Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Diagnostic Workup
2.2.1. Lactulose Hydrogen Breath Test for SIBO
2.2.2. Gut Microbiota Analysis
2.2.3. Gut Damage Biomarker Analysis
2.2.4. Bacterial Translocation Biomarker Analysis
2.3. Statistical Analysis
3. Results
3.1. Studied Population
3.2. The Gut Microbiota of Patients with Cirrhosis and Healthy Controls
3.3. Levels of Tested Biomarkers in Cirrhosis and Healthy Subjects
3.4. Significant Correlations of Biomarker Values for Intestinal Barrier Damage
3.5. Levels of Tested Biomarkers of Intestinal Barrier Damage Depending on Cirrhosis Severity
3.6. SIBO and Biomarkers of Intestinal Barrier Damage
3.7. Cirrhotic Patients with Normal and Decreased DAO Levels
3.8. Cirrhotic Patients with Normal and Increased Claudin 3 Levels
3.9. Cirrhotic Patients with Detected and Undetected I-FABP
3.10. Gut Microbiota Taxa and the Levels of Intestinal Barrier Damage Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef]
- Sepanlou, S.G.; Safiri, S.; Bisignano, C.; Ikuta, K.S.; Merat, S.; Saberifiroozi, M.; Poustchi, H.; Tsoi, D.; Colombara, D.V.; Abdoli, A.; et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J. Clin. Cases 2021, 9, 9320–9332. [Google Scholar] [CrossRef] [PubMed]
- Fukui, H. Leaky Gut and Gut-Liver Axis in Liver Cirrhosis: Clinical Studies Update. Gut Liver 2020, 15, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Moreau, R.; Angeli, P.; Schnabl, B.; Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 2015, 63, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–5777. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Kudryavtseva, A.; Krasnov, G. Gut dysbiosis and small intestinal bacterial overgrowth as independent forms of gut microbiota disorders in cirrhosis. World J. Gastroenterol. 2022, 28, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; White, M.B.; Monteith, P.; Noble, N.A.; Unser, A.B.; Daita, K.; Fisher, A.R.; et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 2014, 60, 940–947. [Google Scholar] [CrossRef]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Small intestinal bacterial overgrowth in cirrhosis: Systematic review and meta-analysis. Hepatol. Int. 2018, 12, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, V.; Betrapally, N.S.; Hylemon, P.B.; White, M.B.; Gillevet, P.M.; Unser, A.B.; Fagan, A.; Daita, K.; Heuman, D.M.; Zhou, H.; et al. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Sci. Rep. 2016, 6, 26800. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Alieva, A.; Kashuh, E.; Tsvetaeva, E.; Poluektova, E.; Shirokova, E.; Ivashkin, K. Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World J. Hepatol. 2021, 13, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, Y.; Zhou, F.; Zhang, B.; Wu, J.; Yang, L.; Xu, S.; Stedtfeld, R.; Chen, Q.; Liu, J.; et al. Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease. Front. Microbiol. 2020, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Efremova, I.; Maslennikov, R.; Alieva, A.; Poluektova, E.; Ivashkin, V. Small Intestinal Bacterial Overgrowth Is Associated with Poor Prognosis in Cirrhosis. Microorganisms 2023, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-C.; Fan, Y.-C.; Li, Y.-K.; Wang, K. Plasma diamine oxidase level predicts 6-month readmission for patients with hepatitis B virus-related decompensated cirrhosis. Virol. J. 2019, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Ruan, P.; Gong, Z.-J.; Zhang, Q.-R. Changes of plasma D(-)-lactate, diamine oxidase and endotoxin in patients with liver cirrhosis. Hepatobiliary Pancreat. Dis. Int. 2004, 3, 58–61. [Google Scholar] [PubMed]
