Seasonal Variability of Cultivable Nitrate-Reducing and Denitrifying Bacteria and Functional Gene Copy Number in Fresh Water Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Physical and Chemical Parameters
2.2. Sampling
2.3. Total Cell Counts
2.4. Most Probable Number
2.5. Molecular Approach for Microbial Enumeration
2.6. The Statistical Variance of the Different Methods
3. Results
3.1. Epilimnion
3.2. Hypolimnion
3.3. Sediment
4. Discussion
4.1. Comparision with Other Fresh-Water Systems
4.2. Seasonal Course of Bacteria and Dependency on Environmental Parameters
4.3. Explanations on the Seasonal Courses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coskuner, G.; Ballinger, S.J.; Davenport, R.J.; Pickering, R.L.; Solera, R.; Head, I.M.; Curtis, T.P. Agreement between Theory and Measurement in Quantification of Ammonia-Oxidizing Bacteria. Appl. Environ. Microbiol. 2005, 71, 6325–6334. [Google Scholar] [CrossRef]
- Muela, A.; Gorostiza, I.; Iriberri, J.; Egea, L. Indicative Parameters of Denitrification in River Sediments. Acta Hydrochim. Hydrobiol. 1988, 16, 157–163. [Google Scholar] [CrossRef]
- Baldwin, B.R.; Nakatsu, C.H.; Nies, L. Detection and Enumeration of Aromatic Oxygenase Genes by Multiplex and Real-Time PCR. Appl. Environ. Microbiol. 2003, 69, 3350–3358. [Google Scholar] [CrossRef]
- Röling, W.F.M. Do Microbial Numbers Count? Quantifying the Regulation of Biogeochemical Fluxes by Population Size and Cellular Activity. FEMS Microbiol. Ecol. 2007, 62, 202–210. [Google Scholar] [CrossRef]
- Graham, D.W.; Trippett, C.; Dodds, W.K.; O’Brien, J.M.; Banner, E.B.K.; Head, I.M.; Smith, M.S.; Yang, R.K.; Knapp, C.W. Correlations between in Situ Denitrification Activity and Nir-Gene Abundances in Pristine and Impacted Prairie Streams. Environ. Pollut. Barking Essex 1987 2010, 158, 3225–3229. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.B.; Rysgaard, S.; Sloth, N.P.; Dalsgaard, T.; Schwaerter, S. Sediment Mineralization, Nutrient Fluxes, Denitrification and Dissimilatory Nitrate Reduction to Ammonium in an Estuarine Fjord with Sea Cage Trout Farms. Aquat. Microb. Ecol. 2000, 21, 73–84. [Google Scholar] [CrossRef]
- Magalhães, C.; Bano, N.; Wiebe, W.J.; Bordalo, A.A.; Hollibaugh, J.T. Dynamics of Nitrous Oxide Reductase Genes (nosZ) in Intertidal Rocky Biofilms and Sediments of the Douro River Estuary (Portugal), and Their Relation to N-Biogeochemistry. Microb. Ecol. 2008, 55, 259–269. [Google Scholar] [CrossRef]
- Gihring, T.M.; Canion, A.; Riggs, A.; Huettel, M.; Kostka, J.E. Denitrification in Shallow, Sublittoral Gulf of Mexico Permeable Sediments. Limnol. Oceanogr. 2010, 55, 43–54. [Google Scholar] [CrossRef]
- Chon, K.; Chang, J.-S.; Lee, E.; Lee, J.; Ryu, J.; Cho, J. Abundance of Denitrifying Genes Coding for Nitrate (narG), Nitrite (nirS), and Nitrous Oxide (nosZ) Reductases in Estuarine versus Wastewater Effluent-Fed Constructed Wetlands. Ecol. Eng. 2011, 37, 64–69. [Google Scholar] [CrossRef]
- McCrackin, M.L.; Elser, J.J. Denitrification Kinetics and Denitrifier Abundances in Sediments of Lakes Receiving Atmospheric Nitrogen Deposition (Colorado, USA). Biogeochemistry 2012, 108, 39–54. [Google Scholar] [CrossRef]
- Brankatschk, R.; Töwe, S.; Kleineidam, K.; Schloter, M.; Zeyer, J. Abundances and Potential Activities of Nitrogen Cycling Microbial Communities along a Chronosequence of a Glacier Forefield. ISME J. 2010, 5, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Abell, G.; Ross, D.; Keane, J.; Oakes, J.; Eyre, B.; Robert, S.; Volkman, J. Nitrifying and Denitrifying Microbial Communities and Their Relationship to Nutrient Fluxes and Sediment Geochemistry in the Derwent Estuary, Tasmania. Aquat. Microb. Ecol. 2013, 70, 63–75. [Google Scholar] [CrossRef]
