Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Virulence Gene Detection
2.3. Fenofibrate In Vitro Antimicrobial Activity
Primer | Sequence (5′–3′) | Target | Reference |
---|---|---|---|
rpoD 70Fs1 | GTCAATTCCGCCTGATGC | rpoD | [30] |
rpoD 70Rs1 | ATCATCTCGCGCATGTTGT | ||
ASCF-G-fwd | ATGAGGTCATCT GCT CGC GC | ascF-G | [36] |
ASCF-G-rev | GGAGCACAACCATGGCTGAT | ||
ASCV-fwd | ATGGACGGCGCCATGAAGTT | ascV | [36] |
ASCV-rev | TATTCGCCTTCACCCATCCC | ||
aerA forward | GC(A/T)GA(A/G)CCC(A/G)TCTATCC(A/T)G | aerA | [37] |
aerA reverse | TTTCTCCGGTAACAGGATTG | ||
hylA forward | GGCCGGTGGCCCGAAGATACGGG | hlyA | [37] |
hylA reverse | GGCGGCGCCGGACGAGACGGG | ||
act forward | GAGAAGGTGACCACCAAGAAGA | act | [37] |
act reverse | AACTGACATCGGCCTTGAACTC | ||
ast-F | ATCGTCAGCGACAGCTCTT | ast | [37] |
ast-R | CTCATCCCTTGGCTTGTTGT | ||
flaA forward | TCCAACCGTYTGACCTC | flaA | [38] |
flaA reverse | GMYTGGTTGCGRATGGT | ||
alt-F | AAAGCGTCTGACAGCGAAGT | alt | [39] |
alt-R | AGCGCATAGGCGTTCTCTT | ||
aexT forward | GGCGCTTGGGCTCTACAC | aexT | [40] |
aexT reverse | GAGCCCGCGCATCTTCAG | ||
GAPDH forward | CATGAGAAGTATGACAACAGCCT | GAPDH | [41] |
GAPDH reverse | AGTCCTTCCACGATACCAAAGT | ||
PPAR-α.1 | GTGGCTGCTATAATTTGCTGTG | PPAR-α | [42] |
PPAR-α.2 | GAAGGTGTCATCTGGATGGGT | ||
TNF-α forward | GAGGCCAAGCCCTGGTATG | TNF-α | [41] |
TNF-α reverse | CGGGCCGATTGATCTCAGC | ||
CCL3 forward | AGTTCTCTGCATCACTTGCTG | CCL3 | [41] |
CCL3 reverse | CGGCTTCGCTTGGTTAGGAA | ||
BAX forward | CCCGAGAGGTCTTTTTCCGAG | BAX | [41] |
BAX reverse | CCAGCCCATGATGGTTCTGAT |
2.4. Macrophage Cell Line, Reagents, and Growth Conditions
2.5. Determination of Intracellular Bacterial Survival in Macrophages following Fenofibrate Treatment
2.6. Quantification of Cell Damage in Macrophages following Infection and Fenofibrate Treatment
2.7. Screening for Fenofibrate Dose-Response Effect on Macrophage Viability following Infection with Highly Virulent and Multiresistant 1127C Strain
2.8. Analysis of the Effect of Fenofibrate in the Expression of PPAR-α and Genes Related to the Innate Immune Response
2.9. Testing Fenofibrate as a Therapeutic in Model of Pseudomonas aeruginosa Infection
2.10. Statistical Analysis
3. Results
3.1. Molecular Identification of Aeromonas Strains Based on rpoD Housekeeping Gene
3.2. Virulence Gene Detection
3.3. Fenofibrate In Vitro Antimicrobial Activity
3.4. Fenofibrate Reduces the Intracellular Survival of Bacteria within Macrophages
3.5. Fenofibrate Decreases the Cell Damage Produced by Bacteria in Macrophages
3.6. Fenofibrate Has a Dose-Response Effect on the Viability of Macrophages Infected with Aeromonas caviae Strain 1127C
3.7. Expression of PPAR-α and Immune-Related Genes in Macrophages Facing Aeromonas Infection Is Modulated by Fenofibrate
3.8. Fenofibrate Reduces the Cell Damage and the Intracellular Survival after Pseudomonas aeruginosa Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.H.; Hsieh, Y.H.; Powers, Z.M.; Kao, C.Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Watkins, R.R.; Bonomo, R.A. The ongoing threat of antimicrobial resistance. Infect. Dis. Clin. N. Am. 2020, 34, xiii–xiv. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Török, M.E. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Boyd, N.K.; Teng, C.; Frei, C.R. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front. Cell. Infect. Microbiol. 2021, 11, 684515. [Google Scholar] [CrossRef]
