Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Soil Sampling
2.2. Determination of Soil Physical and Chemical Properties
2.3. Determination of Total Petroleum Hydrocarbon
2.4. Microbial Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Soil Physical and Chemical Properties and Pollutant Indicators
3.2. Analysis of Microbial Community Diversity and Family-Level Composition
3.3. Analysis of Microbial Community Structure and Diversity
3.4. Correlation Analysis Between Environmental Factors and Soil Community Structure
3.5. Correlation Network Analysis of Potential Pollution-Reducing and Carbon-Fixing Microorganisms
3.6. Potential Microbial Metabolic Pathways for Pollution Reduction and Carbon Fixation in Onshore Oilfield Soils in China
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Fingas, M.F. Development of oil hydrocarbon fingerprinting and identification techniques. Mar. Pollut. Bull. 2003, 47, 423–452. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jyot, J.; Kuhad, R.C.; Lal, B. Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl. Environ. Microbiol. 2001, 67, 1675–1681. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Venosa, A.D.; Suidan, M.T. Literature Review on the Use of Commercial Bioremediation Agents for Cleanup of Oil-Contaminated Estuarine Environments; National risk management research laboratory, office of research and development, US environmental protection agency: Cincinnati, OH, USA, 2004; pp. 1–56. [Google Scholar]
- Ławniczak, Ł.; Woźniak-Karczewska, M.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Microbial degradation of hydrocarbons-basic principles for bioremediation: A review. Molecules 2020, 25, 856. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Q.F.; Duan, H.B. Study on Technical System of China for Identification of Hazardous Wastes. Res. Environ. Sci. 2006, 19, 165–179. [Google Scholar]
- Sun, J.; Pan, L.; Tsang, D.C.; Zhan, Y.; Zhu, L.; Li, X. Organic contamination and remediation in the agricultural soils of China: A critical review. Sci. Total Environ. 2018, 615, 724–740. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 1, 941810. [Google Scholar] [CrossRef] [PubMed]
- Konur, O. Bioremediation of Petroleum Hydrocarbons in Contaminated Soils: A Review of the Research. In Petrodiesel Fuels; CRC Press: Boca Raton, FL, USA, 2021; pp. 995–1013. [Google Scholar]
- Margesin, R.; Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 2001, 56, 650–663. [Google Scholar] [CrossRef]
- Prince, R.C. Petroleum spill bioremediation in marine environments. Crit. Rev. Microbiol. 1993, 19, 217–240. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Röling, W.F.M. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [CrossRef]
- Sutton, N.B.; Maphosa, F.; Morillo, J.A.; Abu Al-Soud, W.; Langenhoff, A.A.M.; Grotenhuis, T.; Rijnaarts, H.H.M.; Smidt, H. Impact of long-term diesel contamination on soil microbial community structure. Appl. Environ. Microbiol. 2013, 79, 619–630. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ruff, S.E.; Dong, X.; Ellefson, E.D.; Li, C.; Brooks, J.M.; McBee, J.; Bernard, B.B.; Hubert, C.R. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Biol. Sci. 2020, 117, 11029–11037. [Google Scholar] [CrossRef] [PubMed]
- Röling, W.F.; Van Bodegom, P.M. Toward quantitative understanding on microbial community structure and functioning: A modeling-centered approach using degradation of marine oil spills as example. Front. Microbiol. 2014, 5, 125. [Google Scholar]
- Schwarz, A.; Adetutu, E.M.; Juhasz, A.L.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Microbial degradation of phenanthrene in pristine and contaminated sandy soils. Microb. Ecol. 2018, 75, 888–902. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Van Nostrand, J.D.; N′Guessan, L.A.; Peacock, A.D.; Deng, Y.; Long, P.E.; Resch, C.T.; Wu, L.; He, Z.; Li, G.; et al. Microbial functional gene diversity with a shift of subsurface redox conditions during in situ uranium reduction. Appl. Environ. Microbiol. 2012, 78, 2966–2972. [Google Scholar] [CrossRef]