- Bellini, M.I.; Gutiérrez, L.; Tarlera, S.; Scavino, A.F. Isolation and Functional Analysis of Denitrifiers in an Aquifer with High Potential for Denitrification. Syst. Appl. Microbiol. 2013, 36, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Veraart, A.J.; Audet, J.; Dimitrov, M.R.; Hoffmann, C.C.; Gillissen, F.; de Klein, J.J.M. Denitrification in Restored and Unrestored Danish Streams. Ecol. Eng. 2013, 66, 129–140. [Google Scholar] [CrossRef]
- Michotey, V.; Mejean, V.; Bonin, P. Comparison of Methods for Quantification of Cytochrome Cd1-Denitrifying Bacteria in Environmental Marine Samples. Appl. Environ. Microbiol. 2000, 66, 1564–1571. [Google Scholar] [CrossRef]
- Phillips, C.J.; Harris, D.; Dollhopf, S.L.; Gross, K.L.; Prosser, J.I.; Paul, E.A. Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities. Appl. Environ. Microbiol. 2000, 66, 5410–5418. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial Diversity and Function in Soil: From Genes to Ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Both, G.J.; Gerards, S.; Laanbroek, H.J. Enumeration of Nitrite-Oxidizing Bacteria in Grassland Soils Using a Most Probable Number Technique: Effect of Nitrite Concentration and Sampling Procedure. FEMS Microbiol. Lett. 1990, 74, 277–285. [Google Scholar] [CrossRef]
- Philippot, L. Use of Functional Genes to Quantify Denitrifiers in the Environment. Biochem. Soc. Trans. 2006, 34, 101–103. [Google Scholar] [CrossRef]
- Noble, R.T.; Weisberg, S.B.; Leecaster, M.K.; McGee, C.D.; Ritter, K.; Walker, K.O.; Vainik, P.M. Comparison of Beach Bacterial Water Quality Indicator Measurement Methods. Environ. Monit. Assess. 2003, 81, 301–312. [Google Scholar] [CrossRef]
- Belser, L.; Mays, E. Use of Nitrifier Activity Measurements to Estimate the Efficiency of Viable Nitrifier Counts in Soils and Sediments. Appl. Environ. Microbiol. 1982, 43, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Degrange, V.; Bardin, R. Detection and Counting of Nitrobacter Populations in Soil by PCR. Appl. Environ. Microbiol. 1995, 61, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Scala, D.J.; Kerkhof, L.J. Nitrous Oxide Reductase (nosZ) Gene-Specific PCR Primers for Detection of Denitrifiers and Three nosZ Genes from Marine Sediments. FEMS Microbiol. Lett. 1998, 162, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rathsack, K.; Böllmann, J.; Martienssen, M. Comparative Study of Different Methods for Analyzing Denitrifying Bacteria in Fresh Water Ecosystems. J. Water Resour. Prot. 2014, 06, 609–617. [Google Scholar] [CrossRef]
- von Wintzingerode, F.; Göbel, U.B.; Stackebrandt, E. Determination of Microbial Diversity in Environmental Samples: Pitfalls of PCR-Based rRNA Analysis. FEMS Microbiol. Rev. 1997, 21, 213–229. [Google Scholar] [CrossRef]
- Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and Potential. BioTechniques 1999, 26, 112–125. [Google Scholar] [CrossRef]
- Ginzinger, D.G. Gene Quantification Using Real-Time Quantitative PCR: An Emerging Technology Hits the Mainstream. Exp. Hematol. 2002, 30, 503–512. [Google Scholar] [CrossRef]
