Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens
Abstract
:1. Introduction
2. RNA and Ribonucleases (RNases)
3. RNA Degradation and Diagnostic Testing
- Freeze-drying (lyophilization). With the goal of finding a method to “send active virus in small, sealed containers on sea voyages lasting over a month, and for long-term storage in the laboratory for several months without serious loss of virulence,” in 1929, Sawyer reported that yellow fever virus could be preserved for over 155 days in “vacuum-dried” blood stored in sealed containers and refrigerated [39]. Lyophilization consists of freezing samples to immobilize water molecules and then placing them in a vacuum where the frozen water is vaporized, resulting in a dried specimen. This allows for prolonged storage of viruses in biological specimens that otherwise would be unstable in aqueous solutions [40]. In terms of nucleic acid stability, lyophilization is mostly used in vaccine production to preserve viral antigens and adjuvants to extend their shelf lives [41].
- Viral transport medium (VTM). Attempts to improve virus storage have been described since the 1930s. Cook and Hudson [42] compared saline, water, human oral fluid, and serum (rabbit, sheep) and reported that sheep serum optimally preserved St. Louis encephalitis virus stored at 37 °C for 24 h. VTM consists of a mixture typically containing a buffered salt solution to maintain pH, antibiotics to prevent viral contamination, protein stabilizers (e.g., bovine serum albumin), and other additives intended to preserve viral integrity [43]. Although widely used for swab specimens, e.g., oral, nasopharyngeal, oropharyngeal, genital, and fecal swabs, VTM does not suit liquid specimens such as blood, serum, oral fluid, urine, etc. [44].
- Untreated filter paper. The use of untreated filter paper (Guthrie Cards) for the transport and long-term storage of blood and urine began in the 1960s to detect phenylketonuria in infants [45]. Filter paper has long been used for storing and transporting fluid specimens, e.g., blood, saliva, and feces, intended for different assays, e.g., chemical assays, drug monitoring, nucleic acid or antigen detection, and serological markers for disease diagnostics. Nonetheless, filter paper is not typically used in routine viral diagnostics because eluting nucleic acids from specimens dried on the paper can lead to poor recovery and low nucleic acid yield [46].
Specimen Storage Matrix | Virucidal (Y/N) | Cost Per Sample b | Indicated Specimen | Peer-Reviewed Data c |
---|---|---|---|---|
RNAlaterTM Solution (Thermo Fisher Scientific, Waltham, MA, USA) | No | USD ~$2.43 | Tissues, cultured cells, bacteria, yeast | CSFV in spleen [54]. AIV in fecal homogenates [55]. HCV and HIV in plasma [58]. AIV in cloacal swabs [56]. SIV in fecal samples [57]. |
RNAprotect® Saliva Reagent (Qiagen, Germantown, MD, USA) | Yes | Price not listed | Oral fluid | HEV in oral fluid [63]. |
Aware MessengerTM (Calypte Biomedical, Portland, OR, USA) | Not disclosed | Price not listed | Oral fluid | PRRSV in oral fluid [64]. |
OrageneTM RNA (DNA Genotek, Ottawa, ON, Canada) | Yes | Price not listed | Oral fluid | PRRSV in oral fluid [64]. |
PrimeStore® MTM (Longhorn Vaccines and Diagnostics, San Antonio, TX, USA) | Yes | USD ~$9.80 | Sputum, swabs, blood, serum, urine, feces, tissue, environmental | IAV in throat swabs [65]. |
TRIzol® Reagent (Life Technologies, Carlsbad, CA, USA) | Yes | USD ~$2.21 | Cultured cells, tissue, bacteria, plant, yeast | CSFV in lymph nodes [69]. |
