Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health
Abstract
:1. Introduction
2. Evolution: Microorganism to Microbiome
2.1. Evolution: Microorganism to Microbiome
Evolution
2.2. Oral Microbiome Composition
- The process of development and differentiation of the host epithelium and defense mechanisms.
- Immune system development and regulation.
- Fine-tuning between pro-inflammatory and anti-inflammatory mechanisms in response to inflammation and infection.
- Promoting colonization resistance to prevent invasion and proliferation by infectious agents.
- Breaking down of complex carbs by the colonic microbiota, making them easier to absorb and assimilate and significantly contributing to host nutrition.
- Supplying energy and precursor molecules to produce mucosal lipids, as well as promoting the proliferation of epithelial cells, thereby preserving the integrity of the gastrointestinal (GI) tract.
- The interaction and detoxification of harmful contaminants or toxins like heavy metals, pesticides, cyanotoxins, etc.
- The modulation of gastrointestinal homeostasis via microbiota–immune system interactions, the loss of which can cause metabolic diseases such as obesity and type II diabetes.
- Maintenance of the gut–brain axis—microbiota products may affect the brain by creating regulating hormones or neurotransmitters; altering the gastrointestinal tract, autonomic nervous system, or intestinal nervous system; or boosting the immune system.
- The prevention of foreign infections through competitive eradication and antimicrobial factor(s) production via the human microbiota acting as an anatomical barrier.
2.2.1. Bacterial Members
- Firmicutes: Streptococcus, Lactococcus, Enterococcus, Lactobacillus, Gemella, Staphylococcus.
- Tenericutes: Mollicutes [G-1], Mycoplasma.
- Firmicutes: Eubacterium, Peptostreptococcaceae, Mogibacterium, Filifactor, Parvimonas, Finegoldia, Anaerococcus, Peptoniphilus, Pseudoramibacter, Lachnospiraceae (G-1,2,3,7,8), Catonella, Oribacterium, Peptococcus, Oribacterium, Clostridiales, Selenomonas, Mitsuokella, Veillonellaceae (G-1), Veillonella, Dialister, Megasphaera.
- Actinobacteria: Actinomyces, Rothia, Microbacterium, Propionibacterium, Mycobacterium, Gardnerella, Corynebacterium, Bifidobacteriaceae, Slackia, Cryptobacterium, Eggerthella, Atopobium.
- Fusobacteria: Fusobacterium, Fusobacteria [G-1], Sneathia, Leptotrichia.
- Bacteroidetes: Prevotella, Bacteroidaceae, Tannerella, Porphyromonas, Flavobacteriales, Bergeyella, Capnocytophaga.
- Proteobacteria: Neisseria, Kingella, Simonsiella, Neisseria, Achromobacter, Bordetella, Lautropia, Burkholderia, Ralstonia, Delftia, Variovorax, Leptothrix, Stenotrophomonas, Xanthomonas, Cardiobacterium, Pseudomonas, Acinetobacter, Moraxella, Enterobacter, Escherichia, Klebsiella, Yersinia, Haemophilus, Aggregatibacter, Caulobacter, Caulobacter, Campylobacter.
- Spirochaetes: Treponema.
- Chlamydiae: Chlamydophila.
- Chloroflexi: Chloroflexi [G-1].
- Synergistetes: Jonquetella, Pyramidobacter, Synergistes [G-3].
- TM7: TM7 [G-1, 2,3,4,5].
- SR1: SR1(G1-1).
- Archaea.
- Euryarchaeota: Methanobrevibacter oralis.
Candidate Phyla Radiation and the Enigmatic World of Microbial Dark Matter
2.2.2. Mycobiome/Fungal Species
2.2.3. Virome
2.2.4. Oral Microbiome Databases
2.2.5. Oral Microbiome: Relation to Oral and Systemic Diseases
2.3. Methodologies Employed in the Study of the Oral Microbiome
2.3.1. Sampling
2.3.2. Microbial Cultivation and Microscopic Examination
Fluorescence In Situ Hybridization (FISH)
2.4. Molecular Oral-Microbiology-Culture-Independent Approaches
2.4.1. DNA–DNA Hybridization
DNA Microarray
2.4.2. Polymerase Chain Reaction (PCR) Amplification
2.5. Next-Generation Sequencing
2.6. Amplicon Sequencing as a Method for Systematic Characterization of the Microbiome
2.7. Long-Read Sequencing
3. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Delgado, S.; Cabrera-Rubio, R.; Mira, A.; Suárez, A.; Mayo, B. Microbiological Survey of the Human Gastric Ecosystem Using Culturing and Pyrosequencing Methods. Microb. Ecol. 2013, 65, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xuan, S.; Wang, Z. Oral microbiota: A new view of body health. Food Sci. Hum. Wellness 2019, 8, 8–15. [Google Scholar] [CrossRef]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the Normal Bacterial Flora of the Oral Cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Nardi, G.M.; Grassi, R.; Ndokaj, A.; Antonioni, M.; Jedlinski, M.; Rumi, G.; Grocholewicz, K.; Dus-Ilnicka, I.; Grassi, F.R.; Ottolenghi, L.; et al. Maternal and Neonatal Oral Microbiome Developmental Patterns and Correlated Factors: A Systematic Review—Does the Apple Fall Close to the Tree? Int. J. Environ. Res. Public Health 2021, 18, 5569. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Totsika, M.; Morrison, M.; Punyadeera, C. Oral Microbiome: A New Biomarker Reservoir for Oral and Oropharyngeal Cancers. Theranostics 2017, 7, 4313–4321. [Google Scholar] [CrossRef] [PubMed]
- Bik, E.M.; Eckburg, P.B.; Gill, S.R.; Nelson, K.E.; Purdom, E.A.; Francois, F.; Perez-Perez, G.; Blaser, M.J.; Relman, D.A. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. USA 2006, 103, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yu, W.-H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A web accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010, 2010, baq013. [Google Scholar] [CrossRef]
- Bik, E.M.; Long, C.D.; Armitage, G.C.; Loomer, P.; Emerson, J.; Mongodin, E.F.; Nelson, K.E.; Gill, S.R.; Fraser-Liggett, C.M.; Relman, D.A. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010, 4, 962–974. [Google Scholar] [CrossRef]
- Blaser, M.J. The microbiome revolution. J. Clin. Investig. 2014, 124, 4162–4165. [Google Scholar] [CrossRef]
- Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M.L.; Tonetti, M.S.; Wade, W.G.; Zaura, E. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef]
- Kistler, J.O.; Arirachakaran, P.; Poovorawan, Y.; Dahlén, G.; Wade, W.G. The oral microbiome in human immunodeficiency virus (HIV)-positive individuals. J. Med. Microbiol. 2015, 64, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Hiergeist, A.; Gläsner, J.; Reischl, U.; Gessner, A. Analyses of Intestinal Microbiota: Culture versus Sequencing. ILAR J. 2015, 56, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.M.; Joshi, V.; Fellows, M.; Dabdoub, S.M.; Nagaraja, H.N. A tale of two risks: Smoking diabetes and the subgingival microbiome. ISME J. 2017, 11, 2075–2089. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Joshipura, K.; Giovannucci, E.; Fuchs, C.S. A Prospective Study of Periodontal Disease and Pancreatic Cancer in US Male Health Professionals. JNCI J. Natl. Cancer Inst. 2007, 99, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Ogunrinola, G.A.; Oyewale, J.O.; Oshamika, O.O.; Olasehinde, G.I. The Human Microbiome and Its Impacts on Health. Int. J. Microbiol. 2020, 2020, 8045646. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Flint, H.J. Micro-organisms and the Microbiome. In Why Gut Microbes Matter: Understanding Our Microbiome; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–8. [Google Scholar]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.P.; Smith, A.M.; Roberts, A.P. The Oral Microbiome. Emerg Top. Life Sci. 2017, 1, 287–296. [Google Scholar] [PubMed]
- Dinis, M.; Agnello, M.; Cen, L.; Shokeen, B.; He, X.; Shi, W.; Wong, D.T.W.; Lux, R.; Tran, N.C. Oral Microbiome: Streptococcus mutans/Caries Concordant-Discordant Children. Front. Microbiol. 2022, 13, 782825. [Google Scholar] [CrossRef]
- Jiang, W.-X.; Hu, Y.-J.; Gao, L.; He, Z.-Y.; Zhu, C.-L.; Ma, R.; Huang, Z.-W. The Impact of Various Time Intervals on the Supragingival Plaque Dynamic Core Microbiome. PLoS ONE 2015, 10, e0124631. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, J.; Chen, L.; Gan, N.; Yang, D. The Oral Microbiome in the Elderly with Dental Caries and Health. Front. Cell. Infect. Microbiol. 2019, 8, 442. [Google Scholar] [CrossRef]
- Mihaila, D.; Donegan, J.; Barns, S.; LaRocca, D.; Du, Q.; Zheng, D.; Vidal, M.; Neville, C.; Uhlig, R.; Middleton, F.A. The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS ONE 2019, 14, e0218252. [Google Scholar] [CrossRef] [PubMed]
- Anbalagan, R.; Srikanth, P.; Mani, M.; Barani, R.; Seshadri, K.G.; Janarthanan, R. Next generation sequencing of oral microbiota in Type 2 diabetes mellitus prior to and after neem stick usage and correlation with serum monocyte chemoattractant-1. Diabetes Res. Clin. Pract. 2017, 130, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, X.; Yin, J.; Li, Y.; Hou, B.; Zhang, Z. A screening method for gastric cancer by oral microbiome detection. Oncol. Rep. 2018, 39, 2217–2224. [Google Scholar] [CrossRef]
- Docktor, M.J.; Paster, B.J.; Abramowicz, S.; Ingram, J.; Wang, Y.E.; Correll, M.; Jiang, H.; Cotton, S.L.; Kokaras, A.S.; Bousvaros, A. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, C.C.; Persson, G.R.; Wondimu, B.; Marcus, C.; Sobko, T.; Modéer, T. Microbiota in the Oral Subgingival Biofilm Is Associated with Obesity in Adolescence. Obesity 2012, 20, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.W.; Singh, N.; Ng, K.F.; Lam, D.K.; Goldberg, M.B.; Tenenbaum, H.C.; Neufeld, J.D.; Beiko, R.G.; Senadheera, D.B. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. npj Biofilms Microbiomes 2017, 3, 2. [Google Scholar] [CrossRef]
- Stahringer, S.S.; Clemente, J.C.; Corley, R.P.; Hewitt, J.; Knights, D.; Walters, W.A.; Knight, R.; Krauter, K.S. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res. 2012, 22, 2146–2152. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, B.; Li, B.; Ren, B.; Zhao, J.; Li, M.; Peng, X.; Feng, M.; Li, J.; Wei, H.; et al. Research on oral microbiota of monozygotic twins with discordant caries experience—In vitro and in vivo study. Sci. Rep. 2018, 8, 7267. [Google Scholar] [CrossRef]
- Bordenstein, S.R.; Theis, K.R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef]
- Li, Y.H.; Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors 2012, 12, 2519–2538. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Busscher, H.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H. Biofilm Formation on Dental Restorative and Implant Materials. J. Dent. Res. 2010, 89, 657–665. [Google Scholar] [CrossRef]
- Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef]
- Krajmalnik-Brown, R.; Ilhan, Z.; Kang, D.; DiBaise, J.K. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Relman, D.A. The human microbiome: Ecosystem resilience and health. Nutr. Rev. 2012, 70 (Suppl. 1), S2–S9. [Google Scholar] [CrossRef]
- Relman, D.A. The Human Microbiome and the Future Practice of Medicine. JAMA 2015, 314, 1127–1128. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The Human Oral Microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- Camanocha, A.; Dewhirst, F.E. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J. Oral Microbiol. 2014, 6, 25468. [Google Scholar] [CrossRef] [PubMed]
- Bor, B.; Collins, A.J.; Murugkar, P.P.; Balasubramanian, S.; To, T.T.; Hendrickson, E.L.; Bedree, J.K.; Bidlack, F.B.; Johnston, C.D.; Shi, W.; et al. Insights Obtained by Culturing Saccharibacteria with Their Bacterial Hosts. J. Dent. Res. 2020, 99, 685–694. [Google Scholar] [CrossRef]