- Wang, L.Y.; Shao, Z. Enzymes and genes involved in aerobic alkane degradation. Front. Microbiol. 2013, 4, 116. [Google Scholar] [CrossRef]
- Jiao, S.; Liu, Z.; Lin, Y.; Yang, J.; Chen, W.; Wei, G. Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biol. Biochem. 2016, 98, 64–73. [Google Scholar] [CrossRef]
- Balba, M.; Al-Awadhi, N.; Al-Daher, R. Bioremediation of oil-contaminated soil: Microbiological methods for feasibility assessment and field evaluation. J. Microbiol. Methods 1998, 32, 155–164. [Google Scholar] [CrossRef]
- Chu, H.Y.; Feng, M.M.; Liu, X.; Shi, Y.; Yang, T.; Gao, G.F. Soil Microbial Biogeography: Recent Advances in China and Research Frontiers in the World. Acta Pedol. Sin. 2020, 57, 515–529. [Google Scholar]
- Bell, T.; Newman, J.A.; Silverman, B.W.; Turner, S.L.; Lilley, A.K. The contribution of species richness and composition to bacterial services. Nature 2005, 436, 1157–1160. [Google Scholar] [CrossRef]
- Jones, D.M.; Head, I.M.; Gray, N.D.; Adams, J.J.; Rowan, A.K.; Aitken, C.M.; Bennett, B.; Huang, H.; Brown, A.; Bowler, B.F.; et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008, 451, 176–180. [Google Scholar] [CrossRef]
- Terry CHazen Eric, A.D.; Todd, Z.D. Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science 2010, 330, 204–208. [Google Scholar]
- Durall, C.; Lindblad, P. Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria. Algal Res. 2015, 11, 263–270. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, H.; Zhang, Y. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 2003, 154, 393–398. [Google Scholar] [CrossRef]
- Takabe, T.; Akazawa, T. A comparative study on the effect of O2 on photosynthetic carbon metabolism by Chlorobium thiosulfatophilum and Chromatium vinosum. Plant Cell Physiol. 1977, 18, 753–765. [Google Scholar] [CrossRef]
- Poole, P.; Allaway, D. Carbon and nitrogen metabolism in Rhizobium. Adv. Microb. Physiol. 2000, 43, 117–163. [Google Scholar]
- Yu, Z.; Li, Y.; Wang, G.; Liu, J.; Liu, J.; Liu, X.; Herbert, S.J.; Jin, J. Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agr. Ecosyst. Environ. 2016, 231, 229–232. [Google Scholar] [CrossRef]
- Li, A.Y.; Li, G.H.; Yang, J.J. Geo-distribution pattern of microbial carbon cycling genes responsive to petroleum contamination in continental horizontal oilfields. Sci. Total Environ. 2020, 731, 139188. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Deng, Y.; Van Nostrand, J.D.; Tu, Q.; Xu, M.; Hemme, C.L.; Li, X.; Wu, L.; Gentry, T.J.; Yin, Y.; et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure, and functional activity. ISME J. 2010, 4, 1167–1179. [Google Scholar] [CrossRef]
- Desjardins, P.; Conklin, D. NanoDrop microvolume quantitation of nucleic acids. J.Vis. Exp. 2010, 45, e2565. [Google Scholar]
- Janda, J.M.; Abbott, S.L. 16S rRNA Gene Sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef]
- Song, J.Y.; Li, Y.Z.; Li, X.C.; Li, D.D.; Wang, Q.H.; Shi, Q.; Chen, C.M. Potential Pollution-Reducing and Carbon-Fixing Microorganisms in soils under Oil Pollution Stress Interaction Relationship Study. Res. Environ. 2023, 36, 1392–1403. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Y.; Shang, X.; Wang, S.; Xiao, R.; Zhou, H.; Cai, L. Production of High-Titer Infectious Influenza Pseudotyped Particles with Envelope Glycoproteins from Highly Pathogenic H5N1 and Avian H7N9 Viruses. J. Vis. Exp. 2020, 155, e60663. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Wardle, D.A. Communities and Ecosystems: Linking The aboveground and Belowground Components (MPB-34); Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 1992, 3, 351–368. [Google Scholar] [CrossRef]