- Lian, X.X.; Sun, Y.P.; Guo, X.X. Correlation between intestinal mucosal permeability and prognosis in patients with liver cirrhosis. Zhonghua Gan Zang Bing Za Zhi 2020, 28, 58–63. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, A.; Gong, Z.; Biviano, I.; Liu, H.; Hu, J. Plasma claudin-3 is associated with tumor necrosis factor-alpha-induced intestinal endotoxemia in liver disease. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 410–416. [Google Scholar] [CrossRef]
- Pugh, R.N.H.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Ivashkin, V.T.; Maev, I.V.; Abdulganieva, D.I.; Alekseeva, O.P.; Alekseenko, S.A.; Zolnikova, O.Y.; Korochanskaya, N.V.; Medvedev, O.S.; Poluektova, E.A.; Simanenkov, V.I.; et al. Practical Recommendation of the Scientific Community for Human Microbiome Research (CHMR) and the Russian Gastroenterological Association (RGA) on Small Intestinal Bacterial Overgrowth in Adults. Russ. J. Gastroenterol. Hepatol. Coloproctology 2022, 32, 68–85. [Google Scholar] [CrossRef]
- Parikh, H.I.; Koparde, V.N.; Bradley, S.P.; Buck, G.A.; Sheth, N.U. MeFiT: Merging and filtering tool for illumina paired-end reads for 16S rRNA amplicon sequencing. BMC Bioinform. 2016, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Wolvekamp, M.; de Bruin, R. Diamine oxidase: An overview of historical, biochemical and functional aspects. Dig. Dis. 1994, 12, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Luk, G.D.; Bayless, T.M.; Baylin, S.B. Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. J. Clin. Investig. 1980, 66, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Rokkas, T.; Vaja, S.; Murphy, G.M.; Dowling, R. Postheparin plasma diamine oxidase in health and intestinal disease. Gastroenterology 1990, 98, 1493–1501. [Google Scholar] [CrossRef]
- D’Agostino, L.; Daniele, B.; Pallone, F.; Pignata, S.; Leoni, M.; Mazzacca, G. Postheparin plasma diamine oxidase in patients with small bowel crohn’s disease. Gastroenterology 1988, 95, 1503–1509. [Google Scholar] [CrossRef]
- D’agostino, L.; Daniele, B.; Pignata, S.; Greco, L.; Mazzacca, G. Postheparin plasma diamine oxidase in subjects with small bowel disease. Diagnostic efficiency of a simplified test. Digestion 1988, 41, 46–54. [Google Scholar] [CrossRef]
- Fukudome, I.; Kobayashi, M.; Dabanaka, K.; Maeda, H.; Okamoto, K.; Okabayashi, T.; Baba, R.; Kumagai, N.; Oba, K.; Fujita, M.; et al. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med. Mol. Morphol. 2013, 47, 100–107. [Google Scholar] [CrossRef]