- Griffen, A.L.; Beall, C.J.; Campbell, J.H.; Firestone, N.D.; Kumar, P.S.; Yang, Z.K.; Podar, M.; Leys, E.J. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012, 6, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Role of the oral microflora in health. Microb. Ecol. Health Dis. 2009, 12, 130–137. [Google Scholar]
- Bokhari, R.H.; Amirjan, N.; Jeong, H.; Kim, K.M.; Caetano-Anollés, G.; Nasir, A. Bacterial Origin and Reductive Evolution of the CPR Group. Genome Biol. Evol. 2020, 12, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Lu, C.; Lou, X.; Zhang, Q.; Jia, P.; Yan, Z.; Lin, J.; Chen, F. A computational protocol to characterize elusive Candidate Phyla Radiation bacteria in oral environments using metagenomic data. bioRxiv 2018, 358812. [Google Scholar] [CrossRef]
- Castelle, C.J.; Brown, C.T.; Anantharaman, K.; Probst, A.J.; Huang, R.H.; Banfield, J.F. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 2018, 16, 629–645. [Google Scholar] [CrossRef]
- Naud, S.; Ibrahim, A.; Valles, C.; Maatouk, M.; Bittar, F.; Alou, M.T.; Raoult, D. Candidate Phyla Radiation, an Underappreciated Division of the Human Microbiome, and Its Impact on Health and Disease. Clin. Microbiol. Rev. 2022, 35, e0014021. [Google Scholar] [CrossRef]
- McLean, J.S.; Bor, B.; Kerns, K.A.; Liu, Q.; To, T.T.; Solden, L.; Hendrickson, E.L.; Wrighton, K.; Shi, W.; He, X. Acquisition and Adaptation of Ultra-Small Parasitic Reduced Genome Bacteria to Mammalian Hosts. Cell Rep. 2020, 32, 107939. [Google Scholar] [CrossRef]
- Romani Vestman, N.; Chen, T.; Lif Holgerson, P.; Öhman, C.; Johansson, I. Oral microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289: A randomized control trial. PLoS ONE 2015, 10, e0125812. [Google Scholar] [CrossRef]
- Huang, S.; Yang, F.; Zeng, X.; Chen, J.; Li, R.; Wen, T.; Li, C.; Wei, W.; Liu, J.; Chen, L.; et al. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health 2011, 11, 33. [Google Scholar] [CrossRef]
- Lu, H.; Ren, Z.; Li, A.; Li, J.; Xu, S.; Zhang, H.; Jiang, J.; Yang, J.; Luo, Q.; Zhou, K.; et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J. Oral Microbiol. 2019, 11, 1563409. [Google Scholar] [CrossRef]
- Johansson, I.; Witkowska, E.; Kaveh, B.; Lif Holgerson, P.; Tanner, A.C.R. The microbiome in populations with a low and high prevalence of caries. J. Dent. Res. 2016, 95, 80–86. [Google Scholar] [CrossRef]
- Al-Hebshi, N.N.; Abdulhaq, A.; Albarrag, A.; Basode, V.K.; Chen, T. Species-level core oral bacteriome identified by 16S rRNA pyrosequencing in a healthy young Arab population. J. Oral Microbiol. 2016, 8, 31444. [Google Scholar] [CrossRef]
- Cross, K.L.; Campbell, J.H.; Balachandran, M.; Campbell, A.G.; Cooper, C.J.; Griffen, A.; Heaton, M.; Joshi, S.; Klingeman, D.; Leys, E.; et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 2019, 37, 1314–1321. [Google Scholar] [CrossRef]
- Segata, N.; Haake, S.K.; Mannon, P.; Lemon, K.P.; Waldron, L.; Gevers, D.; Huttenhower, C.; Izard, J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012, 13, R42. [Google Scholar] [CrossRef]
- Bor, B.; Bedree, J.K.; Shi, W.; McLean, J.S.; He, X. Saccharibacteria (TM7) in the Human Oral Microbiome. J. Dent. Res. 2019, 98, 500–509. [Google Scholar] [CrossRef]
- Jaffe, A.L.; Thomas, A.D.; He, C.; Keren, R.; Valentin-Alvarado, L.E.; Munk, P.; Bouma-Gregson, K.; Farag, I.F.; Amano, Y.; Sachdeva, R.; et al. Patterns of Gene Content and Co-occurrence Constrain the Evolutionary Path toward Animal Association in Candidate Phyla Radiation Bacteria. mBio 2021, 12, e0052121. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef]
- Holgerson, P.L.; Harnevik, L.; Hernell, O.; Tanner, A.; Johansson, I. Mode of Birth Delivery Affects Oral Microbiota in Infants. J. Dent. Res. 2011, 90, 1183–1188. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLOS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.A.; Wu, J.; Hayes, R.B.; Ahn, J. The oral fungal mycobiome: Characteristics and relation to periodontitis in a pilot study. BMC Microbiol. 2017, 17, 157. [Google Scholar] [CrossRef] [PubMed]
- Schuster, G.S. Oral Flora and Pathogenic Organisms. Infect. Dis. Clin. N. Am. 1999, 13, 757–774. [Google Scholar] [CrossRef]
- Diaz, P.; Dongari-Bagtzoglou, A. Critically Appraising the Significance of the Oral Mycobiome. J. Dent. Res. 2021, 100, 133–140. [Google Scholar] [CrossRef]
- Bandara, H.M.H.N.; Panduwawala, C.P.; Samaranayake, L.P. Biodiversity of the human oral mycobiome in health and disease. Oral Dis. 2019, 25, 363–371. [Google Scholar] [CrossRef]
- Hong, B.; Hoare, A.; Cardenas, A.; Dupuy, A.; Choquette, L.; Salner, A.; Schauer, P.; Hegde, U.; Peterson, D.; Dongari-Bagtzoglou, A.; et al. The Salivary Mycobiome Contains 2 Ecologically Distinct Mycotypes. J. Dent. Res. 2020, 99, 730–738. [Google Scholar] [CrossRef]
- Caselli, E.; Fabbri, C.; D’accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Pride, D.T.; Salzman, J.; Haynes, M.; Rohwer, F.; Davis-Long, C.; White, R.A.; Loomer, P.; Armitage, G.C.; Relman, D.A. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012, 6, 915–926. [Google Scholar] [CrossRef]
- Abeles, S.R.; Robles-Sikisaka, R.; Ly, M.; Lum, A.G.; Salzman, J.; Boehm, T.K.; Pride, D.T. Human oral viruses are personal, persistent and gender-consistent. ISME J. 2014, 8, 1753–1767. [Google Scholar] [CrossRef]
- Robles-Sikisaka, R.; Ly, M.; Boehm, T.; Naidu, M.; Salzman, J.; Pride, D.T. Association between living environment and human oral viral ecology. ISME J. 2013, 7, 1710–1724. [Google Scholar] [CrossRef]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the human oral microbiome. Arch. Microbiol. 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Griffen, A.L.; Beall, C.J.; Firestone, N.D.; Gross, E.L.; DiFranco, J.M.; Hardman, J.H.; Vriesendorp, B.; Faust, R.A.; Janies, D.A.; Leys, E.J. CORE: A Phylogenetically-Curated 16S rDNA Database of the Core Oral Microbiome. PLoS ONE 2011, 6, e19051. [Google Scholar] [CrossRef]