Flinders Technology Associates (FTA)® cards (Qiagen) | Yes | USD ~$2.14 | Blood, cultured cells, plasmids, tissue | AIV in cloacal and oropharyngeal swabs [70]. PRRSV in serum, oral fluid, and lungs [71]. |
DNA/RNA ShieldTM (Zymo Research, Irvine, CA, USA) | Yes | USD ~$0.60 | Swabs, blood, feces, saliva, environmental, tissue, urine | No peer-reviewed publications |
Monarch® DNA/RNA Protection Reagent (New England Biolabs, Ipswich, MA, USA) | Not disclosed | USD ~$1.77 | Tissue, swabs, oral fluid, blood, serum, feces | No peer-reviewed publications |
RNAhold® (Transgen Biotech, Beijing, China) | No | Price not listed | Cells and tissue | No peer-reviewed publications |
RNAgard® Blood System (Biomatrica, San Diego, CA, USA) | Yes | Price not listed | Whole blood | No peer-reviewed publications |
PAXgene® Blood RNA Tube (PreAnalytiX, Plymouth, UK) | Yes | USD ~$12.60 | Whole blood | No peer-reviewed publications |
TempusTM Blood RNA Tube (Applied Biosystems™, Burlington, ONT, Canada) | Yes | USD ~$9.62 | Whole blood | No peer-reviewed publications |
RNASoundTM Card (FortiusBio, Monterey Park, CA, USA) | Yes | USD ~$2.80 | Serum, saliva, nasal fluid, environmental | No peer-reviewed publications |
PowerProtect DNA/RNA (Qiagen) | Yes | USD ~$2.67 | Feces | No peer-reviewed publications |
RNAprotect® Tissue Reagent (Qiagen) | Yes | USD ~$2.40 | Tissue | No peer-reviewed publications |
4. Considerations for Swine Veterinarians, Diagnosticians, and Researchers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.G.; Chen, G.D.; Huang, Y.; Ding, L.; Li, Z.C.; Chang, C.D.; Wang, C.Y.; Tong, D.W.; Liu, H.J. Development of multiplex PCR for simultaneous detection of six swine DNA and RNA viruses. J. Virol. Methods 2012, 183, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Munguía-Ramírez, B.; Armenta-Leyva, B.; Giménez-Lirola, L.; Wang, C.; Zimmerman, J. Surveillance on swine farms using antemortem specimens. In Optimising Pig Herd Health and Production, 1st ed.; Maes, D., Segalés, J., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; pp. 97–107. [Google Scholar] [CrossRef]
- Fleige, S.; Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 2006, 27, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhao, J.; Ma, C.; Wei, H.; Li, X.; Fang, Q.; Yang, P.; Wang, Q.; Wang, D.; Xin, L. Impact of RNA degradation on influenza diagnosis in the surveillance system. Diagn. Microbiol. Infect. Dis. 2021, 100, 115388. [Google Scholar] [CrossRef] [PubMed]
- Houseley, J.; Tollervey, D. The many pathways of RNA degradation. Cell 2009, 136, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Bremer, K.; Moyes, C.D. mRNA degradation: An underestimated factor in steady-state transcript levels of cytochrome c oxidase subunits? J. Exp. Biol. 2014, 217, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Litwack, G. Metabolism of Fat, Carbohydrate, and Nucleic Acids. In Human Biochemistry, 2nd ed.; Litwack, G., Ed.; Academic Press: Oakland, CA, USA, 2017; pp. 415–416. [Google Scholar]
- Phung, D.K.; Bouvier, M.; Clouet-d’Orval, B. An overview of ribonuclease repertoire and RNA processing pathways in archaea. In RNA Metabolism and Gene Expression in Archaea, 1st ed.; Clouet-d’Orval, B., Ed.; Springer: Cham, Switzerland, 2017; pp. 89–114. [Google Scholar]
- Zuo, Y.; Deutscher, M.P. Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution. Nucleic Acids Res. 2001, 29, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deutscher, M.P. Exoribonucleases and endoribonucleases. EcoSal Plus 2004, 1, 10–1128. [Google Scholar] [CrossRef]