- Burgess, L.C.; Weathers, L.J. Bioavailability and phytotoxicity of petroleum hydrocarbons in soil. J. Environ. Sci. Health Part A 1999, 34, 1589–1613. [Google Scholar]
- Paul, E.A. Soil Microbiology, Ecology, and Biochemistry; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Stuart, R.K.; Bundy, R.; Buck, K.; Ghassemain, M.; Barbeau, K.; Palenik, B. Copper toxicity response influences mesotrophic Synechococcus community structure. J. Environ. Microbiol. 2017, 19, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.H.; Song, Q.L.; Nie, F.H.; Wei, W.; Chen, M.M.; Zhang, M.; Lin, H.Y.; Kang, D.J.; Chen, Z.B.; Hay, A.G.; et al. Effects of environmental and spatial variables on bacteria in Zhanjiang mangrove sediments. Curr. Microbiol. 2022, 79, 97. [Google Scholar] [CrossRef]
- Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.L. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Sepkoski, J.J. Alpha, beta, or gamma: Where does all the diversity go? Paleobiology 1988, 14, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Somerfield, P.J.; Clarke, K.R.; Warwick, R.M. Simpson index. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 3252–3255. [Google Scholar]
- Herzog, S.K.; Kessler, M.; Cahill, T.M. Estimating species richness of tropical bird communities from rapid assessment data. Auk 2002, 119, 749–769. [Google Scholar] [CrossRef]
- Kuczynski, J.; Stombaugh, J.; Walters, W.A.; González, A.; Caporaso, J.G.; Knight, R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinform. 2012, 36, 10.7.1–10.7.20. [Google Scholar] [CrossRef]
- Huse, S.M.; Ye, Y.; Zhou, Y.; Fodor, A.A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 2012, 7, e34242. [Google Scholar] [CrossRef]
- Shade, A.; Caporaso, J.G.; Handelsman, J.; Knight, R.; Fierer, N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 2013, 7, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Knight, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol. Rev. 2008, 32, 557–578. [Google Scholar] [CrossRef] [PubMed]
- Gans, J.; Wolinsky, M.; Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 2005, 309, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Matsumoto, A. Changes in bacterial composition during in vitro oil degradation experiments using activated sludge from different sources. Water Pract. Technol. 2019, 14, 931–936. [Google Scholar] [CrossRef]
- Fan, F.L.; Yin, C.; Tang, Y.J. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 2014, 70, 12–21. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.; Wagner, H.; et al. Package ‘vegan’. Community Ecol. Package 2013, 2, 1–295. [Google Scholar]
- Hernando, P.B.; Koichi, S.; Chihiro, I. Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic–aromatic hydrocarbon binary mixtures. World J. Microbiol. Biotechnol. 2011, 27, 1109–1117. [Google Scholar]
- Jennings, R.M.; Whitmore, L.M.; Moran, J.J.; Kreuzer, H.W.; Inskeep, W.P. Carbon dioxide fixation by metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from yellowstone national park. Appl. Environ. Microbiol. 2014, 80, 2665–2671. [Google Scholar] [CrossRef]
- Duarte, M.; Nielsen, A.; Camarinha-Silva, A.; Vilchez-Vargas, R.; Bruls, T.; Wos-Oxley, M.L.; Jauregui, R.; Pieper, D.H. Functional soil metagenomics: Elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ. Microbiol. 2017, 19, 2992–3011. [Google Scholar] [CrossRef]
- Li, Q.; You, P.; Hu, Q.; Leng, B.; Wang, J.; Chen, J.; Wan, S.; Wang, B.; Yuan, C.; Zhou, R.; et al. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Ecotoxicol. Environ. Saf. 2020, 204, 111083. [Google Scholar] [CrossRef]
- Wang, J.; Jing, M.; Zhang, W.; Zhang, G.; Zhang, B.; Liu, G.; Chen, T.; Zhao, Z. Assessment of organic compost and biochar in promoting phytoremediation of crude-oil contaminated soil using Calendula officinalis in the Loess Plateau, China. J. Arid Land. 2021, 13, 612–628. [Google Scholar] [CrossRef]