- Law, G.L.; Tisoncik-Go, J.; Korth, M.J.; Katze, M.G. Drug repurposing: A better approach for infectious disease drug discovery? Curr. Opin. Immunol. 2013, 25, 588–592. [Google Scholar] [CrossRef]
- Miró-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Barbarossa, A.; Rosato, A.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carrieri, A.; Carocci, A. Non-antibiotic drug repositioning as an alternative antimicrobial approach. Antibiotics 2022, 11, 816. [Google Scholar] [CrossRef]
- Redlich, S.; Ribes, S.; Schütze, S.; Nau, R. Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 by macrophages and increases the resistance of mice against infections. J. Neuroinflammation 2014, 11, 108. [Google Scholar] [CrossRef]
- Tancevski, I.; Nairz, M.; Duwensee, K.; Auer, K.; Schroll, A.; Heim, C.; Feistritzer, C.; Hoefer, J.; Gerner, R.R.; Moschen, A.R.; et al. Fibrates ameliorate the course of bacterial sepsis by promoting neutrophil recruitment via CXCR2. EMBO Mol. Med. 2014, 6, 810–820. [Google Scholar] [CrossRef]
- Andersson, J.A.; Fitts, E.C.; Kirtley, M.L.; Ponnusamy, D.; Peniche, A.G.; Dann, S.M.; Motin, V.L.; Chauhan, S.; Rosenzweig, J.A.; Sha, J.; et al. New role for FDA-approved drugs in combating antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2016, 60, 3717–3729. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, Y.N.; Zhang, H.; Lv, H.B.; Zhang, M.L.; Chen, L.Q.; Du, Z.Y. PPARα activation enhances the ability of Nile tilapia (Oreochromis niloticus) to resist Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2019, 94, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Desvergne, B.; Wahli, W. Peroxisome Proliferator-Activated Receptors: Nuclear control of metabolism. Endocr. Rev. 1999, 20, 649–688. [Google Scholar] [CrossRef] [PubMed]
- Noonan, J.E.; Jenkins, A.J.; Ma, J.-X.; Keech, A.C.; Wang, J.J.; Lamoureux, E.L. An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes. Diabetes 2013, 62, 3968–3975. [Google Scholar] [CrossRef] [PubMed]
- Stalinska, J.; Zimolag, E.; Pianovich, N.; Zapata, A.; Lassak, A.; Rak, M.; Dean, M.; Ucar-Bilyeu, D.; Wyczechowska, D.; Culicchia, F.; et al. Chemically modified variants of fenofibrate with antiglioblastoma potential. Transl. Oncol. 2019, 12, 895–907. [Google Scholar] [CrossRef]
- Jin, L.; Hua, H.; Ji, Y.; Jia, Z.; Peng, M.; Huang, S. Anti-inflammatory role of fenofibrate in treating diseases. Biomol. Biomed. 2023, 23, 376–391. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef]
- Tomás, J.M. The main Aeromonas pathogenic factors. ISRN Microbiol. 2012, 2012, 256261. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Grim, C.J.; Kozlova, E.V.; Ponnusamy, D.; Fitts, E.C.; Sha, J.; Kirtley, M.L.; van Lier, C.J.; Tiner, B.L.; Erova, T.E.; Joseph, S.J.; et al. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl. Environ. Microbiol. 2014, 80, 4162–4183. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, D.; Kozlova, E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Grim, C.J.; et al. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. USA 2016, 113, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, A.; Kilgore, P.B.; Andersson, J.A.; Blears, E.; Figueras, M.J.; Hasan, N.A.; Colwell, R.R.; Sha, J.; Chopra, A.K. T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections. Proc. Natl. Acad. Sci. USA 2019, 116, 24084–24092. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020.
