Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Microbiology Methods
2.3. Data Analysis
2.4. Ethical Aspects
3. Results
3.1. S. pneumoniae Sample
3.2. Serotype Distribution
3.3. Antimicrobial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiser, J.N.; Ferreira, D.M.; Paton, J.C. Streptococcus pneumoniae: Transmission, colonization and invasion. Nat. Rev. Microbiol. 2018, 16, 355–367. [Google Scholar] [CrossRef]
- Geno, K.A.; Gilbert, G.L.; Song, J.Y.; Skovsted, I.C.; Klugman, K.P.; Jones, C.; Konradsen, H.B.; Nahm, M.H. Pneumococcal capsules and their types: Past, present, and future. Clin. Microbiol. Rev. 2015, 28, 871–899. [Google Scholar] [CrossRef]
- Prymula, R.; Schuerman, L. 10-valent pneumococcal nontypeable Haemophilus influenzae PD conjugate vaccine: Synflorix. Expert Rev. Vaccines 2009, 8, 1479–1500. [Google Scholar] [CrossRef]
- Jefferies, J.M.C.; Macdonald, E.; Faust, S.N.; Clarke, S.C. 13-valent pneumococcal conjugate vaccine (PCV13). Hum. Vaccines 2011, 7, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.; Hoover, P.A.; Vesikari, T.; Peltier, C.; Hurley, D.C.; McFetridge, R.D.; Dallas, M.; Hartzel, J.; Marchese, R.D.; Coller, B.-A.G.; et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV15) in healthy infants. Vaccine 2018, 36, 6883–6891. [Google Scholar] [CrossRef] [PubMed]
- Hurley, D.; Griffin, C.; Young, M.; Scott, D.A.; Pride, M.W.; Scully, I.L.; Ginis, J.; Severs, J.; Jansen, K.U.; Gruber, W.C.; et al. Safety, Tolerability, and Immunogenicity of a 20-Valent Pneumococcal Conjugate Vaccine (PCV20) in Adults 60 to 64 Years of Age. Clin. Infect. Dis. 2021, 73, e1489–e1497. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Bacterial Vaccines in Clinical and Preclinical Development: An Overview and Analysis, 1st ed.; World Health Organization: Geneva, Switzerland, 2022; pp. 18–23. [Google Scholar]
- Domingues, C.M.A.S.; Verani, J.R.; Montenegro Renoiner, E.I.; Brandileone, M.C.D.C.; Flannery, B.; de Oliveira, L.H.; Santos, J.B.; de Moraes, J.C. Effectiveness of ten-valent pneumococcal conjugate vaccine against invasive pneumococcal disease in Brazil: A matched case-control study. Lancet Respir. Med. 2014, 2, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde, Brasil. Calendário Nacional de Vacinação—Criança. Available online: https://www.gov.br/saude/pt-br/vacinacao/calendario (accessed on 15 January 2024).
- Cohen, R.; Ashman, M.; Taha, M.-K.; Varon, E.; Angoulvant, F.; Levy, C.; Ryback, A.; Ouldali, N.; Guiso, N.; Grimprel, E. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect. Dis. Now 2021, 51, 418–423. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Fattorini, L.; Creti, R.; Palma, C.; Pantosti, A.; Unit of Antibiotic Resistance and Special Pathogens. Bacterial coinfections in COVID-19: An underestimated adversary. Ann. Ist. Super. Sanità 2020, 56, 359–364. [Google Scholar] [CrossRef]
- Del Fiol, F.S.; Bergamaschi, C.C.; Andrade, I.P.; Lopes, L.C.; Silva, M.T.; Barberato-Filho, S. Consumption Trends of Antibiotics in Brazil During the COVID-19 Pandemic. Front. Pharmacol. 2022, 13, 844818. [Google Scholar] [CrossRef] [PubMed]
- Brandileone, M.C.C.; Almeida, S.C.G.; Minamisava, R.; Andrade, A.L. Distribution of invasive Streptococcus pneumoniae serotypes before and 5 years after the introduction of 10-valent pneumococcal conjugate vaccine in Brazil. Vaccine 2018, 36, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Laboratory Methods for the Diagnosis of Meningitis Caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae, 2nd ed.; World Health Organization: Geneva, Switzerland, 2011; pp. 73–86. Available online: https://apps.who.int/iris/handle/10665/70765 (accessed on 9 January 2024).