- Miyoshi, J.; Miyamoto, H.; Goji, T.; Taniguchi, T.; Tomonari, T.; Sogabe, M.; Kimura, T.; Kitamura, S.; Okamoto, K.; Fujino, Y.; et al. Serum diamine oxidase activity as a predictor of gastrointestinal toxicity and malnutrition due to anticancer drugs. J. Gastroenterol. Hepatol. 2015, 30, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, T.; Fukudome, I.; Kitagawa, H.; Okabayashi, T.; Kobayashi, M.; Hanazaki, K. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology 2012, 82, 147–152. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, L.; Ciacci, C.; Daniele, B.; Barone, M.V.; Sollazzo, R.; Mazzacca, G. Postheparin plasma diamine oxidase in subjects with small bowel mucosal atrophy. Dig. Dis. Sci. 1987, 32, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Li, W.; Chen, J.; Li, X.; Chen, S. Diamine oxidase as a marker for diagnosis of superior mesenteric arterial occlusion. Hepato-Gastroenterology 2011, 59, 155–158. [Google Scholar] [CrossRef]
- Li, F.-C.; Li, Y.-K.; Fan, Y.-C.; Wang, K. Plasma concentration of diamine oxidase (DAO) predicts 1-month mortality of acute-on-chronic hepatitis B liver failure. Clin. Chim. Acta 2018, 484, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, K.F.; Wu, T.J. Effect of total parenteral nutrition with supplementation of glutamine on the plasma diamine oxidase activity and D-lactate content in patients with multiple organ dysfunction syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2006, 18, 616–618. [Google Scholar] [PubMed]
- Linsalata, M.; Riezzo, G.; Clemente, C.; D’attoma, B.; Russo, F. Noninvasive Biomarkers of Gut Barrier Function in Patients Suffering from Diarrhea Predominant-IBS: An Update. Dis. Markers 2020, 2020, 2886268. [Google Scholar] [CrossRef]
- Adriaanse, M.P.M.; Mubarak, A.; Riedl, R.G.; Ten Kate, F.J.W.; Damoiseaux, J.G.M.C.; Buurman, W.A.; Houwen, R.H.J.; Vreugdenhil, A.C.E.; Celiac Disease Study Group. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci. Rep. 2017, 7, 8671. [Google Scholar] [CrossRef]
- Vreugdenhil, A.C.; Wolters, V.M.; Adriaanse, M.P.; Neucker, A.M.V.D.; A van Bijnen, A.; Houwen, R.; A Buurman, W. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand. J. Gastroenterol. 2011, 46, 1435–1441. [Google Scholar] [CrossRef]
- Sun, D.-L.; Cen, Y.-Y.; Li, S.-M.; Li, W.-M.; Lu, Q.-P.; Xu, P.-Y. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: A meta-analysis. Sci. Rep. 2016, 6, srep34371. [Google Scholar] [CrossRef] [PubMed]
- Cronk, D.R.; Houseworth, T.P.; Cuadrado, D.G.; Herbert, G.S.; McNutt, P.M.; Azarow, K.S. Intestinal Fatty Acid Binding Protein (I-FABP) for the Detection of Strangulated Mechanical Small Bowel Obstruction. Curr. Surg. 2006, 63, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.; MacKinder, M.; Clark, C.M.; Kountouri, A.; Jere, M.; Ijaz, U.Z.; Hansen, R.; McGrogan, P.; Russell, R.K.; Gerasimidis, K. Intestinal fatty acid binding protein is a disease biomarker in paediatric coeliac disease and Crohn’s disease. BMC Gastroenterol. 2022, 22, 260. [Google Scholar] [CrossRef] [PubMed]
- Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P.H.; Verna, E.C.; Volta, U.; Alaedini, A. Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 2016, 65, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, V.; Quiros, M.; Nusrat, A. Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. N. Y. Acad. Sci. 2017, 1397, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Milatz, S.; Krug, S.M.; Rosenthal, R.; Günzel, D.; Müller, D.; Schulzke, J.-D.; Amasheh, S.; Fromm, M. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim. Biophys. Acta 2010, 1798, 2048–2057. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Borderie, D.; Weiss, N.; Mallet-Coste, T.; Claessens, Y.-E. Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clin. Chim. Acta 2015, 450, 97–103. [Google Scholar] [CrossRef]