- Purdy, K.J. Nucleic acid recovery from complex environmental samples. Meth Enzymol. 2005, 397, 271–292. [Google Scholar] [CrossRef]
- van Pelt-Verkuil, E.; van Belkum, A.; Hays, J.P. Ensuring PCR quality–laboratory organisation, PCR optimization and controls. In Principles and Technical Aspects of PCR Amplification; van Pelt-Verkuil, E., Ed.; Springer: Berlin, Germany, 2008; pp. 183–212. [Google Scholar]
- Green, M.R.; Sambrook, J. Extraction, purification, and analysis of RNA from eukaryotic cells. In Molecular Cloning: A Laboratory Manual, 4th ed.; Green, M.R., Sambrook, J., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; pp. 372–374. [Google Scholar]
- Bender, A.T.; Sullivan, B.P.; Lillis, L.; Posner, J.D. Enzymatic and chemical-based methods to inactivate endogenous blood ribo-nucleases for nucleic acid diagnostics. J. Mol. Diagn. 2020, 22, 1030–1040. [Google Scholar] [CrossRef]
- Kunitz, M. Crystalline ribonuclease. J. Gen. Physiol. 1940, 24, 15. [Google Scholar] [CrossRef]
- Sela, M.; Anfinsen, C.B.; Harrington, W.F. The correlation of ribonuclease activity with specific aspects of tertiary structure. Biochim. Biophys. Acta 1957, 26, 502–512. [Google Scholar] [CrossRef]
- Pasloske, B.L. Ribonuclease inhibitors. In Nuclease methods and protocols, 1st ed.; Schein, C.H., Ed.; Humana Press: Clifton, NJ, USA, 2001; pp. 105–111. [Google Scholar]
- Butterer, A.; Zorc, M.; Castleberry, C.M.; Limbach, P.A. Using immobilized enzymes to reduce RNase contamination in RNase mapping of transfer RNAs by mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2701–2711. [Google Scholar] [CrossRef] [PubMed]
- Jones, W. The action of boiled pancreas extract on yeast nucleic acid. Am. J. Physiol. 1920, 52, 203–207. [Google Scholar] [CrossRef]
- Dubos, R.J.; Thompson, R.H. The decomposition of yeast nucleic acid by a heat-resistant enzyme. J. Biol. Chem. 1938, 124, 501–510. [Google Scholar] [CrossRef]
- Kunitz, M. Isolation from beef pancreas of a crystalline protein possessing ribonuclease activity. Science 1939, 90, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Raines, R.T. Active site of ribonuclease A. In Artificial nucleases, 1st ed.; Zenkova, M.A., Ed.; Springer: Heidelberg, Germany, 2004; pp. 19–32. [Google Scholar]
- Rosenberg, H.F. RNase A ribonucleases and host defense: An evolving story. J. Leukoc. Biol. 2008, 83, 1079–1087. [Google Scholar] [CrossRef]
- Richards, F.M. Linderstrøm-Lang and the Carlsberg Laboratory: The view of a postdoctoral fellow in 1954. Protein Sci. 1992, 1, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Mushegian, A.; Sorokina, I.; Eroshkin, A.; Dlakić, M. An ancient evolutionary connection between Ribonuclease A and EndoU families. RNA 2020, 26, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Cuchillo, C.M.; Nogués, M.V.; Raines, R.T. Bovine pancreatic ribonuclease: Fifty years of the first enzymatic reaction mechanism. Biochemistry 2011, 50, 7835–7841. [Google Scholar] [CrossRef]
- Li, J.; Liu, C. Coding or noncoding, the converging concepts of RNAs. Front. Genet. 2019, 10, 496. [Google Scholar] [CrossRef]
- Kwok, Z.H.; Ni, K.; Jin, Y. Extracellular vesicle associated non-coding RNAs in lung infections and injury. Cells 2021, 10, 965. [Google Scholar] [CrossRef]
- Bhatti, G.K.; Khullar, N.; Sidhu, I.S.; Navik, U.S.; Reddy, A.P.; Reddy, P.H.; Bhatti, J.S. Emerging role of non-coding RNA in health and disease. Metab. Brain Dis. 2021, 36, 1119–1134. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Sulej, A.A.; Tuszynska, I.; Skowronek, K.J.; Nowotny, M.; Bujnicki, J.M. Sequence-specific cleavage of the RNA strand in DNA–RNA hybrids by the fusion of ribonuclease H with a zinc finger. Nucleic Acids Res. 2012, 40, 11563–11570. [Google Scholar] [CrossRef]