- Smith, C.J.; Nedwell, D.B.; Dong, L.F.; Osborn, A.M. Evaluation of Quantitative Polymerase Chain Reaction-Based Approaches for Determining Gene Copy and Gene Transcript Numbers in Environmental Samples. Environ. Microbiol. 2006, 8, 804–815. [Google Scholar] [CrossRef]
- Schulz, S.; Peréz-de-Mora, A.; Engel, M.; Munch, J.C.; Schloter, M. A Comparative Study of Most Probable Number (MPN)-PCR vs. Real-Time-PCR for the Measurement of Abundance and Assessment of Diversity of alkB Homologous Genes in Soil. J. Microbiol. Methods 2010, 80, 295–298. [Google Scholar] [CrossRef]
- Klein, D. Quantification Using Real-Time PCR Technology: Applications and Limitations. Trends Mol. Med. 2002, 8, 257–260. [Google Scholar] [CrossRef]
- Rompré, A.; Servais, P.; Baudart, J.; de-Roubin, M.-R.; Laurent, P. Detection and Enumeration of Coliforms in Drinking Water: Current Methods and Emerging Approaches. J. Microbiol. Methods 2002, 49, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Hallin, S. Finding the Missing Link between Diversity and Activity Using Denitrifying Bacteria as a Model Functional Community. Curr. Opin. Microbiol. 2005, 8, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir-Butler, K.; Jones, J.L.; Benner, R.A., Jr.; Burkhardt, W., III. Quantification of Total and Specific Gram-Negative Histamine-Producing Bacteria Species in Fish Using an MPN Real-Time PCR Method. Food Microbiol. 2011, 28, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Kayashima, T.; Suzuki, H.; Maeda, T.; Ogawa, H.I. Real-Time PCR for Rapidly Detecting Aniline-Degrading Bacteria in Activated Sludge. Chemosphere 2013, 91, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, C.; Foschino, R.; Di Pilato, P. Exploiting a MPN-PCR Technique to Quantify Escherichia Coli in Minced Meat. Ann. Microbiol. 2004, 54, 343–349. [Google Scholar]
- O’Connor, B.L.; Hondzo, M.; Dobraca, D.; LaPara, T.M.; Finlay, J.C.; Brezonik, P.L. Quantity-Activity Relationship of Denitrifying Bacteria and Environmental Scaling in Streams of a Forested Watershed. J. Geophys. Res. 2006, 111, 2005–2012. [Google Scholar] [CrossRef]
- Barer, M.R.; Harwood, C.R. Bacterial Viability and Culturability. Adv. Microb. Physiol. 1999, 41, 93–137. [Google Scholar]
- Oliver, J.D. Recent Findings on the Viable but Nonculturable State in Pathogenic Bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef]
- Diao, M.; Balkema, C.; Suárez-Muñoz, M.; Huisman, J.; Muyzer, G. Succession of Bacteria and Archaea Involved in the Nitrogen Cycle of a Seasonally Stratified Lake. FEMS Microbiol. Lett. 2023, 370, fnad013. [Google Scholar] [CrossRef]
- Nixdorf, B.; Rektins, A.; Mischke, U. Standards and Thresholds of the EU Water Framework Directive (WFD) — Phytoplankton and Lakes. In Standards and Thresholds for Impact Assessment; Schmidt, M., Glasson, J., Emmelin, L., Helbron, H., Eds.; Environmental Protection in the European Union; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3, pp. 301–314. ISBN 978-3-540-31140-9. [Google Scholar]
- Grüneberg, B.; Rücker, J.; Nixdorf, B.; Behrendt, H. Dilemma of Non-Steady State in Lakes—Development and Predictability of in-Lake P Concentration in Dimictic Lake Scharmützelsee (Germany) after Abrupt Load Reduction. Int. Rev. Hydrobiol. 2011, 96, 599–621. [Google Scholar] [CrossRef]
- DIN, E. 1484 (1997) Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Beuth Berl. 1997. [Google Scholar]
- Kleeberg, A.; Grüneberg, B. Phosphorus Mobility in Sediments of Acid Mining Lakes, Lusatia, Germany. Ecol. Eng. 2005, 24, 89–100. [Google Scholar] [CrossRef]