- Centers for Diseases Control and Prevention, Streptococcus Laboratory. Available online: https://www.cdc.gov/streplab/pneumococcus/resources.html (accessed on 29 December 2023).
- Carvalho, M.d.G.; Pimenta, F.C.; Jackson, D.; Roundtree, A.; Ahmad, Y.; Millar, E.V.; O’Brien, K.L.; Whitney, C.G.; Cohen, A.L.; Beall, B.W. Revisiting pneumococcal carriage by use of broth enrichment and PCR techniques for enhanced detection of carriage and serotypes. J. Clin. Microbiol. 2010, 48, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2022; pp. 94–99. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institue (CLSI): Malvern, PA, USA, 2018. [Google Scholar]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, e360–e370. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.; Abad, R.; Amin-Chowdhury, Z.; Bautista, A.; Bennett, D.; Broughton, K.; Cao, B.; Casanova, C.; Choi, E.H.; Chu, Y.-W.; et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: Analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Glob. Health 2023, 5, e582–e593. [Google Scholar] [CrossRef] [PubMed]
- Bertran, M.; Amin-Chowdhury, Z.; Sheppard, C.L.; Eletu, S.; Zamarreño, D.V.; Ramsay, M.E.; Litt, D.; Fry, N.K.; Ladhani, S.N. Increased incidence of invasive Pneumococcal Disease among children after COVID-19 Pandemic, England. Emerg. Infect. Dis. 2022, 28, 2019–2022. [Google Scholar] [CrossRef] [PubMed]
- Perniciaro, S.; van der Linden, M.; Weinberger, D.M. Reemergence of invasive pneumococcal disease in Germany during the spring and summer of 2021. Clin. Infect. Dis. 2022, 75, 1149–1153. [Google Scholar] [CrossRef]
- Jarovsky, D.; Berezin, E.N. Impact of PCV10 on pediatric pneumococcal disease burden in Brazil: Time for new recommendations? J. Pediatr. 2023, 99, S26–S56. [Google Scholar] [CrossRef]
- Duarte, F.G.; Barberino, M.G.; Moreira, S.d.S.; Reis, J.N.; Spinardi, J.R.; de Almeida, R.S.; Allen, K.E.; Alexander-Parrish, R.; Brim, R.; Neto, C.A.d.A.; et al. Incidence, aetiology and serotype coverage for pneumococcal vaccines of community-acquired pneumonia in adults: A population-based prospective active surveillance study in Brazil. BMJ Open 2022, 12, e059824. [Google Scholar] [CrossRef]
- Brandileone, M.-C.d.C.; Zanella, R.C.; Almeida, S.C.; Cassiolato, A.P.; de Lemos, A.P.S.; Salgado, M.M.; Higa, F.T.; Minamisava, R.; Andrade, A.L. Long-term effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae in children in Brazil. Vaccine 2019, 37, 5357–5363. [Google Scholar] [CrossRef]