- Deo, P.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef]
- Xian, P.; Xuedong, Z.; Xin, X.; Yuqing, L.; Yan, L.; Jiyao, L.; Xiaoquan, S.; Shi, H.; Jian, X.; Ga, L. The Oral Microbiome Bank of China. Int. J. Oral Sci. 2018, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.; Ojcius, D.M.; Yilmaz, Ö. The Oral Microbiota: Living with a Permanent Guest. DNA Cell Biol. 2009, 28, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Ruby, J.; Goldner, M. Nature of symbiosis in oral disease. J. Dent. Res. 2007, 86, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Filoche, S.; Wong, L.; Sissons, C.H. Oral biofilms: Emerging concepts in microbial ecology. J. Dent. Res. 2010, 89, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Badger, J.H.; Ng, P.C.; Venter, J.C. The human genome, microbiomes, and disease. In Metagenomics of the Human Body; Nelson, K.E., Ed.; Springer Science + Business Media: New York, NY, USA, 2011; Volume 17, pp. 1–14. [Google Scholar]
- Socransky, S.S.; Haffajee, A.D. The bacterial etiology of destructive periodontal disease: Current concepts. J. Periodontol. 1992, 63, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Ecological Approaches to Oral Biofilms: Control without Killing. Caries Res. 2015, 49, 46–54. [Google Scholar] [CrossRef]
- Zaura, E.; Cate, J.M.T. Towards Understanding Oral Health. Caries Res. 2015, 49, 55–61. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 128, 110861. [Google Scholar] [CrossRef]
- Martinez, J.E.; Kahana, D.D.; Ghuman, S.; Wilson, H.P.; Wilson, J.; Kim, S.C.; Lagishetty, V.; Jacobs, J.P.; Sinha-Hikim, A.P.; Friedman, T.C. Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal micro-biome. Front. Endocrinol. 2021, 12, 667066. [Google Scholar] [CrossRef]
- Hsiao, J.R.; Chang, C.C.; Lee, W.T.; Huang, C.C.; Ou, C.Y.; Tsai, S.T.; Chen, K.C.; Huang, J.S.; Wong, T.Y.; Lai, Y.H.; et al. The interplay between oral microbiome, lifestyle factors and genetic polymorphisms in the risk of oral squamous cell carcinoma. Carcinogenesis 2018, 39, 778–787. [Google Scholar] [CrossRef]
- Zarco, M.; Vess, T.; Ginsburg, G. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 2012, 18, 109–120. [Google Scholar] [CrossRef]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef]
- Aagaard, K.; Petrosino, J.; Keitel, W.; Watson, M.; Katancik, J.; Garcia, N.; Patel, S.; Cutting, M.; Madden, T.; Hamilton, H.; et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J. 2013, 27, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Leys, E.J.; Griffen, A.L.; Beall, C.; Maiden, M.F. Isolation, classification, and identification of oral microorganisms. In Oral Microbiology and Immunology; Lamont, R.J., Hajishengallis, G.N., Jenkinson, H.F., Eds.; ASM Press: Washington, DC, USA, 2013; pp. 77–96. [Google Scholar]
- Siqueira, J.F., Jr.; Rôças, I.N. As-yet-uncultivated oral bacteria: Breadth and association with oral and extra-oral diseases. J. Oral Microbiol. 2013, 5, 21077. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Peters, B.A.; Min, D.; Ahn, J.; Hayes, R.B. Comparison of the oral microbiome in mouthwash and whole saliva samples. PLoS ONE 2018, 13, e0194729. [Google Scholar] [CrossRef] [PubMed]
- Jo, R.; Nishimoto, Y.; Umezawa, K.; Yama, K.; Aita, Y.; Ichiba, Y.; Murakami, S.; Kakizawa, Y.; Kumagai, T.; Yamada, T.; et al. Comparison of oral microbiome profiles in stimulated and unstimulated saliva, tongue, and mouth-rinsed water. Sci. Rep. 2019, 9, 16124. [Google Scholar] [CrossRef] [PubMed]
- Wade, W. Unculturable Bacteria—The Uncharacterized organisms that Cause Oral Infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef]
- Vartoukian, S.R.; Adamowska, A.; Lawlor, M.; Moazzez, R.; Dewhirst, F.E.; Wade, W.G. In Vitro Cultivation of ‘Unculturable’ Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores. PLoS ONE 2016, 11, e0146926. [Google Scholar] [CrossRef] [PubMed]
- Sizova, M.V.; Hohmann, T.; Hazen, A.; Paster, B.J.; Halem, S.R.; Murphy, C.M.; Panikov, N.S.; Epstein, S.S. New Approaches for Isolation of Previously Uncultivated Oral Bacteria. Appl. Environ. Microbiol. 2012, 78, 194–203. [Google Scholar] [CrossRef]
- Handelsman, J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef]
- Wayne, L.G.; Moore, W.E.C.; Stackebrandt, E.; Kandler, O.; Colwell, R.R.; Krichevsky, M.I.; Truper, H.G.; Murray, R.G.E.; Grimont, P.A.D.; Brenner, D.J.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar] [CrossRef]
- Valm, A.M.; Welch, J.L.M.; Borisy, G.G. CLASI-FISH: Principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 2012, 35, 496–502. [Google Scholar] [CrossRef]
- Prudent, E.; Raoult, D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol. Rev. 2018, 43, 88–107. [Google Scholar] [CrossRef]
- Guimaraes, N.M.; Azevedo, N.F.; Almeida, C. FISH Variants. Methods Mol. Biol. 2021, 2246, 17–33. [Google Scholar]
- Azevedo, N.F.; Almeida, C. Fluorescence In-Situ Hybridization (FISH) for Microbial Cells; Springer: New York, NY, USA, 2021. [Google Scholar]
- Faria, A.R.; Silvestre, O.F.; Nieder, J.B.; Lou, C.; Wengel, J.; Almeida, C.; Azevedo, N.F. Spectral imaging and nucleic acid mimics fluorescence in situ hybridization (SI-NAM-FISH) for multiplex detection of clinical pathogens. Front. Microbiol. 2022, 13, 976639. [Google Scholar]
- Barbosa, A.; Miranda, S.; Azevedo, N.F.; Cerqueira, L.; Azevedo, A.S. Imaging biofilms using fluorescence in situ hybridization: Seeing is believing. Front. Cell. Infect. Microbiol. 2023, 13, 1195803. [Google Scholar] [CrossRef] [PubMed]
- Lebofsky, R.; Bensimon, A. Single DNA molecule analysis: Applications of molecular combing. Briefings Funct. Genom. Proteom. 2003, 1, 385–396. [Google Scholar] [CrossRef]