- Memar, M.Y.; Baghi, H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed. Pharmacother. 2019, 111, 649–656. [Google Scholar] [CrossRef]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef]
- Zhai, Q.; Feng, S.; Arjan, N.; Chen, W. A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2018, 59, 3227–3236. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef]
- Jian, H.; Liu, Y.; Wang, X.; Dong, X.; Zou, X. Akkermansia muciniphila as a Next-Generation Probiotic in Modulating Human Metabolic Homeostasis and Disease Progression: A Role Mediated by Gut–Liver–Brain Axes? Int. J. Mol. Sci. 2023, 24, 3900. [Google Scholar] [CrossRef] [PubMed]
- La Reau, A.J.; Suen, G. The Ruminococci: Key symbionts of the gut ecosystem. J. Microbiol. 2018, 56, 199–208. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.; O’Toole, P.W. Lactobacillus: Host-microbe relationships. Curr. Top. Microbiol. Immunol. 2013, 358, 119–154. [Google Scholar] [CrossRef] [PubMed]
- Heeney, D.D.; Gareau, M.G.; Marco, M.L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 2018, 49, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Gibiino, G.; Lopetuso, L.R.; Scaldaferri, F.; Rizzatti, G.; Binda, C.; Gasbarrini, A. Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Dig. Liver Dis. 2018, 50, 635–639. [Google Scholar] [CrossRef]
- Johnson, E.L.; Heaver, S.L.; Walters, W.A.; Ley, R.E. Microbiome and metabolic disease: Revisiting the bacterial phylum Bacteroidetes. J. Mol. Med. 2016, 95, 1–8. [Google Scholar] [CrossRef]
Cirrhosis (n = 65) | Healthy Controls (n = 15) | p-Value | |
---|---|---|---|
DAO, ng/mL | 16.9 [12.3–20.1] | 23.9 [22.9–24.7] | <0.001 |
Claudin 3, ng/mL | 12.7 [9.1–16.5] | 9.4 [8.5–10.8] | 0.013 |
LPS, EU/mL | 0.014 [0.000–0.037] | 0.000 [0.000–0.015] | 0.031 |
Presepsin, ng/mL | 0.25 [0.09–1.71] | 0.12 [0.10–0.14] | 0.048 |
TNF-α, pg/mL | 35.9 [27.1–44.3] | 27.3 [22.0–29.3] | 0.013 |
Patients with Decreased DAO Level (n = 38) | Patients with Normal DAO Level (n = 27) | p | |
---|---|---|---|
Age, years | 49 [42–57] | 48 [44–56] | 0.915 |
Body mass index, kg/m2 | 25.3 [24.2–28.7] | 25.4 [22.1–29.0] | 0.724 |
Men/women | 17/21 | 12/15 | 0.591 |
Child–Turcotte–Pugh score | 9 [8–10] | 8 [7–9] | 0.043 |
Claudin 3, ng/mL | 13.7 [11.0–19.7] | 10.5 [8.5–13.1] | 0.001 |
LPS, EU/mL | 0.02 [0.00–0.05] | 0.00 [0.00–0.00] | 0.047 |
Presepsin, ng/mL | 0.51 [0.12–6.07] | 0.13 [0.07–0.80] | 0.017 |
TNF-α, pg/mL | 38.6 [34.3–45.4] | 33.7 [21.0–37.9] | 0.014 |
I-FABP detected, n(%) | 9 (23.7%) | 6 (22.2%) | 0.567 |
Esophageal varices (grade 2–3/grade 0–1) | 21/17 | 15/12 | 0.591 |
History of esophageal vein ligation, n(%) | 15 (39.5%) | 6 (22.2%) | 0.115 |
Hepatic encephalopathy (overt + minimal/absent) | 2 + 23/13 | 3 + 17/7 | 0.332 |
Ascites (present/absent) | 32 (84.2%) | 17 (63.0%) | 0.048 |
Serum albumin, g/L | 32 [30–36] | 34 [31–39] | 0.149 |
Serum glucose, mmol/L | 4.8 [4.2–5.4] | 4.6 [4.4–5.5] | 0.963 |
Serum cholesterol, mmol/L | 4.2 [3.2–4.9] | 4.3 [3.3–5.1] | 0.413 |
Total bilirubin, µmol/L | 53 [37–75] | 34 [25–60] | 0.015 |
International normalized ratio | 1.7 [1.5–1.8] | 1.5 [1.4–1.7] | 0.064 |
Fibrinogen, g/L | 2.2 [1.6–2.7] | 2.4 [2.0–2.7] | 0.244 |