- Neves, F.P.; Cardoso, N.T.; Snyder, R.E.; Marlow, M.A.; Cardoso, C.A.; Teixeira, L.M.; Riley, L.W. Pneumococcal carriage among children after four years of routine 10-valent pneumococcal conjugate vaccine use in Brazil: The emergence of multidrug resistant serotype 6C. Vaccine 2017, 35, 2794–2800. [Google Scholar] [CrossRef]
- Steens, A.; Knol, M.J.; Freudenburg-de Graaf, W.; de Melker, H.E.; van der Ende, A.; van Sorge, N.M. Pathogen- and Type-Specific Changes in Invasive Bacterial Disease Epidemiology during the First Year of the COVID-19 Pandemic in The Netherlands. Microorganisms 2022, 10, 972. [Google Scholar] [CrossRef]
- Cassiolato, A.P.; Almeida, S.C.G.; Andrade, A.L.; Minamisava, R.; Brandileone, M.C.C. Expansion of the multidrug-resistant clonal complex 320 among invasive Streptococcus pneumoniae serotype 19A after the introduction of a ten-valent pneumococcal conjugate vaccine in Brazil. PLoS ONE 2018, 13, e0208211. [Google Scholar] [CrossRef]
- Mott, M.; Caierão, J.; Cunha, G.; Del Maschi, M.; Pizzutti, K.; D’Azevedo, P.; Dias, C. Emergence of serotype 19A Streptococcus pneumoniae after PCV10 associated with a ST320 in adult population, in Porto Alegre. Epidemiol. Infect. 2019, 147, e93. [Google Scholar] [CrossRef]
- Moreno, J.; Duarte, C.; Cassiolato, A.P.; Chacón, G.C.; Alarcon, P.; Sánchez, J.; Martín, Y.N.S.; Valenzuela, C.; Castillo, W.; Gabarrot, G.G.; et al. Molecular characterization of Latin American invasive Streptococcus pneumoniae serotype 19A isolates. Vaccine 2020, 38, 3524–3530. [Google Scholar] [CrossRef] [PubMed]
- Grant, L.R.; O’brien, S.E.; Burbidge, P.; Haston, M.; Zancolli, M.; Cowell, L.; Johnson, M.; Weatherholtz, R.C.; Reid, R.; Santosham, M.; et al. Comparative immunogenicity of 7 and 13-Valent Pneumococcal Conjugate Vaccines and the development of functional antibodies to cross-reactive serotypes. PLoS ONE 2013, 8, e74906. [Google Scholar] [CrossRef]
- Naucler, P.; Galanis, I.; Morfeldt, E.; Darenberg, J.; Örtqvist, Å.; Henriques-Normark, B. Comparison of the impact of pneumococcal conjugate vaccine 10 or pneumococcal conjugate vaccine 13 on invasive pneumococcal disease in equivalent populations. Clin. Infect. Dis. 2017, 65, 1780–1789. [Google Scholar] [CrossRef]
- Diamantino-Miranda, J.; Aguiar, S.I.; Carriço, J.A.; Melo-Cristino, J.; Ramirez, M. Clonal and serotype dynamics of serogroup 6 isolates causing invasive pneumococcal disease in Portugal: 1999–2012. PLoS ONE 2017, 12, e0170354. [Google Scholar] [CrossRef]