- Simón-Soro, A.; Tomás, I.; Cabrera-Rubio, R.; Catalan, M.D.; Nyvad, B.; Mira, A. Microbial Geography of the Oral Cavity. J. Dent. Res. 2013, 92, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.; Do, T.; Devine, D. Oral biofilms: Molecular analysis, challenges, and future prospects in dental diagnostics. Clin. Cosmet. Investig. Dent. 2013, 5, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA—DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Yin, Y.; Zhao, X.S. Kinetics and dynamics of DNA hybridization. Acc. Chem. Res. 2011, 44, 1172–1181. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Klenk, H.-P.; Göker, M. Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [Google Scholar] [CrossRef]
- Socransky, S.S.; Smith, C.; Martin, L.; Paster, B.J.; Dewhirst, F.E.; Levin, A.E. “Checkerboard” DNA-DNA hybridization. Biotechniques 1994, 17, 788–792. [Google Scholar]
- Cho, J.C.; Tiedje, J.M. Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA mi-croarrays. Appl. Environ. Microbiol. 2001, 67, 3677–3682. [Google Scholar] [CrossRef]
- Rossello-Mora, R.; Urdiain, M.; Lopez-Lopez, A. DNA—DNA Hybridization. In Methods in Microbiology; Academic Press: Cambridge, MA, USA, 2011; Volume 38, pp. 325–347. [Google Scholar]
- Heller, M.J. DNA Microarray Technology: Devices, Systems, and Applications. Annu. Rev. Biomed. Eng. 2002, 4, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreich, A. DNA microarray technology for the microbiologist: An overview. Appl. Microbiol. Biotechnol. 2006, 73, 255–273. [Google Scholar] [CrossRef]
- van Pelt-Verkuil, E.; Van Belkum, A.; Hays, J.P. Principles and Technical Aspects of PCR Amplification; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Korbie, D.J.; Mattick, J.S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 2008, 3, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Kontanis, E.J.; Reed, F.A. Evaluation of Real-Time PCR Amplification Efficiencies to Detect PCR Inhibitors. J. Forensic Sci. 2006, 51, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24, 243–284. [Google Scholar] [CrossRef] [PubMed]
- Bej, A.K.; Mahbubani, M.H.; Atlas, R.M. Amplification of Nucleic Acids by Polymerase Chain Reaction (PCR) and Other Methods and Their Applications. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 301–334. [Google Scholar] [CrossRef]
- Gloor, G.B.; Hummelen, R.; Macklaim, J.M.; Dickson, R.J.; Fernandes, A.D.; MacPhee, R.; Reid, G. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 2010, 5, e15406. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Keelan, J.; Payne, M.S. Identification and removal of contaminating microbial DNA from PCR reagents: Impact on low-biomass microbiome analyses. Lett. Appl. Microbiol. 2019, 68, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Birbian, N.; Sinha, S.; Goswami, A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 2014, 1, 65–80. [Google Scholar]
- Rajalakshmi, S. Different Types of PCR Techniques and Its Applications. Int. J. Pharm. Chem. Biol. Sci. 2017, 7, 285–292. [Google Scholar]
- Wensel, C.R.; Pluznick, J.L.; Salzberg, S.L.; Sears, C.L. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. J. Clin. Investig. 2022, 132, e154944. [Google Scholar] [CrossRef] [PubMed]
- Boers, S.A.; Jansen, R.; Hays, J.P. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1059–1070. [Google Scholar] [CrossRef]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-generation sequencing technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef]
- Xia, J.; Wang, Q.; Jia, P.; Wang, B.; Pao, W.; Zhao, Z. NGS catalog: A database of next generation sequencing studies in humans. Hum. Mutat. 2012, 33, E2341–E2355. [Google Scholar] [CrossRef]
- Bahassi, E.M.; Stambrook, P.J. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis 2014, 29, 303–310. [Google Scholar] [CrossRef]
- Di Resta, C.; Galbiati, S.; Carrera, P.; Ferrari, M. Next-generation sequencing approach for the diagnosis of human diseases: Open challenges and new opportunities. EJIFCC 2018, 29, 4–14. [Google Scholar] [PubMed]
- Grada, A.; Weinbrecht, K. Next-Generation Sequencing: Methodology and Application. J. Investig. Dermatol. 2013, 133, 1–4. [Google Scholar] [CrossRef]
- Hosomichi, K.; Shiina, T.; Tajima, A.; Inoue, I. The impact of next-generation sequencing technologies on HLA research. J. Hum. Genet. 2015, 60, 665–673. [Google Scholar] [CrossRef]
- Gohl, D.M.; Vangay, P.; Garbe, J.; MacLean, A.; Hauge, A.; Becker, A.; Gould, T.J.; Clayton, J.B.; Johnson, T.J.; Hunter, R.; et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 2016, 34, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.; Yergeau, E. Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience 2019, 8, giz146. [Google Scholar] [CrossRef] [PubMed]
- Walujkar, S.A.; Dhotre, D.P.; Marathe, N.P.; Lawate, P.S.; Bharadwaj, R.S.; Shouche, Y.S. Characterization of bacterial community shift in human Ulcerative Colitis patients revealed by Illumina based 16S rRNA gene amplicon sequencing. Gut Pathog. 2014, 6, 22. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 2021, 12, 315–330. [Google Scholar] [CrossRef]
- Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Mantere, T.; Kersten, S.; Hoischen, A. Long-Read Sequencing Emerging in Medical Genetics. Front. Genet. 2019, 10, 426. [Google Scholar] [CrossRef]