- Chirgwin, J.M.; Przybyla, A.E.; MacDonald, R.J.; Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979, 18, 5294–5299. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.C.; Yiap, B.C. DNA, RNA, and protein extraction: The past and the present. J. Biomed. Biotechnol. 2009, 2009, 574398. [Google Scholar] [CrossRef]
- Vehniäinen, E.R.; Ruusunen, M.; Vuorinen, P.J.; Keinänen, M.; Oikari, A.O.; Kukkonen, J.V. How to preserve and handle fish liver samples to conserve RNA integrity. Environ. Sci. Pollut. Res. 2019, 26, 17204–17213. [Google Scholar] [CrossRef]
- Blumberg, D.D. Creating a ribonuclease-free environment. In Methods in Enzymology; Berger, S.L., Ed.; Academic Press: Cambridge, MA, US, 1987; Volume 152, pp. 20–24. [Google Scholar]
- Wang, B. Human skin RNases offer dual protection against invading bacteria. Front. Microbiol. 2017, 8, 624. [Google Scholar] [CrossRef]
- Munguía-Ramírez, B.; Armenta-Leyva, B.; Henao-Díaz, A.; Cheng, T.Y.; Zhang, J.; Rawal, G.; Ye, F.; Giménez-Lirola, L.; Zimmerman, J. Effect of extrinsic factors on the detection of PRRSV and a porcine-specific internal sample control in diagnostic specimens tested by RT-rtPCR. J. Vet. Diagn. Investig. 2023, 35, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Amoss, H.L.; Gates, F.L.; Olitsky, P.K. Simplified production of antimeningococcic serum. J. Exp. Med. 1920, 32, 767–781. [Google Scholar] [CrossRef]
- Sawyer, W.A.; Lloyd, W.D.M.; Kitchen, S.F. The preservation of yellow fever virus. J. Exp. Med. 1929, 50, 1–13. [Google Scholar] [CrossRef]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/freeze drying–a review. World J. Pharm. Res. 2015, 4, 516–543. [Google Scholar]
- Preston, K.B.; Randolph, T.W. Stability of lyophilized and spray dried vaccine formulations. Adv. Drug Deliv. Rev. 2021, 171, 50–61. [Google Scholar] [CrossRef]
- Cook, E.A.; Hudson, N.P. The Preservation of the Virus of St. Louis Encephalitis. J. Infect. Dis. 1937, 61, 289–292. [Google Scholar] [CrossRef]
- Johnson, F.B. Transport of viral specimens. Clin. Microbiol. Rev. 1990, 3, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Forman, M.S.; Valsamakis, A. Specimen collection, transport, and processing: Virology. In Manual of Clinical Microbiology, 10th ed.; Versalovic, J., Carroll, K.C., Jorgensen, J.H., Funke, G., Landry, M.L., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 1276–1288. [Google Scholar] [CrossRef]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Smit, P.W.; Elliott, I.; Peeling, R.W.; Mabey, D.; Newton, P.N. An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am. J. Trop. Med. Hyg. 2014, 90, 195. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Novo, C.A.; Claeys, C.; Speleman, F.; Van Cauwenberge, P.; Bachert, C.; Vandesompele, J. Impact of RNA quality on reference gene expression stability. BioTechniques 2005, 39, 52–56. [Google Scholar] [CrossRef]