- Shi, Y.; Nolan, K.M.; Burton, R.L.; Shekar, T.; Murphy, R.D.; Banniettis, N.; Musey, L.; Buchwald, U.K. The 15-valent pneumococcal conjugate vaccine V114 induces cross-reactive antibodies against pneumococcal serotype 6C. Hum. Vaccines Immunother. 2023, 19, 2235238. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Moura, M.L.; Boszczowski, I.; Blaque, M.; Mussarelli, R.M.; Fossaluza, V.; Pierrotti, L.C.; Campana, G.; Brandileone, M.C.; Zanella, R.; Almeida, S.C.; et al. Effect on Antimicrobial Resistance of a Policy Restricting Over-the-Counter Antimicrobial Sales in a Large Metropolitan Area, São Paulo, Brazil. Emerg. Infect. Dis. 2022, 28, 180–187. [Google Scholar] [CrossRef]
- Knupp-Pereira, P.A.; Cabral, A.S.; Dolores, Í.M.; Beiral, A.; Póvoa, H.C.C.; Neves, F.P.G. Antimicrobial resistance in Streptococcus pneumoniae before and after the introduction of Pneumococcal Conjugate Vaccines in Brazil: A systematic review. Antibiotics 2024, 13, 66. [Google Scholar] [CrossRef]
- Brandileone, M.-C.C.; Almeida, S.C.; Bokermann, S.; Minamisava, R.; Berezin, E.N.; Harrison, L.H.; Andrade, A.-L. Dynamics of antimicrobial resistance of Streptococcus pneumoniae following PCV10 introduction in Brazil: Nationwide surveillance from 2007 to 2019. Vaccine 2021, 39, 3207–3215. [Google Scholar] [CrossRef]
- Jansen, K.U.; Anderson, A.S. The role of vaccines in fighting antimicrobial resistance (AMR). Hum. Vaccines Immunother. 2018, 14, 2142–2149. [Google Scholar] [CrossRef]
- Pinto, T.C.A.; Neves, F.P.G.; Souza, A.R.V.; Oliveira, L.M.A.; Costa, N.S.; Castro, L.F.S.; Mendonça-Souza, C.R.d.V.; Peralta, J.M.; Teixeira, L.M. Evolution of penicillin non-susceptibility among Streptococcus pneumoniae isolates recovered from asymptomatic carriage and invasive disease over 25 years in Brazil, 1990–2014. Front. Microbiol. 2019, 10, 486. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Kim, L.; McGee, L.; Tomczyk, S.; Beall, B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: A United States perspective. Clin. Microbiol. Rev. 2016, 29, 525–552. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.L.; Boszczowski, I.; Mortari, N.; Barrozo, L.V.; Neto, F.C.; Lobo, R.D.; Pedroso de Lima, A.C.; Levin, A.S. The Impact of Restricting Over-the-Counter Sales of Antimicrobial Drugs: Preliminary Analysis of National Data. Medicine 2015, 94, e1605. [Google Scholar] [CrossRef]
- Weinberger, D.M.; Trzciński, K.; Lu, Y.-J.; Bogaert, D.; Brandes, A.; Galagan, J.; Anderson, P.W.; Malley, R.; Lipsitch, M. Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog. 2009, 5, e1000476. [Google Scholar] [CrossRef]
Serotypes | Period Studied | |||
---|---|---|---|---|