- Marx, V. Method of the year: Long-read sequencing. Nat. Methods 2023, 20, 6–11. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sereewattanawoot, S.; Suzuki, A. A new era of long-read sequencing for cancer genomics. J. Hum. Genet. 2020, 65, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Zhang, S.; Ren, P.; Liang, F.; Sun, Z.; Meng, G.; Tan, Y.; Li, X.; Lai, Q.; Han, L.; et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience 2020, 9, giaa123. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shen, N.; Lu, Z.; Xu, G.; Wang, Y.; Jin, B. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome. Plant Methods 2020, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Karst, S.M.; Ziels, R.M.; Kirkegaard, R.H.; Sørensen, E.A.; McDonald, D.; Zhu, Q.; Knight, R.; Albertsen, M. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 2021, 18, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, A.; Au, K.F. PacBio sequencing and its applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.G.; Pavarina, A.C.; Dovigo, L.N.; Palomari Spolidorio, D.M.; Giampaolo, E.T. Disinfection of silicone-based dental impression materials: A review. Braz. Oral Res. 2020, 34, e034. [Google Scholar]
- Soares, A.F.; Costa, E.M.; Pereira, M.V.; Silva, C.F.; Sombra, A.S.B. Organic toothpaste: A review of the composition and antimicrobial effects of natural compounds. J. Appl. Oral Sci. 2021, 29, e20210345. [Google Scholar]
- de Oliveira, J.R.; de Oliveira, F.E.; Mendes, L.C.; Tavaria, F.K.; Gonçalves, R.F. Chitosan as an antimicrobial agent in dentistry: A review. Molecules 2018, 23, 2668. [Google Scholar]
- Al Moharib, H.S.; Al Mubarak, S. Platelet-rich plasma in dentistry: A review of the literature and application. Saudi Med. J. 2021, 42, 701–711. [Google Scholar]
Type | Properties | Limitations | Advantages |
---|---|---|---|
Oligonucleotide array Affymetrix GeneChips | Oligonucleotides are chemically synthesized on the array’s coated-quartz surface. | Limited to a few microbes—S. cerevisiae, E. coli, B. subtilis, P. aeruginosa, and S. typhimurium. | Cost-effective |
Enables very high feature densities—around 400,000 | Others entail expensive custom designs by the company | The measurement of gene expression can be achieved by employing probes that cover the entire length of the transcript | |
Printed microarrays | Probes are produced individually and deposited onto the array by the utilization of a microarray spotter. | Expensive | Custom DNA microarrays allow for the creation of arrays for any species or strain |
Two distinct technologies are currently available: contact printers and noncontact printers | Spotters require a clean, controlled space with a regulated temperature and humidity—otherwise small liquid quantities evaporate quickly, making reproducible results difficult | It is feasible to generate variable quantities of arrays, modify slide chemistry, promptly adapt to advancements in annotation, eliminate probes for non-target genes, and incorporate probes that are specifically pertinent, such as those targeting intergenic areas | |
High associated costs and special expertise needed—requires microarray core facilities to handle this task | |||
Slight misalignments can cause variable or missing features. | |||
Pins can only print a limited number of features before needing replacement | |||
Cross-contamination and capillary blockage cause missing areas | |||
Double-stranded DNA microarrays | PCR amplification often produces double-stranded DNA. | Lengthy and laborious PCR product manufacturing and probe identity inaccuracies from generation faults | Cheaper cost, greater hybridization specificity, and sensitivity. |
Recommended amplified DNA length is 200–800 bp; however, bigger pieces up to 1.3 kb are also effective | Research suggests that 1 to 5% of commercial cDNA microarray probes may have incorrect identities. | Essential when the organism’s sequence is unavailable | |
Checkerboard DNA–DNA hybridization (CKB) Mini slot (Immunetics, Cambridge, MA, USA). | The approach employed is a robust non-polymerase chain reaction (PCR) method that relies on the concurrent hybridization of 40 digoxigenin (DIG)–labeled whole-genome DNA probes. | Nonspecific target binding | Rapid, sensitive, and relatively inexpensive. |
The process entails the extraction of DNA from oral samples, followed by the hybridization of the extracted sample with labeled probes that represent either the entire genomes or the 16S ribosomal RNA genes of bacteria with known identities. |
Type | Principle | Application | Advantages | Limitations |
---|---|---|---|---|
Amplified fragment length polymorphism AFLP-PCR | Developed in 1995 by Peter Vos et al. [116] | To examine genetic diversity among species or closely related species, infer phylogenies at the population level, discern biogeographic patterns, create genetic maps, and determine the relatedness of cultivars | AFLP markers can analyze several loci simultaneously | Cannot detect poor DNA quality or degraded DNA. |
Combination of restriction-based and PCR-based methods | Organism sequence information is not necessary for designing primers complementary to adapter sequences | Cannot detect homozygous or heterozygous individuals due to its dominant marker nature. | ||
Uses restriction endonucleases to digest genomic DNA, followed by adapter ligation and PCR amplification | Requires a less genomic template | AFLPs are multi-locus, making it difficult to identify which fragment belongs to which DNA locus | ||
Highly reproducible outcomes with high-quality DNA input. | ||||
Hot-start PCR | Variation of standard PCR that limits one reagent till heating to reduce non-specific binding | Inhibits hot-start Taq DNA polymerase activity or modified dNTP incorporation during reaction setup until heat activation | The reaction can be prepared at ambient temperature | The extended duration of heat exposure in comparison to conventional PCR necessitates the application of additional heat, resulting in increased vulnerability of the template DNA to potential damage |