- Hobbie, J.E.; Daley, R.J.; Jasper, S. Use of Nuclepore Filters for Counting Bacteria by Fluorescence Microscopy. Appl. Environ. Microbiol. 1977, 33, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Michels, J.; Stuhrmann, M.; Frey, C.; Koschitzky, H.-P. Handlungsempfehlungen Mit Methodensammlung, Natürliche Schadstoffminderung Bei Der Sanierung von Altlasten; Dechema e.V., VEGAS, Institut für Wasserbau, Universität Stuttgart: Frankfurt, Germany, 2008; ISBN ISBN-13 978-3-89746-092-0. [Google Scholar]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Bremner, J.M. Inorganic Forms of Nitrogen. In Agronomy Monographs; Norman, A.G., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1965; pp. 1179–1237. ISBN 978-0-89118-204-7. [Google Scholar]
- Garthright, W.E.; Blodgett, R.J. FDA’s Preferred MPN Methods for Standard, Large or Unusual Tests, with a Spreadsheet. Food Microbiol. 2003, 20, 439–445. [Google Scholar] [CrossRef]
- Throbäck, I.N.; Enwall, K.; Jarvis, Ã.s.; Hallin, S. Reassessing PCR Primers Targeting nirS, nirK and nosZ Genes for Community Surveys of Denitrifying Bacteria with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef]
- Corry, J.E.L.; Baird, R.M.; Curtis, G.D.W. Handbook of Culture Media for Food and Water Microbiology; RSC Publishing: Cambridge, UK, 2012; ISBN 978-1-84755-916-6. [Google Scholar]
- Böllmann, J.; Rathsack, K.; Martienssen, M. The Precision of Bacterial Quantification Techniques on Different Kinds of Environmental Samples and the Effect of Ultrasonic Treatment. J. Microbiol. Methods 2016, 126, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Jones, J. Microbial Nitrate Reduction in Freshwater Sediments. J. Gen. Microbiol. 1979, 115, 27–35. [Google Scholar] [CrossRef]
- Overbeck, J. Zur Struktur Und Funktion Des Aquatischen Ökosystems. Berichte Dtsch. Bot. Ges. 1972, 85, 553–577. [Google Scholar] [CrossRef]
- Kuhn, R.; Böllmann, J.; Krahl, K.; Bryant, I.M.; Martienssen, M. Comparison of Ten Different DNA Extraction Procedures with Respect to Their Suitability for Environmental Samples. J. Microbiol. Methods 2017, 143, 78–86. [Google Scholar] [CrossRef]
- Abe, D.; Kato, K.; Adams, D.D.; Terai, H.; G. Tundisi, J. Contribution of Free-Living and Attached Bacteria to Denitrification in the Hypolimnion of a Mesotrophic Japanese Lake. Microbes Environ. 2000, 15, 93–101. [Google Scholar] [CrossRef]
- Yao, L.; Chen, C.; Liu, G.; Liu, W. Sediment Nitrogen Cycling Rates and Microbial Abundance along a Submerged Vegetation Gradient in a Eutrophic Lake. Sci. Total Environ. 2018, 616–617, 899–907. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, L.; Cheng, Z.; Xian, J.; Yang, Y.; Liu, L.; Xu, X. Dissimilatory Nitrate Reduction in Urban Lake Ecosystems: A Comparison Study between Closed and Open Lakes in Chengdu, China. Water Res. 2022, 214, 118218. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yao, L.; Jiang, X.; Guo, L.; Cheng, X.; Liu, G. Sediment Denitrification in Yangtze Lakes Is Mainly Influenced by Environmental Conditions but Not Biological Communities. Sci. Total Environ. 2018, 616–617, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Papaspyrou, S.; Smith, C.J.; Dong, L.F.; Whitby, C.; Dumbrell, A.J.; Nedwell, D.B. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why? PLoS ONE 2014, 9, e94111. [Google Scholar] [CrossRef] [PubMed]
- Martienssen, M.; Schöps, R. Population Dynamics of Denitrifying Bacteria in a Model Biocommunity. Water Res. 1999, 33, 639–646. [Google Scholar] [CrossRef]