- Soler, L.; Yáñez, M.A.; Chacon, M.R.; Aguilera-Arreola, M.G.; Catalán, V.; Figueras, M.J.; Martínez-Murcia, A.J. Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int. J. Syst. Evol. Microbiol. 2004, 54, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bravo, A.; Figueras, M.J. Immune response of the monocytic cell line THP-1 against six Aeromonas spp. Front. Immunol. 2022, 13, 875689. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Vukomanovic, M.; Torrents, E. High time resolution and high signal-to-noise monitoring of the bacterial growth kinetics in the presence of plasmonic nanoparticles. J. Nanobiotechnology 2019, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Chacón, M.R.; Soler, L.; Groisman, E.A.; Guarro, J.; Figueras, M.J. Type III secretion system genes in clinical Aeromonas isolates. J. Clin. Microbiol. 2004, 42, 1285–1287. [Google Scholar] [CrossRef]
- Lee, H.J.; Hoel, S.; Lunestad, B.T.; Lerfall, J.; Jakobsen, A.N. Aeromonas spp. isolated from ready-to-eat seafood on the norwegian market: Prevalence, putative virulence factors and antimicrobial resistance. J. Appl. Microbiol. 2021, 130, 1380–1393. [Google Scholar] [CrossRef]
- Sen, K.; Rodgers, M. Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. J. Appl. Microbiol. 2004, 97, 1077–1086. [Google Scholar] [CrossRef]
- Chopra, A.K.; Peterson, J.W.; Xu, X.J.; Coppenhaver, D.H.; Houston, C.W. Molecular and biochemical characterization of a heat-labile cytotonic enterotoxin from Aeromonas hydrophila. Microb. Pathog. 1996, 21, 357–377. [Google Scholar] [CrossRef]
- Burr, S.E.; Frey, J. Analysis of type III effector genes in typical and atypical Aeromonas salmonicida. J. Fish Dis. 2007, 30, 711–714. [Google Scholar] [CrossRef]
- Murciano, C.; Hor, L.-I.; Amaro, C. Host–pathogen interactions in Vibrio vulnificus: Responses of monocytes and vascular endothelial cells to live bacteria. Future Microbiol. 2015, 10, 471–487. [Google Scholar] [CrossRef]
- Jones, D.C.; Ding, X.; Daynes, R.A. Nuclear receptor Peroxisome Proliferator-Activated Receptor α (PPARα) is expressed in resting murine lymphocytes. J. Biol. Chem. 2002, 277, 6838–6845. [Google Scholar] [CrossRef]
- Guerra, R.M.; Maleno, F.D.; Figueras, M.J.; Pujol-Bajador, I.; Fernández-Bravo, A. Potential pathogenicity of Aeromonas spp. recovered in river water, soil, and vegetation from a natural recreational area. Pathogens 2022, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Hong, M.; Song, K.D.; Lee, H.-K.; Ryoo, S.; Heo, T.-H. Normalization of the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells by fibrate pretreatment. Biol. Res. 2014, 47, 42. [Google Scholar] [CrossRef] [PubMed]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of Peroxisome Proliferator-Activated Receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef]
- Najib, J. Fenofibrate in the treatment of dyslipidemia: A review of the data as they relate to the new suprabioavailable tablet formulation. Clin. Ther. 2002, 24, 2022–2050. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Płonka, P.M.; Pierzchalski, P. The role of PPAR alpha in the modulation of innate immunity. Int. J. Mol. Sci. 2021, 22, 10545. [Google Scholar] [CrossRef] [PubMed]
- Epple, H.J.; Mankertz, J.; Ignatius, R.; Liesenfeld, O.; Fromm, M.; Zeitz, M.; Chakraborty, T.; Schulzke, J.D. Aeromonas hydrophila beta-hemolysin induces active chloride secretion in colon epithelial cells (HT-29/B6). Infect. Immun. 2004, 72, 4848–4858. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.R.A.; Oliveira, S.S.; Queiroz, M.L.P.; Freitas-Almeida, A.C. Interactions of clinical and environmental Aeromonas isolates with Caco-2 and HT29 intestinal epithelial cells. Lett. Appl. Microbiol. 2007, 45, 405–410. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, P.A.; Pereira, A.C.M.; Ferreira, A.F.; de Mattos Alves, M.A.; Rosa, A.C.P.; Freitas-Almeida, A.C. Adhesion, invasion, intracellular survival and cytotoxic activity of strains of Aeromonas spp. in HEp-2, Caco-2 and T-84 cell lines. Antonie Van Leeuwenhoek 2015, 107, 1225–1236. [Google Scholar] [CrossRef]
- Dias, C.; Ribeiro, M.; Correia-Branco, A.; Domínguez-Perles, R.; Martel, F.; Saavedra, M.J.; Simões, M. Virulence, attachment and invasion of Caco-2 cells by multidrug-resistant bacteria isolated from wild animals. Microb. Pathog. 2019, 128, 230–235. [Google Scholar] [CrossRef]