Hot-start PCR avoids non-specific amplification and primer dimer formation. Increase results yield and accuracy | Enhanced productivity and accuracy | |||
Magnesium-dependent | ||||
Nested PCR | The utilization of nested PCR enhances the specificity of the reaction through the implementation of two distinct sets of primers, hence mitigating non-specific binding | Useful for pathogen detection and phylogenetic investigations; suitable for cancer and viral infection research | 100% accuracy, specificity, and sensitivity | The process is time-consuming |
Beneficial for amplifying low-abundance genes. | Required more reagents such as an extra set of primer and one extra round of agarose gel electrophoresis. This makes the technique expensive | |||
Works well on impossible templates with high GC content or non-specific bands | ||||
Increased risk of contamination | ||||
Allele-specific PCR | Analyzes single-nucleotide polymorphisms using allele-specific primers | Detect the single-nucleotide polymorphisms (SNPs) at a particular location of the genome | Accurately distinguishes two alleles | Detects only known SNPs, not novel variations or mutations. |
Implements complicated primer design and mismatch incorporation | Higher false-positive rates necessitate regular internal, negative, and positive controls | |||
Accurately distinguishes homozygous and heterozygous alleles. | Includes extra primer sets, making the procedure expensive | |||
A crucial approach for genotyping and allelic variation research. | it cannot detect chromosomal alterations or bigger mutations such as deletions and duplications | |||
The ARMS-PCR, or allele-specific PCR, uses two primers for two alleles | Detects single-base variations (SNP) | |||
The process is rapid, accurate, and reliable | ||||
Multiplex PCR | Standard molecular biology technique for amplifying many targets in one test | Can be used to simultaneously amplify target sequences of different pathogenic microorganisms in a single reaction, with potential application in routine laboratories | Amplify many templates in one reaction or tube | High likelihood of non-specific binds and un-amplifications |
Uses a thermal cycler to amplify DNA using several primers and a temperature-mediated DNA polymerase | The technique is fast, efficient, and requires little labor | Has a substantial reaction failure risk if not executed effectively | ||
Multiplexing is inexpensive since it saves reagent, time, and power | Not every template (esp. long templates) can be multiplexed | |||
Each amplicon acts as an ‘internal control’ for another response, reducing false-positive results. | Primer self-inhibition | |||
Use less template material to provide more information | Low amplification efficiency | |||
Requires fewer consumables, chemicals, and utilities and additionally minimizes pipetting errors | Template efficiency differences. These factors would limit its development and use, especially in high-throughput GMO detection | |||
Reverse transcription PCR (RT-PCR) | The RNA molecule is transformed into a complementary DNA (cDNA) molecule using the reverse transcriptase enzyme. This cDNA molecule is subsequently used as a template sequence in a polymerase chain reaction (PCR) reaction | RT-PCR is used mostly in gene expression research- and can be used in epigenetic, disease progression, and medication response investigations. | Sensitive because template RNA is amplified exponentially | Relative measurement of gene expression is limited by the need for a reference sample |
It can precisely measure disease-causing variations and estimate illness severity. | Gene-specific primers make RT-PCR cDNA synthesis very specific | Requires successful primer and probe design, a time-consuming and demanding procedure that demands standardization. | ||
Detect cancer biomarkers, severity, and progression | Yields fast results in one to two days | Alterations in reference and sample preparation affect gene expression accuracy | ||
Failure, primer-dimers, non-specific amplification, and imprecise quantification result from contamination | ||||
Quantitative PCR (qPCR) or real-time PCR | Quantitative polymerase chain reaction (Q-PCR) analyses integrate the conventional end-point detection PCR method with fluorescence detection technologies to monitor the buildup of amplicons in real-time throughout each cycle of PCR | Q-PCR assays can quantify ‘total’ bacterial (and/or archaeal) numbers by targeting highly conserved regions of the 16S rRNA gene while targeting taxa-specific sequences within hypervariable regions | Ability to quantify DNA quantities over a wide range, sensitivity, simultaneous sample processing, and immediate information | The machines cost more than typical PCR machines |
Highly sensitive, identifying even a single copy of the target nucleic acid sequence | Needs careful tuning of reaction parameters, such as primer design, annealing temperature, and enzyme concentration, which can be time-consuming | |||
qPCR is versatile, with applications in gene expression analysis, clinical diagnostics, pathogen identification, and food safety testing | High-throughput: qPCR enables examination of several samples simultaneously | qPCR may yield false-negative findings if the target sequence is absent or if inhibitors hinder the reaction | ||
Limited to DNA and RNA detection and quantification, not applicable to other biomolecules | ||||
Colony PCR | Colony PCR identifies in-plasmid DNA by generating primers | Identify proper ligation and insertion of DNA into bacteria and yeast plasmid | Rapid and affordable. | Any mutation or SNP within the ‘insert’ cannot be detected |