Pre-COVID-19 (N = 656) | COVID-19 (N = 295) | |||
n | % | n | % | |
PCV10 types | 31 | 4.7 | 11 | 3.7 |
1 | 1 | 0.2 | 0 | 0.0 |
4 | 2 | 0.3 | 0 | 0.0 |
6B | 1 | 0.2 | 0 | 0.0 |
7F | 6 | 0.9 | 2 | 0.7 |
9V | 6 | 0.9 | 5 | 1.7 |
14 | 8 | 1.2 | 4 | 1.4 |
18C | 1 | 0.2 | 0 | 0.0 |
19F | 2 | 0.3 | 0 | 0.0 |
23F | 4 | 0.6 | 0 | 0.0 |
Non-PCV10 types | 625 | 95.3 | 284 | 96.3 |
3 | 60 | 9.1 | 26 | 8.8 |
6A | 12 | 1.8 | 0 | 0.0 |
6C | 56 | 8.5 | 19 | 6.5 |
7C | 4 | 0.6 | 3 | 1.0 |
9N | 8 | 1.2 | 3 | 1.0 |
8 | 13 | 2.0 | 8 | 2.7 |
10A | 20 | 3.1 | 5 | 1.7 |
11A | 8 | 1.2 | 3 | 1.0 |
11B | 2 | 0.3 | 1 | 0.3 |
12F | 19 | 2.9 | 4 | 1.4 |
13 | 8 | 1.2 | 0 | 0.0 |
15A | 18 | 2.7 | 9 | 3.1 |
15B | 14 | 2.1 | 6 | 2.0 |
15C | 14 | 2.1 | 4 | 1.4 |
16F | 14 | 2.1 | 4 | 1.4 |
18A | 2 | 0.3 | 6 | 2.0 |
19A | 244 | 37.2 | 142 | 48.1 |
20 | 1 | 0.2 | 2 | 0.7 |
21 | 2 | 0.3 | 1 | 0.3 |
22F | 13 | 2.0 | 2 | 0.7 |
23A | 17 | 2.6 | 3 | 1.0 |
23B | 18 | 2.7 | 6 | 2.0 |
24F | 18 | 2.7 | 5 | 1.7 |
25A | 11 | 1.7 | 1 | 0.3 |
25F/25A/38 | 2 | 0.3 | 0 | 0.0 |
28A | 4 | 0.6 | 2 | 0.7 |
29 | 3 | 0.5 | 5 | 1.7 |
33F | 1 | 0.2 | 1 | 0.3 |
34 | 3 | 0.5 | 0 | 0.0 |
35B | 9 | 1.4 | 5 | 1.7 |
NT * | 2 | 0.3 | 1 | 0.3 |
ND & | 0 | 0.0 | 3 | 1.0 |
Other non-PCV10 types # | 5 | 0.8 | 4 | 1.4 |
Serotypes | Period Studied | |||
---|---|---|---|---|
Pre-COVID-19 (N = 1340) | COVID-19 (N = 472) | |||
n | % | n | % | |
PCV10 types | 175 | 13.1 | 66 | 14 |
1 | 3 | 0.2 | 1 | 0.2 |
4 | 63 | 4.7 | 22 | 4.7 |
5 | 13 | 1.0 | 3 | 0.6 |
6B | 9 | 0.7 | 5 | 1.1 |
7F | 33 | 2.5 | 8 | 1.7 |
9V | 17 | 1.3 | 10 | 2.1 |
14 | 15 | 1.1 | 8 | 1.7 |
18C | 5 | 0.4 | 0 | 0.0 |
19F | 10 | 0.8 | 5 | 1.1 |
23F | 7 | 0.5 | 4 | 0.9 |
Non-PCV10 types | 1165 | 86.9 | 406 | 86.0 |
3 | 190 | 14.2 | 57 | 12.1 |
6A | 13 | 1.0 | 2 | 0.4 |
6C | 106 | 7.9 | 37 | 7.8 |
7A | 2 | 0.1 | 0 | 0.0 |
7C | 6 | 0.4 | 6 | 1.3 |
8 | 76 | 5.7 | 34 | 7.2 |
9N | 33 | 2.5 | 18 | 3.8 |
10A | 30 | 2.2 | 14 | 3.0 |
11A | 45 | 3.4 | 10 | 2.1 |
11B | 4 | 0.3 | 4 | 0.8 |
12F | 50 | 3.7 | 19 | 4.0 |
13 | 12 | 0.9 | 4 | 0.9 |
15A | 32 | 2.4 | 8 | 1.7 |
15B | 10 | 0.8 | 5 | 1.1 |
15C | 11 | 0.8 | 2 | 0.4 |
16F | 42 | 3.1 | 8 | 1.7 |
17F | 12 | 0.9 | 1 | 0.2 |
18A | 17 | 1.3 | 9 | 1.9 |
18B | 2 | 0.1 | 2 | 0.4 |
19A | 167 | 12.5 | 84 | 17.8 |
20 | 33 | 2.5 | 13 | 2.8 |
21 | 3 | 0.2 | 1 | 0.2 |
22A | 1 | 0.1 | 2 | 0.4 |
22F | 43 | 3.2 | 7 | 1.5 |
23A | 58 | 4.3 | 9 | 1.9 |
23B | 31 | 2.3 | 8 | 1.7 |
24F | 17 | 1.3 | 2 | 0.4 |
25A | 14 | 1.0 | 2 | 0.4 |
28A | 11 | 0.8 | 6 | 1.3 |
29 | 10 | 0.8 | 2 | 0.4 |
31 | 2 | 0.1 | 6 | 1.3 |