- Martienssen, M.; Böllmann, J.; Nixdorf, B.; Rathsack, K. Calculation of Hypolimnic Denitrification in a Dimictic Freshwater Lake during Summer Stratification. Aquat. Microb. Ecol. 2019, 83, 189–201. [Google Scholar] [CrossRef]
- Fakruddin, M.; Mannan, K.S.B.; Andrews, S. Viable but Nonculturable Bacteria: Food Safety and Public Health Perspective. ISRN Microbiol. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S. The Phenomenon of Microbial Uncultivability. Curr. Opin. Microbiol. 2013, 16, 636–642. [Google Scholar] [CrossRef]
- Berg, P. Nitrifier Populations and Nitrification Rates in Agricultural Soil; Rapport—Sveriges lantbruksuniversitet, Institutionen för mikrobiologi; Sveriges Lantbruksuniversitet: Uppsala, Sweden, 1986; ISBN 91-576-2647-2. [Google Scholar]
- Bręk-Laitinen, G.; López Bellido, J.; Ojala, A. Response of a Microbial Food Web to Prolonged Seasonal Hypoxia in a Boreal Lake. Aquat. Biol. 2012, 14, 105–120. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Danovaro, R.; Dell’Anno, A. Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments. Appl. Environ. Microbiol. 2005, 71, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Fredslund, L.; Ekelund, F.; Jacobsen, C.S.; Johnsen, K. Development and Application of a Most-Probable-Number-PCR Assay To Quantify Flagellate Populations in Soil Samples. Appl. Environ. Microbiol. 2001, 67, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.P.; Cruz, P.; Stetzenbach, L.D.; Klima-Comba, A.K.; Stevens, V.L.; Cronin, T.D. Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis. Appl. Environ. Microbiol. 2004, 70, 4740–4747. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, F.H.; Banat, I.M.; Marchant, R. Detection and Quantification of Gene Expression in Environmental Bacteriology. Appl. Environ. Microbiol. 2004, 70, 3795–3806. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Kjelleberg, S. The Role of RNA Stability during Bacterial Stress Responses and Starvation. Minireview. Environ. Microbiol. 2000, 2, 355–365. [Google Scholar] [CrossRef]
- Bollmann, A.; Schmidt, I.; Saunders, A.M.; Nicolaisen, M.H. Influence of Starvation on Potential Ammonia-Oxidizing Activity and amoA mRNA Levels of Nitrosospira Briensis. Appl. Environ. Microbiol. 2005, 71, 1276–1282. [Google Scholar] [CrossRef]
- Bustin, S.A. Quantification of mRNA Using Real-Time Reverse Transcription PCR (RT-PCR): Trends and Problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böllmann, J.; Martienssen, M. Seasonal Variability of Cultivable Nitrate-Reducing and Denitrifying Bacteria and Functional Gene Copy Number in Fresh Water Lake. Microorganisms 2024, 12, 511. https://doi.org/10.3390/microorganisms12030511
Böllmann J, Martienssen M. Seasonal Variability of Cultivable Nitrate-Reducing and Denitrifying Bacteria and Functional Gene Copy Number in Fresh Water Lake. Microorganisms. 2024; 12(3):511. https://doi.org/10.3390/microorganisms12030511
Chicago/Turabian StyleBöllmann, Jörg, and Marion Martienssen. 2024. "Seasonal Variability of Cultivable Nitrate-Reducing and Denitrifying Bacteria and Functional Gene Copy Number in Fresh Water Lake" Microorganisms 12, no. 3: 511. https://doi.org/10.3390/microorganisms12030511
APA StyleBöllmann, J., & Martienssen, M. (2024). Seasonal Variability of Cultivable Nitrate-Reducing and Denitrifying Bacteria and Functional Gene Copy Number in Fresh Water Lake. Microorganisms, 12(3), 511. https://doi.org/10.3390/microorganisms12030511