Gene transfer, treatment, cloning, genetic change, and CRISPR-CAS9-like investigations | The setup is straightforward, like PCR. No DNA extraction or plasmid purification is needed | It cannot give us sequence information | ||
More accurate and specific | The chances of false-positive results are very high | |||
Avoid tedious, time-consuming, and expensive restricted digestion. | ||||
Digital PCR (dPCR) | Digital PCR (dPCR) is a sensitive and efficient method for measuring DNA or RNA levels in samples | Used in clinical specimens for determining the number of DNA and RNA viruses, bacteria, and parasites when well-calibrated standard is not available | Absolute measurement no standard curve | Limited dynamic range |
High sensitivity | High cost | |||
Improved PCR inhibitor resistance | ||||
Repetitive element sequence-based PCR (rep-PCR) | Short repeated sequence regions throughout the bacterial genome are used to create oligonucleotide primers | DNA fingerprinting and bacterial strain classification using a general typing approach and genotype profile analysis | Fast, cheap, and specific; appropriate for anonymous genomic analysis | Fast, cheap, and specific; appropriate for unknown genomic analysis |
Profound segregation | Little discriminating power | |||
Inexpensive | Replicability may be lacking | |||
Multi-locus sequence typing (MLST) | Comparison of test and reference strain PCR-amplified housekeeping gene sequences | Differentiating species strains | Unambiguity and transferability of sequence data | High cost of DNA sequencing. |
Scalability from a single bacterial isolate to many hundreds or even thousands of samples |
System | Properties | Advantages | Limitations |
---|---|---|---|
Roche 454 System GS FLX Titanium system | The first commercially effective contemporary system. | Roche’s sequencing speed—10 h—is its biggest advantage. | Exorbitant expenses associated with reagent data |
The sequencer uses pyrosequencing which detects pyrophosphate produced during nucleotide incorporation to stop chain amplification instead of dideoxynucleotides. | Compared to other NGS systems, the read length is also unique | ||
AB SOLiD System (Sequencing by Oligo Ligation Detection) | The sequencer uses ligation-based two-base sequencing. | Exhibits the highest level of precision, without any dependence on a polymerase enzyme data | Implementation of this system necessitates substantial financial resources and the provision of an air-conditioned data center. |
Encompasses various areas of genomic study, such as epigenomics, whole-genome repeated sequencing, targeted resequencing, and transcriptomics. This includes investigations into gene expression profiling, small RNA analysis, and comprehensive analysis of the entire transcriptome. | Requires the utilization of a computing cluster consisting of four nodes, a team of proficient computing personnel, a distributed memory cluster, high-speed networks, and a batch queuing system | ||
Illumina GA/HiSeq System | Uses synthesis sequencing—denatured single strands from the library with fixed adaptors are grafted to the flowcell and bridge-amplified to generate clonal DNA fragment clusters | Multiplexing in P5/P7 primers and adapters allows it to process thousands of samples. | Data |
Ion PGM from Ion Torrent MiSeq—Illumina | Exhibits a small physical size and demonstrates rapid turnover rates, although it possesses a restricted capacity for data transmission | Intermediate yields can reach a maximum of 1 billion base pairs | The read lengths are rather modest, ranging from 200 to 400 base pairs (bps) |
These technologies are specifically designed for utilization in clinical settings and smaller laboratory environments | Possible to construct a maximum of five million sequences | The genome sequence is susceptible to the occurrence of base homopolymer runs, which has the potential to result in misassemblies | |
Great accuracy—surpassing 99%. | |||
Rapid execution durations (less than 8 h) | |||
Single-molecule real-time (SMRT) Pacific Biosciences | Ability to effectively sequence tiny genomes and analyze the closure of bacterial genomes without the need for further experiments | The utilization of faster and longer read durations facilitates the identification of nucleotide alterations | The cost of this item is quite high and it requires a significant amount of storage and computational resources |
Single-molecule fluorescent sequencing Helicos | The single-molecule florescent sequencing (SMS) technique simplifies the process of preparing DNA samples and mitigates errors | Errors that arise as a result of the amplification process are eliminated | Utilization of this service is not widespread. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandary, R.; Venugopalan, G.; Ramesh, A.; Tartaglia, G.M.; Singhal, I.; Khijmatgar, S. Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms 2024, 12, 571. https://doi.org/10.3390/microorganisms12030571
Bhandary R, Venugopalan G, Ramesh A, Tartaglia GM, Singhal I, Khijmatgar S. Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms. 2024; 12(3):571. https://doi.org/10.3390/microorganisms12030571
Chicago/Turabian StyleBhandary, Rahul, Geethu Venugopalan, Amitha Ramesh, Guilia Margherita Tartaglia, Ishita Singhal, and Shahnawaz Khijmatgar. 2024. "Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health" Microorganisms 12, no. 3: 571. https://doi.org/10.3390/microorganisms12030571
APA StyleBhandary, R., Venugopalan, G., Ramesh, A., Tartaglia, G. M., Singhal, I., & Khijmatgar, S. (2024). Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms, 12(3), 571. https://doi.org/10.3390/microorganisms12030571