34 | 13 | 1.0 | 4 | 0.8 |
35A | 2 | 0.1 | 1 | 0.2 |
35B | 37 | 2.8 | 10 | 2.1 |
35C | 2 | 0.1 | 0 | 0.0 |
35F | 14 | 1.0 | 0 | 0.0 |
36 | 1 | 0.1 | 1 | 0.2 |
40 | 2 | 0.1 | 2 | 0.4 |
NT * | 2 | 0.1 | 0 | 0.0 |
ND & | 0 | 0.0 | 5 | 1.1 |
Other non-PCV10 types # | 9 | 0.7 | 1 | 0.2 |
Serotypes by Vaccine Formulations | <5 Years Old | ≥50 Years Old | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 | COVID-19 | Pre-COVID-19 | COVID-19 | |||||||
N = 656 # | Cum.% | N = 295 | Cum.% | p-Value $ | N = 1.340 # | Cum.% | N = 472 | Cum.% | p-Value $ | |
PCV10 * | 31 | 4.7 | 11 | 3.7 | 0.489 | 175 | 13.1 | 66 | 14.0 | 0.611 |
PCV13 | 347 | 52.9 | 179 | 60.7 | 0.026 | 545 | 40.7 | 209 | 44.3 | 0.171 |
PCV15 | 361 | 55.0 | 182 | 61.7 | 0.055 | 589 | 44.0 | 216 | 45.8 | 0.487 |
PCV20 | 435 | 66.3 | 208 | 70.5 | 0.201 | 800 | 59.7 | 298 | 63.1 | 0.189 |
PCV24 ** | 444 | 67.7 | 214 | 72.5 | 0.133 | 878 | 65.5 | 330 | 69.9 | 0.082 |
NVT & | 212 | 32.3 | 81 | 27.5 | 0.133 | 462 | 34.5 | 142 | 30.1 | 0.082 |
Non- Susceptibility * | <5 Years Old | ≥50 Years Old | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-COVID-19 & | COVID-19 & | Pre-COVID-19& | COVID-19 & | |||||||||||
N # | n | % | N # | n | % | p-Value $ | N # | n | % | N # | n | % | p-Value $ | |
Meningitis | ||||||||||||||
Penicillin | 263 | 128 | 48.7 | 70 | 45 | 64.3 | 0.020 | 437 | 139 | 31.8 | 99 | 41 | 41.4 | 0.068 |
Ceftriaxone | 67 | 25.5 | 23 | 32.9 | 0.216 | 52 | 11.9 | 17 | 17.2 | 0.157 | ||||
Non-meningitis | ||||||||||||||
Penicillin | 391 | 80 | 20.5 | 214 | 84 | 39.3 | <0.001 | 899 | 56 | 6.2 | 341 | 49 | 14.4 | <0.001 |
Ceftriaxone | 36 | 9.2 | 41 | 19.2 | <0.001 | 33 | 3.7 | 16 | 4.7 | 0.410 | ||||
Total | ||||||||||||||
Penicillin | 654 | 208 | 31.8 | 284 | 129 | 45.4 | <0.001 | 1336 | 195 | 14.6 | 440 | 90 | 20.5 | 0.004 |
Ceftriaxone | 103 | 15.7 | 64 | 22.5 | 0.013 | 85 | 6.4 | 33 | 7.5 | 0.404 |
Antimicrobial | N. Tested | Non-Susceptible Isolates | p-Value # | |
---|---|---|---|---|
n | % | |||
Erythromycin | ||||
Pre-COVID-19 | 1989 | 672 | 33.8 | <0.001 |
COVID-19 | 724 | 343 | 47.4 | |
Clindamycin | ||||
Pre-COVID-19 | 1778 | 495 | 27.8 | <0.001 |
COVID-19 | 724 | 271 | 37.4 | |
Tetracycline | ||||
Pre-COVID-19 | 866 | 380 | 43.9 | <0.001 |
COVID-19 | 724 | 434 | 59.9 | |
Trimethoprim-Sulfamethoxazole | ||||
Pre-COVID-19 | 1967 | 760 | 38.6 | <0.001 |
COVID-19 | 724 | 351 | 48.5 | |
Levofloxacin | ||||
Pre-COVID-19 | 868 | 4 | 0.5 | 0.131 ** |
COVID-19 | 724 | 0 | 0 | |
MDR & | ||||
Pre-COVID-19 | 1990 | 498 | 25 | <0.001 |