Creatinine, µmol/L | 76 [70–96] | 76 [70–97] | 1.000 |
Red blood cells, cell/μL | 3.9 [3.2–4.2] | 3.7 [3.4–4.3] | 0.910 |
White blood cells, cell/μL | 3.8 [2.5–5.6] | 4.2 [3.2–5.2] | 0.472 |
Platelets, cell/μL | 86 [62–103] | 98 [85–114] | 0.007 |
Splenic length, cm | 16.0 [13.4–17.6] | 14.7 [13.2–16.8] | 0.328 |
Portal vein diameter, mm | 12.0 [11.0–14.0] | 12.0 [11.0–13.5] | 0.856 |
Patients with Increased Claudin 3 Level (n = 30) | Patients with Normal Claudin 3 Level (n = 35) | p | |
---|---|---|---|
Age, years | 49 [43–55] | 50 [42–59] | 0.813 |
Body mass index, kg/m2 | 25.3 [24.2–28.7] | 25.4 [22.1–29.3] | 0.747 |
Men/women | 12/18 | 17/18 | 0.329 |
Child–Turcotte–Pugh score | 9 [8–10] | 8 [7–9] | 0.006 |
DAO, ng/mL | 13.7 [11.2–17.2] | 18.3 [14.4–20.8] | 0.002 |
LPS, EU/mL | 0.02 [0.00–0.31] | 0.01 [0.00–0.02] | 0.015 |
Presepsin, ng/mL | 0.25 [0.12–2.68] | 0.23 [0.05–1.39] | 0.422 |
TNF-α, pg/mL | 40.5 [34.5–46.5] | 34.4 [24.9–37.9] | 0.041 |
I-FABP detected, n(%) | 11 (36.7%) | 4 (11.4%) | 0.017 |
Esophageal varices (Grade 2–3/Grade 0–1) | 15/15 | 20/15 | 0.372 |
History of esophageal vein ligation, n(%) | 14 (46.7%) | 7 (20.0%) | 0.021 |
Hepatic encephalopathy (overt + minimal/absent) | 4 + 15/11 | 1 + 25/9 | 0.247 |
Ascites (present/absent) | 24 (80.0%) | 25 (71.4%) | 0.306 |
Serum albumin, g/L | 31 [30–34] | 35 [31–39] | 0.017 |
Serum glucose, mmol/L | 4.5 [4.1–5.0] | 5.0 [4.4–5.8] | 0.004 |
Serum cholesterol, mmol/L | 3.3 [3.0–4.3] | 4.7 [3.7–5.3] | 0.001 |
Total bilirubin, µmol/L | 61 [36–78] | 37 [23–57] | 0.002 |
International normalized ratio | 1.7 [1.5–1.9] | 1.5 [1.3–1.6] | 0.002 |
Fibrinogen, g/L | 2.0 [1.4–2.6] | 2.4 [2.2–3.2] | 0.011 |
Creatinine, µmol/L | 74 [65–81] | 80 [72–100] | 0.111 |
Red blood cells, cell/μL | 3.7 [3.3–4.2] | 3.9 [3.2–5.6] | 0.859 |
White blood cells, cell/μL | 3.4 [2.2–4.4] | 4.3 [3.2–5.6] | 0.059 |
Platelets, cell/μL | 75 [58–95] | 103 [92–114] | <0.001 |
Splenic length, cm | 16.6 [15.9–20.0] | 14.0 [13.0–15.9] | <0.001 |
Portal vein diameter, cm | 11.5 [11.0–13.0] | 12.0 [10.0–13.7] | 0.842 |
Patients with Detected I-FABP Level (n = 15) | Patients with Undetected I-FABP Level (n = 50) | p | |
---|---|---|---|
Age, years | 47 [40–55] | 51 [44–57] | 0.331 |
Body mass index, kg/m2 | 27.8 [24.0–29.0] | 25.4 [23.7–29.0] | 0.703 |
Men/women | 6/9 | 23/27 | 0.457 |
Child–Turcotte–Pugh score | 9 [8,9] | 9 [7–10] | 0.757 |
DAO, ng/mL | 15.4 [10.4–20.3] | 16.9 [12.4–20.1] | 0.629 |
LPS, EU/mL | 0.01 [0.00–0.18] | 0.02 [0.00–0.04] | 0.694 |
Presepsin, ng/mL | 0.50 [0.07–1.98] | 0.24 [0.09–1.71] | 0.925 |
TNF-α, pg/mL | 42.3 [23.6–48.9] | 35.4 [27.1–42.6] | 0.272 |
Claudin 3, ng/mL | 15.5 [11.6–18.6] | 11.5 [8.9–14.1] | 0.040 |
Esophageal varices (Grade 2–3/Grade 0–1) | 6/9 | 30/20 | 0.142 |
History of esophageal vein ligation, n(%) | 6 (40.0%) | 15 (30.0%) | 0.335 |
Hepatic encephalopathy (overt + minimal/absent) | 2 + 8/5 | 3 + 32/15 | 0.520 |
Ascites (present/absent) | 10 (66.7%) | 39 (78.0%) | 0.284 |
Serum albumin, g/L | 34 [31–37] | 33 [30–37] | 0.549 |
Serum glucose, mmol/L | 4.8 [4.5–5.5] | 4.8 [4.2–5.4] | 0.657 |
Serum cholesterol, mmol/L | 4.1 [3.0–4.9] | 4.3 [3.3–5.1] | 0.513 |
Total bilirubin, µmol/L | 62 [35–94] | 39 [28–62] | 0.240 |