- Mishra, S.; Sarma, P.M.; Lal, B. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol. Lett. 2004, 235, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Ichor, T.; Okerentugba, P.O.; Okpokwasili, G.C. Biodegradation of total petroleum hydrocarbon by aerobic heterotrophic bacteria isolated from crude oil contaminated brackish waters of bodo creek. J. Bioremed Biodeg. 2014, 5, 1–6. [Google Scholar]
- Margesin, R.; Labbé, D.; Schinner, F.; Greer, C.W.; Whyte, L.G. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 2003, 69, 3085–3092. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gu, H.; Liang, A.; Li, L.; Yao, Q.; Xu, Y.; Liu, J.; Jin, J.; Liu, X.; Wang, G. Conservation Tillage Regulates Soil Bacterial Community Assemblies, Network Structures and Ecological Functions in Black Soils. Res. Sq. 2021. PREPRINT (Version 1). [Google Scholar] [CrossRef]
- Castro, J.F.; Nouioui, I.; Sangal, V.; Choi, S.; Yang, S.-J.; Kim, B.-Y.; Trujillo, M.E.; Riesco, R.; Montero-Calasanz, M.d.C.; Rahmani, T.P.D.; et al. Blastococcus atacamensis sp. nov., a novel strain adapted to life in the Yungay core region of the Atacama Desert. Int. J. Syst. Evol. Microbiol. 2018, 68, 2712–2721. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Zhang, Y.; Han, S.; Xu, H. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Braz. J. Microbiol. 2016, 47, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Huang, Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.I.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L.; et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Liu, Q.; Sikder, M.M.; Vestergård, M.; Zhou, K.; Wang, Q.; Yang, X.; Feng, Y. Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci. Total Environ. 2020, 726, 138554. [Google Scholar] [CrossRef]
- Freedman, A.J.E.; Peet, K.C.; Boock, J.T.; Penn, K.; Prather, K.L.J.; Thompson, J.R. Isolation, development, and genomic analysis of Bacillus megaterium SR7 for growth and metabolite production under supercritical carbon dioxide. Front. Microbiol. 2018, 9, 2152. [Google Scholar] [CrossRef]
- Straub, C.T.; Zeldes, B.M.; Schut, G.J.; Adams, M.W.; Kelly, R.M. Extremely thermophilic energy metabolisms: Biotechnological prospects. Curr. Opin. Biotechnol. 2017, 45, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, D.; Luo, C.; Li, B.; Zhang, G. In situ discrimination and cultivation of active degraders in soils by genome-directed cultivation assisted by SIP-Raman-activated cell sorting. Environ. Sci. Technol. 2023, 57, 17087–17098. [Google Scholar] [CrossRef]
- McGrath, J.M.; Long, S.P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant physiol. 2014, 164, 2247–2261. [Google Scholar] [CrossRef]
- Thotakuri, G.; Angidi, S.; Athelly, A. Soil Carbon Pool as Influenced by Soil Microbial Activity—An Overview. Am. J. Clim. Change 2024, 13, 175–193. [Google Scholar] [CrossRef]
- Yu, Q.; Pei, X.; Wei, Y.; Naveed, S.; Wang, S.; Chang, M.; Zhang, C.; Ge, Y. The roles of bacteria in resource recovery, wastewater treatment and carbon fixation by microalgae-bacteria consortia: A critical review. Algal Res. 2023, 69, 102938. [Google Scholar] [CrossRef]
- Zhang, A.; Carroll, A.L.; Atsumi, S. Carbon recycling by cyanobacteria: Improving CO2 fixation through chemical production. FEMS Microbiol. Lett. 2017, 364, fnx165. [Google Scholar] [CrossRef]
- Lwe, H.; Kremling, A. In-depth computational analysis of natural and artificial carbon fixation pathways. Biodesign Res. 2021, 1, 5. [Google Scholar]
- Mao, Y.; Wu, J.; Yang, R.; Ma, Y.; Ye, J.; Zhong, J.; Deng, N.; He, X.; Hong, Y. Novel database for accA gene revealed a vertical variability pattern of autotrophic carbon fixation potential of ammonia oxidizing archaea in a permeable subterranean estuary. Mar. Environ. Res. 2024, 194, 106342. [Google Scholar] [CrossRef]