- Anwar, A.; Wan, G.; Chua, K.B.; August, J.T.; Too, H.P. Evaluation of pre-analytical variables in the quantification of dengue virus by real-time polymerase chain reaction. J. Mol. Diagn. 2009, 11, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Weesendorp, E.; Willems, E.M.; Loeffen, W.L. The effect of tissue degradation on detection of infectious virus and viral RNA to diagnose classical swine fever virus. Vet. Microbiol. 2010, 141, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Granados, A.; Petrich, A.; McGeer, A.; Gubbay, J.B. Measuring influenza RNA quantity after prolonged storage or multiple freeze/thaw cycles. J. Virol. Methods 2017, 247, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, S.A.; Marino, M.A.; Belgrader, P. Reusing the same bloodstained punch for sequential DNA amplifications and typing. Biotechniques 1996, 20, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Grotzer, M.A.; Patti, R.; Geoerger, B.; Eggert, A.; Chou, T.T.; Phillips, P.C. Biological stability of RNA isolated from RNAlater-treated brain tumor and neuroblastoma xenografts. Med. Pediatr. Oncol. 2000, 34, 438–442. [Google Scholar] [CrossRef]
- Uhlenhaut, C.; Kracht, M. Viral infectivity is maintained by an RNA protection buffer. J. Virol. Methods 2005, 128, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Blacksell, S.D.; Khounsy, S.; Westbury, H.A. The effect of sample degradation and RNA stabilization on classical swine fever virus RT–PCR and ELISA methods. J. Virol. Methods 2004, 118, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.L.; Harkin, V.B.; Graham, D.A.; McCullough, S.J. The effect of sample type, temperature and RNAlater™ on the stability of avian influenza virus RNA. J. Virol. Methods 2008, 149, 190–194. [Google Scholar] [CrossRef]
- Wille, M.; Yin, H.; Lundkvist, Å.; Xu, J.; Muradrasoli, S.; Järhult, J.D. RNAlater® is a viable storage option for avian influenza sampling in logistically challenging conditions. J. Virol. Methods 2018, 252, 32–36. [Google Scholar] [CrossRef]
- Wilde, T.H.; Shukla, R.K.; Madden, C.; Vodovotz, Y.; Sharma, A.; McGraw, W.S.; Hale, V.L. Simian immunodeficiency virus and storage buffer: Field-friendly preservation methods for RNA viral detection in primate feces. Msphere 2023, 8, e00484-23. [Google Scholar] [CrossRef]
- Lee, D.H.; Li, L.; Andrus, L.; Prince, A.M. Stabilized viral nucleic acids in plasma as an alternative shipping method for NAT. Transfusion 2002, 42, 409–413. [Google Scholar] [CrossRef]
- Halfon, P.; Khiri, H.; Gerolami, V.; Bourliere, M.; Feryn, J.M.; Reynier, P.; Gauthier, A.; Cartouzou, G. Impact of various handling and storage conditions on quantitative detection of hepatitis C virus RNA. J. Hepatol. 1996, 25, 307–311. [Google Scholar] [CrossRef]
- Amellal, B.; Murphy, R.; Maiga, A.; Brucker, G.; Katlama, C.; Calvez, V.; Marcelin, A.G. Stability of HIV RNA in plasma specimens stored at different temperatures. HIV Med. 2008, 9, 790–793. [Google Scholar] [CrossRef]
- Dahle, C.E.; Macfarlane, D.E. Isolating RNA with the cationic surfactant, Catrimox-14. In RNA Isolation and Characterization Protocols; Rapley, R., Manning, D.L., Eds.; Humana Press: Clifton, NY, USA, 1998; pp. 19–21. [Google Scholar]
- Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Shibaev, A.V.; Molchanov, V.S.; Philippova, O.E.; Khokhlov, A.R. Cationic surfactants as disinfectants against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 6645. [Google Scholar] [CrossRef]
- Jones, T.H.; Muehlhauser, V. Effect of handling and storage conditions and stabilizing agent on the recovery of viral RNA from oral fluid of pigs. J. Virol. Methods 2014, 198, 26–31. [Google Scholar] [CrossRef]