COVID-19 | 724 | 315 | 43.5 |
PCV Formulation | Serotype | Total | MDR $ | PEN Non-Susceptible | CRO Non-Susceptible | ERY Non-Susceptible | CLI Non-Susceptible | SXT Non-Susceptible | TET Non-Susceptible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | N | % | n | % | n | % | n | % | n | % | n | % | |||
PCV10 | 9V | 14 | 13 | 92.9 | 5 | 35.7 | 2 | 14.3 | 13 | 92.9 | 0 | 0.00 | 13 | 92.9 | 13 | 92.9 |
23F | 4 | 3 | 75.0 | 3 | 75.0 | 2 | 50.0 | 3 | 75.0 | 1 | 25.0 | 2 | 50.0 | 4 | 100 | |
6B | 4 | 2 | 50.0 | 3 | 75.0 | 0 | 0.0 | 2 | 50.0 | 2 | 50.0 | 3 | 75.0 | 3 | 75.0 | |
19F | 5 | 2 | 40.0 | 2 | 40.0 | 0 | 0.0 | 2 | 40.0 | 1 | 20.0 | 1 | 20.0 | 3 | 60.0 | |
14 | 11 | 2 | 18.2 | 2 | 18.2 | 1 | 9.1 | 9 | 81.8 | 3 | 27.3 | 4 | 36.4 | 6 | 54.5 | |
4 | 20 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 5.0 | 6 | 30.0 | |
5 | 3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 3 | 100 | 2 | 66.7 | |
7F | 9 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 11.1 | |
Additional PCV13 | 19A | 222 | 194 | 87.4 | 168 | 75.7 | 91 | 41.0 | 199 | 89.6 | 175 | 78.8 | 211 | 95 | 188 | 84.7 |
3 | 74 | 2 | 2.7 | 0 | 0.0 | 0 | 0.0 | 3 | 4.1 | 3 | 4.1 | 3 | 4.1 | 13 | 17.6 | |
6A | 2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 50.0 | 2 | 100 | |
Additional PCV15 | 33F | 1 | 1 | 100 | 0 | 0.0 | 0 | 0.0 | 1 | 100 | 1 | 100 | 0 | 0.0 | 1 | 100 |
22F | 9 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 4 | 44.4 | |
Additional PCV20 | 15B | 11 | 7 | 63.6 | 3 | 27.3 | 0 | 0.0 | 7 | 63.6 | 1 | 9.1 | 10 | 90.9 | 9 | 81.8 |
10A | 17 | 2 | 11.8 | 0 | 0.0 | 0 | 0.0 | 2 | 11.8 | 2 | 11.8 | 5 | 29.4 | 11 | 64.7 | |
8 | 39 | 2 | 5.1 | 0 | 0.0 | 0 | 0.0 | 2 | 5.1 | 2 | 5.1 | 1 | 2.6 | 11 | 28.2 | |
12F | 19 | 1 | 5.3 | 0 | 0.0 | 0 | 0.0 | 1 | 5.3 | 1 | 5.3 | 8 | 42.1 | 2 | 10.5 | |
11A | 12 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 8.3 | |
Additional PCV24 | 20 | 14 | 11 | 78.6 | 0 | 0.0 | 0 | 0.0 | 11 | 78.6 | 11 | 78.6 | 6 | 42.9 | 14 | 100 |
9N | 20 | 5 | 25.0 | 1 | 5.0 | 0 | 0.0 | 6 | 30.0 | 4 | 20.0 | 10 | 50.0 | 13 | 65.0 | |
17F | 2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 100 | |
Non- PCV types | 6C | 53 | 43 | 81.1 | 17 | 32.1 | 0 | 0.0 | 46 | 86.8 | 41 | 77.4 | 7 | 13.2 | 43 | 81.1 |
24F | 7 | 5 | 71.4 | 2 | 28.6 | 0 | 0.0 | 7 | 100 | 7 | 100 | 2 | 28.6 | 5 | 71.4 | |
23A | 11 | 8 | 72.7 | 1 | 9.1 | 0 | 0.0 | 8 | 72.7 | 8 | 72.7 | 1 | 9.1 | 9 | 81.8 | |
40 | 2 | 1 | 50.0 | 0 | 0.0 | 0 | 0.0 | 2 | 100 | 1 | 50.0 | 0 | 0.0 | 2 | 100 | |
15C | 6 | 2 | 33.3 | 0 | 0.0 | 0 | 0.0 | 4 | 66.7 | 2 | 33.3 | 4 | 66.7 | 4 | 66.7 | |