- Cevey, Á.C.; Mirkin, G.A.; Donato, M.; Rada, M.J.; Penas, F.N.; Gelpi, R.J.; Goren, N.B. Treatment with fenofibrate plus a low dose of benznidazole attenuates cardiac dysfunction in experimental Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Reich-Slotky, R.; Kabbash, C.A.; Della-Latta, P.; Blanchard, J.S.; Feinmark, S.J.; Freeman, S.; Kaplan, G.; Shuman, H.A.; Silverstein, S.C. Gemfibrozil inhibits Legionella pneumophila and Mycobacterium tuberculosis enoyl coenzyme A reductases and blocks intracellular growth of these bacteria in macrophages. J. Bacteriol. 2009, 191, 5262–5271. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Jang, W.-G.; Oh, S.-H.; Kim, J.-W.; Lee, M.N.; Song, J.H.; Yang, J.-W.; Zang, Y.; Koh, J.-T. Fenofibrate induces PPARα and BMP2 expression to stimulate osteoblast differentiation. Biochem. Biophys. Res. Commun. 2019, 520, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.T.; Naismith, J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Spitz, A.Z.; Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 2022, 43, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Su, Y.; Feng, L.; Jiang, W.; Kuang, S.; Tang, L.; Jiang, J.; Liu, Y.; Zhou, X. Optimal DL-methionyl-DL-methionine supplementation improved intestinal physical barrier function by changing antioxidant capacity, apoptosis and tight junction proteins in the intestine of juvenile grass carp (Ctenopharyngodon idella). Antioxidants 2022, 11, 1652. [Google Scholar] [CrossRef] [PubMed]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef]
- Binello, E.; Mormone, E.; Emdad, L.; Kothari, H.; Germano, I.M. Characterization of fenofibrate-mediated anti-proliferative pro-apoptotic effects on high-grade gliomas and anti-invasive effects on glioma stem cells. J. Neurooncol. 2014, 117, 225–234. [Google Scholar] [CrossRef]
- Lee, J.W.; Bajwa, P.J.; Carson, M.J.; Jeske, D.R.; Cong, Y.; Elson, C.O.; Lytle, C.; Straus, D.S. Fenofibrate represses interleukin-17 and interferon-γ expression and improves colitis in interleukin-10–deficient mice. Gastroenterology 2007, 133, 108–123. [Google Scholar] [CrossRef]
- Wang, N.; Zou, C.; Zhao, S.; Wang, Y.; Han, C.; Zheng, Z. Fenofibrate exerts protective effects in diabetic retinopathy via inhibition of the ANGPTL3 pathway. Investig. Opthalmology Vis. Sci. 2018, 59, 4210. [Google Scholar] [CrossRef]
- Neve, B.P.; Corseaux, D.; Chinetti, G.; Zawadzki, C.; Fruchart, J.-C.; Duriez, P.; Staels, B.; Jude, B. PPARα agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 2001, 103, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, C.; Cuzzocrea, S. The role of endogenous and exogenous ligands for the Peroxisome Proliferator-Activated Receptor alpha (PPAR-alpha) in the regulation of inflammation in macrophages. Shock 2009, 32, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Prasad, G.S.; Govardhan, P.; Deepika, G.; Vakdevi, V.; Sashidhar, R.B. Anti-inflammatory activity of anti-hyperlipidemic drug, fenofibrate, and its phase-I metabolite fenofibric acid: in silico, in vitro, and in vivo studies. Inflammopharmacology 2018, 26, 973–981. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | 1127C | 59798 | 1172C | 111851 |
---|---|---|---|---|
Cefepime | R | S | S | S |
Cefotaxime | R | S | R | S |
Ceftazidime | R | S | I | S |
Meropenem | R | S | S | S |
Ertapenem | R | S | S | S |
Imipenem | R | S | R | S |
Aztreonam | S | S | S | S |
Piperacillin-tazobactam | R | S | R | R |
Ciprofloxacin | S | S | S | S |
Levofloxacin | S | S | R | S |
Cotrimoxazole | R | S | S | R |
Tetracycline | S | S | R | S |
Gentamicin | S | S | S | S |
Amikacin | S | S | S | S |
Strain | ascF-G | ascV | aerA | hlyA | flaA | act | ast | alt | aexT |
---|---|---|---|---|---|---|---|---|---|
1127C | + | + | + | − | + | + | + | + | − |
1172C | + | − | − | + | + | − | + | + | − |
59798 | − | − | − | − | + | + | + | + | − |
111851 | + | + | + | + | − | + | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, R.M.; Figueras, M.J.; Pujol-Bajador, I.; Fernández-Bravo, A. Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections. Microorganisms 2024, 12, 465. https://doi.org/10.3390/microorganisms12030465
Guerra RM, Figueras MJ, Pujol-Bajador I, Fernández-Bravo A. Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections. Microorganisms. 2024; 12(3):465. https://doi.org/10.3390/microorganisms12030465
Chicago/Turabian StyleGuerra, Roberto M., Maria José Figueras, Isabel Pujol-Bajador, and Ana Fernández-Bravo. 2024. "Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections" Microorganisms 12, no. 3: 465. https://doi.org/10.3390/microorganisms12030465
APA StyleGuerra, R. M., Figueras, M. J., Pujol-Bajador, I., & Fernández-Bravo, A. (2024). Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of Aeromonas Infections. Microorganisms, 12(3), 465. https://doi.org/10.3390/microorganisms12030465