International normalized ratio | 1.7 [1.5–1.8] | 1.6 [1.5–1.7] | 0.513 |
Fibrinogen, g/L | 2.0 [1.5–2.4] | 2.4 [2.0–2.9] | 0.154 |
Creatinine, µmol/L | 72 [57–100] | 77 [72–96] | 0.168 |
Red blood cells, cell/μL | 3.3 [2.8–3.9] | 4.0 [3.4–4.2] | 0.085 |
White blood cells, cell/μL | 3.5 [2.2–7.9] | 4.1 [3.2–5.2] | 0.809 |
Platelets, cell/μL | 98 [58–106] | 94 [75–105] | 0.938 |
Splenic length, cm | 15.0 [13.7–20.0] | 15.8 [13.2–17.3] | 0.685 |
Portal vein diameter, cm | 11.0 [10.0–12.0] | 12.3 [11.0–14.0] | 0.014 |
Taxon of Gut Microbiota | Taxon Level | Correlation with Blood Diamine Oxidase Level (r; p) | Correlation with Blood I-FABP Level (r; p) | Correlation with Blood Claudin 3 Level (r; p) |
---|---|---|---|---|
Bacteroidota | Phylum | - | 0.295; 0.017 | - |
Verrucomicrobiota | Phylum | 0.335; 0.006 | - | - |
Bacteroidia | Class | - | 0.295; 0.017 | - |
Coriobacteriia | Class | - | - | −0.246; 0.048 |
Verrucomicrobiae | Class | 0.327; 0.008 | - | - |
Akkermansiaceae | Family | 0.298; 0.016 | - | - |
Clostridiaceae | Family | 0.252; 0.042 | - | - |
Eggerthellaceae | Family | - | - | −0.380; 0.002 |
Muribaculaceae | Family | 0.290; 0.019 | - | - |
Pseudomonadaceae | Family | - | −0.248; 0.047 | - |
Selenomonadaceae | Family | - | 0.246; 0.049 | -- |
Thiomicrospiraceae | Family | 0.246; 0.049 | - | - |
Vibrionaceae | Family | - | −0.266; 0.032 | - |
Akkermansia | Genus | 0.300; 0.015 | - | - |
Allisonella | Genus | 0.259; 0.037 | - | - |
Anaerostipes | Genus | −0.258; 0.038 | 0.262; 0.035 | 0.248; 0.046 |
Bilophila | Genus | - | 0.362; 0.003 | |
Brucella | Genus | - | −0.264; 0.033 | −0.274; 0.027 |
Dialister | Genus | 0.290; 0.019 | - | - |
Erysipelatoclostridium | Genus | −0.253; 0.042 | - | - |
Lactobacillus | Genus | 0.358; 0.003 | - | −0.320; 0.009 |
Megamonas | Genus | - | 0.294; 0.017 | - |
Negativibacillus | Genus | 0.259; 0.037 | - | - |
Pseudomonas | Genus | - | −0.248; 0.047 | - |
Ruminococcus | Genus | 0.258; 0.038 | - | - |
Vibrio | Genus | −0.317; 0.010 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremova, I.; Maslennikov, R.; Medvedev, O.; Kudryavtseva, A.; Avdeeva, A.; Krasnov, G.; Romanikhin, F.; Diatroptov, M.; Fedorova, M.; Poluektova, E.; et al. Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis. Microorganisms 2024, 12, 463. https://doi.org/10.3390/microorganisms12030463
Efremova I, Maslennikov R, Medvedev O, Kudryavtseva A, Avdeeva A, Krasnov G, Romanikhin F, Diatroptov M, Fedorova M, Poluektova E, et al. Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis. Microorganisms. 2024; 12(3):463. https://doi.org/10.3390/microorganisms12030463
Chicago/Turabian StyleEfremova, Irina, Roman Maslennikov, Oleg Medvedev, Anna Kudryavtseva, Anastasia Avdeeva, George Krasnov, Filipp Romanikhin, Mikhail Diatroptov, Maria Fedorova, Elena Poluektova, and et al. 2024. "Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis" Microorganisms 12, no. 3: 463. https://doi.org/10.3390/microorganisms12030463
APA StyleEfremova, I., Maslennikov, R., Medvedev, O., Kudryavtseva, A., Avdeeva, A., Krasnov, G., Romanikhin, F., Diatroptov, M., Fedorova, M., Poluektova, E., Levshina, A., & Ivashkin, V. (2024). Gut Microbiota and Biomarkers of Intestinal Barrier Damage in Cirrhosis. Microorganisms, 12(3), 463. https://doi.org/10.3390/microorganisms12030463