- Decorte, I.; Van der Stede, Y.; Nauwynck, H.; De Regge, N.; Cay, A.B. Effect of saliva stabilisers on detection of porcine reproductive and respiratory syndrome virus in oral fluid by quantitative reverse transcriptase real-time PCR. Vet. J. 2013, 197, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Daum, L.T.; Worthy, S.A.; Yim, K.C.; Nogueras, M.; Schuman, R.F.; Choi, Y.W.; Fischer, G.W. A clinical specimen collection and transport medium for molecular diagnostic and genomic applications. Epidemiol. Infect. 2011, 139, 1764–1773. [Google Scholar] [CrossRef]
- Mráz, M.; Malinova, K.; Mayer, J.; Pospisilova, S. MicroRNA isolation and stability in stored RNA samples. Biochem. Biophys. Res. Commun. 2009, 390, 1–4. [Google Scholar] [CrossRef]
- Widen, R.H.; Silbert, S. Nucleic Acid Extraction in Diagnostic Virology. In Clinical Virology Manual, 5th ed.; Loeffelholz, M., Hodinka, R., Young, S., Pinsky, B., Eds.; ASM Press: Washington, DC, USA, 2016; pp. 117–128. [Google Scholar]
- Wagh, Y.S.; Viji, M.M.; Soni, K.B.; Jadhav, P.R.; Ekatpure, S.C.; Manju, R.V.; Stephen, R.; Beena, R. Isolation of RNA from Grains of Medicinal Rice “Njavara” using Improved TRIzol Method. Int. J. Curr. Microbiol. App Sci. 2020, 9, 2858–2866. [Google Scholar] [CrossRef]
- Hofmann, M.A.; Thür, B.; Liu, L.; Gerber, M.; Stettler, P.; Moser, C.; Bossy, S. Rescue of infectious classical swine fever and foot-and-mouth disease virus by RNA transfection and virus detection by RT-PCR after extended storage of samples in Trizol®. J. Virol. Methods 2000, 87, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.P.; Ferro, P.J.; Brown, J.D.; Fang, X.; El-Attrache, J.; Poulson, R.; Jackwood, M.W.; Stallknecht, D.E. Use of FTA® sampling cards for molecular detection of avian influenza virus in wild birds. Avian Dis. 2012, 56, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Linhares, D.C.; Rovira, A.; Torremorell, M. Evaluation of Flinders Technology Associates cards for collection and transport of samples for detection of Porcine reproductive and respiratory syndrome virus by reverse transcription polymerase chain reaction. J. Vet. Diagn. Investig. 2012, 24, 328–332. [Google Scholar] [CrossRef]
- Qiagen®, “Product Sheet QIAcard® FTA®”, HB-2723-002. September 2023. Available online: https://www.qiagen.com/us/resources/download.aspx?id=8fe3936f-4948-487a-8a1e-35d92776cdba&lang=en (accessed on 9 January 2024).
- Camacho-Sanchez, M.; Burraco, P.; Gomez-Mestre, I.; Leonard, J.A. Preservation of RNA and DNA from mammal samples under field conditions. Mol. Ecol. Resour. 2013, 13, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Weidner, L.; Laner-Plamberger, S.; Horner, D.; Pistorius, C.; Jurkin, J.; Karbiener, M.; Schistal, E.; Kreil, T.R.; Jungbauer, C. Sample buffer containing guanidine-hydrochloride combines biological safety and RNA preservation for SARS-CoV-2 molecular diagnostics. Diagnostics 2022, 12, 1186. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munguía-Ramírez, B.; Giménez-Lirola, L.; Zimmerman, J. Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens. Microorganisms 2024, 12, 410. https://doi.org/10.3390/microorganisms12020410
Munguía-Ramírez B, Giménez-Lirola L, Zimmerman J. Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens. Microorganisms. 2024; 12(2):410. https://doi.org/10.3390/microorganisms12020410
Chicago/Turabian StyleMunguía-Ramírez, Berenice, Luis Giménez-Lirola, and Jeffrey Zimmerman. 2024. "Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens" Microorganisms 12, no. 2: 410. https://doi.org/10.3390/microorganisms12020410
APA StyleMunguía-Ramírez, B., Giménez-Lirola, L., & Zimmerman, J. (2024). Assessment of Strategies for Preserving Swine Viral RNA Targets in Diagnostic Specimens. Microorganisms, 12(2), 410. https://doi.org/10.3390/microorganisms12020410