta-Cruz, E.; Borland, S.; Drogue, B.; Prigent-Combaret, C.; Rouy, Z.; Barbe, V.; Herrera, A.M.; González, V.; et al. Genome Sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes 2012, 3, 576–602. [Google Scholar] [CrossRef]
- Ku, Y.S.; Wang, Z.; Duan, S.; Lam, H.M. Rhizospheric communication through mobile genetic element transfers for the regulation of microbe–plant interactions. Biology 2021, 10, 477. [Google Scholar] [CrossRef]
- Morton, J.T.; Sanders, J.; Quinn, R.A.; McDonald, D.; Gonzalez, A.; Vázquez-Baeza, Y.; Navas-Molina, J.A.; Song, S.J.; Metcalf, J.L.; Hyde, E.R.; et al. Balance trees reveal microbial niche differentiation. MSystems 2017, 2, e00162-16. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Konopka, A.E.; Fredrickson, J.K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012, 6, 1653–1664. [Google Scholar] [CrossRef]
- Finan, T.M. Evolving insights: Symbiosis islands and horizontal gene transfer. J. Bacteriol. 2002, 184, 2855–2856. [Google Scholar] [CrossRef] [PubMed]
- Van de Voorde, T.F.; van der Putten, W.H.; Bezemer, T.M. The importance of plant–soil interactions, soil nutrients, and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of old-fields. Oikos 2012, 121, 1251–1262. [Google Scholar] [CrossRef]
- Kurm, V.; Van Der Putten, W.H.; De Boer, W.; Naus-Wiezer, S.; Hol, W.G. Low- abundant soil bacteria can be metabolically versatile and fast growing. Ecology 2017, 98, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, M.; Abulreesh, H.H.; Khan, M.S.; Ahmad, I.; Pichtel, J. Horizontal gene transfer in soil and the rhizosphere: Impact on ecological fitness of bacteria. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017; pp. 111–130. [Google Scholar] [CrossRef]
- Hotopp, J.C.D. Horizontal gene transfer between bacteria and animals. Trends Genet. 2011, 27, 157–163. [Google Scholar] [CrossRef]
- Nilsson, A.I.; Koskiniemi, S.; Eriksson, S.; Kugelberg, E.; Hinton, J.C.D.; Andersson, D.I. Bacterial genome size reduction by experimental evolution. Proc. Natl. Acad. Sci. USA 2005, 102, 12112–12116. [Google Scholar] [CrossRef]
- Koskiniemi, S.; Sun, S.; Berg, O.G.; Andersson, D.I. Selection-driven gene loss in bacteria. PLoS Genet. 2012, 8, e1002787. [Google Scholar] [CrossRef]
- Dufresne, A.; Garczarek, L.; Partensky, F. Accelerated evolution associated with genome reduction in free-living prokaryote. Genome Biol. 2005, 6, R14. [Google Scholar] [CrossRef]
Group | Composition |
---|---|
1 | Untreated soil (garden soil) |
2 | Soil amended with crude oil at a ratio of 1:1 (m/m) |
3 | Soil amended with crude oil at a ratio of 1:1 (m/m) and MGMM7 suspension at a concentration of 50 mL/kg of soil. |
Experiment | Incubation Conditions at 30 ± 1 °C |
---|---|
No. 1 | Static condition for 24 h |
No. 2 | Shaking condition at 150 rpm for 24 h |
No. 3 | Static condition for 24 h then with agitation at 150 rpm for 24 h |
No. 4 | Shaking condition at 150 rpm for 72 h |
No. 5 | Static condition for 72 h |
Bacterial Strains | Isolation Source | GenBank Accession | Reference |
---|---|---|---|
L. fusiformis MGMM7 | Wheat rhizosphere | CP130331.1 | In this study |
L. fusiformis TZA38 | Sinkhole | CP141829.1 | - |
L. fusiformis HJ.T1 | Polyester fabric recovered from compost | CP104728.1 | - |
L. fusiformis Cu1-5 | Sludge | CP031773.1 | [38] |
Genome Characteristics | Cu1-5 | HJ.T1 | TZA38 | MGMM7 | |
---|---|---|---|---|---|
Chromosome | Size (bp) | 4,514,433 | 4,685,025 | 4,607,073 | 5,028,939 |
GC (%) | 37.5 | 37.5 | 37.5 | 37.34 | |
Genes | 4406 | 4712 | 4446 | 5105 | |
rRNA | 80 | 149 | 150 | 162 | |
tRNA | 68 | 107 | 108 | 119 | |
Pseudogenes | 86 (1.95%) | 53 (1.12%) | 46 (1.03%) | 68 (1.33%) | |
Plasmid | Size (bp) | - | 171,063 | - | 244,822 |
GC (%) | - | 33.5 | - | 36.92 | |
Genes | - | 198 | - | 249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diabankana, R.G.C.; Zhamalbekova, A.A.; Shakirova, A.E.; Vasiuk, V.I.; Filimonova, M.N.; Validov, S.Z.; Safin, R.I.; Afordanyi, D.M. Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products. Microorganisms 2024, 12, 2377. https://doi.org/10.3390/microorganisms12112377
Diabankana RGC, Zhamalbekova AA, Shakirova AE, Vasiuk VI, Filimonova MN, Validov SZ, Safin RI, Afordanyi DM. Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products. Microorganisms. 2024; 12(11):2377. https://doi.org/10.3390/microorganisms12112377
Chicago/Turabian StyleDiabankana, Roderic Gilles Claret, Akerke Altaikyzy Zhamalbekova, Aigerim Erbolkyzy Shakirova, Valeriia Igorevna Vasiuk, Maria Nikolaevna Filimonova, Shamil Zavdatovich Validov, Radik Ilyasovich Safin, and Daniel Mawuena Afordanyi. 2024. "Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products" Microorganisms 12, no. 11: 2377. https://doi.org/10.3390/microorganisms12112377
APA StyleDiabankana, R. G. C., Zhamalbekova, A. A., Shakirova, A. E., Vasiuk, V. I., Filimonova, M. N., Validov, S. Z., Safin, R. I., & Afordanyi, D. M. (2024). Genomic Insights of Wheat Root-Associated Lysinibacillus fusiformis Reveal Its Related Functional Traits for Bioremediation of Soil Contaminated with Petroleum Products. Microorganisms, 12(11), 2377. https://doi.org/10.3390/microorganisms12112377