Site | Latitude and Longitude | Climate Type | Average Altitude/m | Annual Mean Temperature/°C | Annual Average Precipitation/mm |
---|---|---|---|---|---|
E | 38°43′00″ N 117°30′00″ E | Monsoon semi-humid | <5 | 15 | 550–600 |
C | 37°9′53″ N 107°37′11″ E | Warm temperate semi-humid | 1000–1400 | 6–14 | 200–400 |
NW | 42°55′15″ N 89°25′53″ E | Temperate continental | 500–1000 | 9–10 | <100 |
SW | 31°74′24″ N 104°46′12″ E | Subtropical monsoon | 250–1500 | 17–20 | 1200–1300 |
Node Species Name | Phylum | Degree | Degree Centrality | Closeness Centrality | Betweenness Centrality |
---|---|---|---|---|---|
unclassified_d__Bacteria | unclassified_Bacteria | 16 | 0.32653 | 0.58333 | 0.03122 |
unclassified_o_Rokubacteriales | Methylomirabilota | 14 | 0.28571 | 0.53846 | 0.02965 |
unclassified_o_SBR1031 | Chloroflexi | 13 | 0.26531 | 0.52688 | 0.01462 |
Immundisolibacter | Proteobacteria | 20 | 0.40816 | 0.6125 | 0.05292 |
unclassified_f_Comamonadaceae | Proteobacteria | 15 | 0.30612 | 0.53846 | 0.02702 |
Acinetobacter | Proteobacteria | 18 | 0.36735 | 0.55682 | 0.01917 |
unclassified_o_NRL2 | Proteobacteria | 15 | 0.30612 | 0.53846 | 0.01706 |
Blastococcus | Actinobacteriota | 18 | 0.36735 | 0.57647 | 0.02177 |
Skermanella | Proteobacteria | 17 | 0.34694 | 0.56977 | 0.02152 |
Nocardioides | Actinobacteriota | 9 | 0.18367 | 0.5 | 0.01287 |
Arthrobacter | Actinobacteriota | 7 | 0.14286 | 0.44954 | 0.00216 |
unclassified_f_Planococcaceae | Firmicutes | 14 | 0.28571 | 0.53846 | 0.04227 |
Kocuria | Actinobacteriota | 20 | 0.40816 | 0.58333 | 0.05557 |
Mycobacterium | Actinobacteriota | 8 | 0.16327 | 0.46226 | 0.0472 |
Ellin6055 | Proteobacteria | 17 | 0.34694 | 0.56977 | 0.0259 |
unclassified_f_JG30-KF-CM45 | Chloroflexi | 22 | 0.44898 | 0.62821 | 0.02783 |
Truepera | Deinococcota | 21 | 0.42857 | 0.62025 | 0.02391 |
Halomonas | Proteobacteria | 16 | 0.32653 | 0.55056 | 0.01995 |
unclassified_f_AKYG1722 | Chloroflexi | 17 | 0.34694 | 0.57647 | 0.01181 |
unclassified_f_Longimicrobiaceae | Gemmatimonadota | 23 | 0.46939 | 0.64474 | 0.05901 |
unclassified_c_bacteriap25 | Myxococcota | 15 | 0.30612 | 0.55056 | 0.02146 |
Sphingomonas | Proteobacteria | 16 | 0.32653 | 0.55056 | 0.0291 |
unclassified_o_Saccharimonadales | Patescibacteria | 18 | 0.36735 | 0.55682 | 0.04731 |
unclassified_c_Acidimicrobiia | Actinobacteriota | 16 | 0.32653 | 0.55682 | 0.04405 |
unclassified_c_Gitt-GS-136 | Chloroflexi | 9 | 0.18367 | 0.47115 | 0.0068 |
unclassified_f_Vicinamibacteraceae | Acidobacteriota | 8 | 0.16327 | 0.47115 | 0.00629 |
unclassified_o_Vicinamibacterales | Acidobacteriota | 7 | 0.14286 | 0.45794 | 0.00295 |
Antarcticibacterium | Bacteroidota | 16 | 0.32653 | 0.56977 | 0.06202 |
Iamia | Actinobacteriota | 8 | 0.16327 | 0.49 | 0.02301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Chen, Y.; Han, Y.; Li, Y.; Liu, Z.; Li, X.; Lu, D.; Chen, C. Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields. Microorganisms 2024, 12, 2379. https://doi.org/10.3390/microorganisms12112379
Song J, Chen Y, Han Y, Li Y, Liu Z, Li X, Lu D, Chen C. Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields. Microorganisms. 2024; 12(11):2379. https://doi.org/10.3390/microorganisms12112379
Chicago/Turabian StyleSong, Jiayu, Yakui Chen, Yilei Han, Yunzhao Li, Zheng Liu, Xingchun Li, Diannan Lu, and Chunmao Chen. 2024. "Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields" Microorganisms 12, no. 11: 2379. https://doi.org/10.3390/microorganisms12112379
APA StyleSong, J., Chen, Y., Han, Y., Li, Y., Liu, Z., Li, X., Lu, D., & Chen, C. (2024). Analysis of Microbial Community Heterogeneity and Carbon Fixation Capabilities in Oil-Contaminated Soils in Chinese Onshore Oilfields. Microorganisms, 12(11), 2379. https://doi.org/10.3390/microorganisms12112379