15A | 17 | 4 | 23.5 | 0 | 0.0 | 0 | 0.0 | 4 | 23.5 | 3 | 17.6 | 11 | 64.7 | 11 | 64.7 | |
23B | 14 | 3 | 21.4 | 7 | 50 | 0 | 0.0 | 1 | 7.1 | 0 | 0.0 | 14 | 100 | 5 | 35.7 | |
16F | 12 | 2 | 16.7 | 0 | 0.0 | 0 | 0.0 | 2 | 16.7 | 2 | 16.7 | 9 | 75.0 | 5 | 41.7 | |
7C | 9 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 6 | 66.7 | 6 | 66.7 | |
11B | 5 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 4 | 80.0 | |
13 | 4 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 3 | 75.0 | 3 | 75.0 | |
15A/15F | 1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 100 | 1 | 100 | |
18A | 15 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 13.3 | 5 | 33.3 | |
18B | 2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 100 | |
21 | 2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 50.0 | |
22A | 2 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 50.0 | |
25A | 3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 33.3 | 1 | 33.3 | |
28A | 8 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 25.0 | 6 | 75.0 | |
29 | 7 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 4 | 57.1 | |
31 | 7 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 28.6 | |
34 | 4 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 2 | 50.0 | 0 | 0.0 | |
35A | 1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 100 | |
35B | 15 | 0 | 0.0 | 5 | 33.3 | 1 | 6.7 | 8 | 53.3 | 0 | 0.0 | 4 | 26.7 | 3 | 20.0 | |
36 | 1 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, S.C.G.; Lemos, A.P.S.d.; Bierrenbach, A.L.; Moraes, J.C.d.; Brandileone, M.C.d.C. Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil. Microorganisms 2024, 12, 401. https://doi.org/10.3390/microorganisms12020401
Almeida SCG, Lemos APSd, Bierrenbach AL, Moraes JCd, Brandileone MCdC. Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil. Microorganisms. 2024; 12(2):401. https://doi.org/10.3390/microorganisms12020401
Chicago/Turabian StyleAlmeida, Samanta C. G., Ana Paula S. de Lemos, Ana Luiza Bierrenbach, José Cássio de Moraes, and Maria Cristina de Cunto Brandileone. 2024. "Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil" Microorganisms 12, no. 2: 401. https://doi.org/10.3390/microorganisms12020401
APA StyleAlmeida, S. C. G., Lemos, A. P. S. d., Bierrenbach, A. L., Moraes, J. C. d., & Brandileone, M. C. d. C. (2024). Serotype Distribution and Antimicrobial Susceptibility Pattern of Streptococcus pneumoniae in COVID-19 Pandemic Era in Brazil. Microorganisms, 12(2), 401. https://doi.org/10.3390/microorganisms12020401